
Transparent Symmetric Active/Active Replication for Service-Level High
Availability∗

C. Engelmann1,2, S. L. Scott1, C. Leangsuksun3, X. He4

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, USA
2Department of Computer Science, The University of Reading, UK
3Computer Science Department, Louisiana Tech University, USA

4Department of Electrical and Computer Engineering, Tennessee Technological University, USA
engelmannc@ornl.gov, scottsl@ornl.gov, box@latech.edu, hexb@tntech.edu

Abstract

As service-oriented architectures become more impor-
tant in parallel and distributed computing systems, in-
dividual service instance reliability as well as appropri-
ate service redundancy becomes an essential necessity
in order to increase overall system availability. This
paper focuses on providing redundancy strategies using
service-level replication techniques. Based on previous
research using symmetric active/active replication, this
paper proposes a transparent symmetric active/active
replication approach that allows for more reuse of code
between individual service-level replication implemen-
tations by using a virtual communication layer. Service-
and client-side interceptors are utilized in order to pro-
vide total transparency. Clients and servers are un-
aware of the replication infrastructure as it provides all
necessary mechanisms internally.

1. Introduction

Services are an integral part of today‘s parallel and
distributed computing systems. While service-oriented
architectures (SOA) [12] play a significant role in dis-
tributed Grid computing systems [14], the trend toward
services also emerges in large-scale closely coupled
massively parallel high performance computing (HPC)
systems for scientific computing [6].

∗This research was sponsored by the Office of Advanced Scientific
Computing Research; U.S. Department of Energy. The work was per-
formed at Oak Ridge National Laboratory (ORNL), which is managed
by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. It
was also performed at Louisiana Tech University under U.S. Depart-
ment of Energy Grant No. DE-FG02-05ER25659. The work at Ten-
nessee Tech University was sponsored by the Laboratory Directed Re-
search and Development Program of ORNL.

In both cases, individual service instances are sus-
ceptible to hardware and software failures, such as
caused by a hard disk crash or a programming error.
Additional causes of service outages are disaster sce-
narios, such as flood, tornado, and terrorist attack. Indi-
vidual service instance reliability as well as appropriate
service redundancy are essential to increase overall dis-
tributed computing system availability.

There are various techniques for providing service
redundancy, such as active/standby and active/active.
Implementations are based on replication mechanisms
on multiple redundant service nodes.

Our previous research in service-level symmetric
active/active replication resulted in two different repli-
cation methods [8, 9], internal and external, and in
various proof-of-concept prototype implementations for
HPC system services, such as the batch job sched-
uler [22] and the parallel file system metadata server. A
recent evaluation of our accomplishments and their lim-
itations [10] revealed several issues. One reported prob-
lem was the insufficient reuse of code between individ-
ual prototype implementations. Each service required a
customized symmetric active/active environment.

This paper proposes a transparent symmetric ac-
tive/active replication software architecture for service-
level high availability that accommodates both repli-
cation methods, internal and external, by using a vir-
tual communication layer (VCL). The original internal
and external symmetric active/active replication meth-
ods are refined to utilize service- and client-side inter-
ceptors in order to provide total transparency. Adapta-
tion of these interceptors to clients and services is only
needed with regards to the used communication proto-
cols and its semantics. Clients and servers are unaware
of the symmetric active/active replication infrastructure
as it provides all necessary mechanisms internally.



This paper is structured as follows. First, we pro-
vide an overview of the service-level high availabil-
ity concept and the symmetric active/active replication
model. Second, we introduce a refined software archi-
tecture for transparent symmetric active/active replica-
tion, discuss its internal fault tolerant communication
mechanisms, and present preliminary performance test
results. Third, we briefly describe related past and on-
going work in this area. We conclude with a short sum-
mary of the presented research.

2. Background Overview

2.1. Service-Level High Availability

A service is a communicating process that interacts
with other local or remote services and/or with users via
an input/output interface, such as network connection(s)
and command line interface(es) [11]. Services are state-
ful or stateless. They also show either deterministic
or non-deterministic behavior. The research presented
in this paper focuses on stateful deterministic services
only, as most services in parallel and distributed com-
puting systems display these properties.

A service may fail by simply stopping its operation,
i.e., by stopping to respond (timeout).

Service high availability mechanisms require to
consistently replicate service process state to multiple
redundant services on different service nodes. Imple-
mentations are based on either system-level or service-
level replication mechanisms.

System-level replication is based on the concept
of replicating service process state from the operating
system (OS) perspective. The Berkeley Lab Check-
point/Restart (BLCR) [1] layer is an example for a
system-level replication mechanism.

On the other hand, service-level replication inserts
a middleware between OS and service to replicate ser-
vice process state from the service perspective. The ear-
lier mentioned symmetric active/active batch job sched-
uler solution [22] is an implementation example for a
service-level replication mechanism.

Both mechanisms have their advantages and disad-
vantages. System-level replication mechanisms are in-
herently transparent to the service, but less efficient due
to the limited knowledge about the service. In contrast,
service-level replication mechanisms are able to adapt
to specific service properties, such as interaction with
other services/users and quality of service requirements,
but they often require to modify the original service.

The research presented in this paper targets trans-
parent service-level replication mechanisms that pro-
vide the advantages of both approaches.

2.2. Symmetric Active/Active Replication

In the symmetric active/active (A/A) replication
model for service-level high availability, two or more
active services offer the same capabilities and maintain
a common global service state [8, 9, 11].

Service-level symmetric active/active replication is
based on guaranteeing the same initial states and a lin-
ear history of state transitions for all active services,
i.e., virtual synchrony [18]. Service state replication
is performed by totally ordering all incoming request
messages and reliably delivering them to all active ser-
vices. A process group communication system is used
to assure total message order, reliable message deliv-
ery, and service group membership management. Con-
sistent output messages produced by all correct active
services is unified either by simply ignoring duplicated
messages or by using the group communication system
for a distributed mutual exclusion. The latter is required
if duplicated messages cannot be simply ignored by de-
pendent services and/or users.

The virtual synchrony model requires that each
replicated service performs the same order of state tran-
sitions based on the same order of incoming request
messages, which are delivered to each service by a
group communication system. Adaptation of the ser-
vice to this event-based or request/response program-
ming model can be performed either internally by mod-
ifying the service itself or externally by wrapping it into
a virtually synchronous environment [8, 9].

Internal replication allows each active service to
accept request messages individually, while using the
group communication system for total message order
and reliable message delivery to all members of the ser-
vice group. This method requires modification of exist-
ing code, which may be unsuitable for complex and/or
large services. However, it may lead to performance
enhancements as internal replication implies fine-grain
synchronization of state transitions.

External replication avoids modification of exist-
ing code by wrapping a service into a virtually syn-
chronous environment. Interaction with dependent ser-
vices and users is intercepted, totally ordered, and re-
liably delivered to each service using the group com-
munication system to mimic the service interface. This
method not only does not modify existing service code,
it also allows reusing the same solution for different ser-
vices with the same interface. However, it may lead to
performance degradation as external replication implies
coarse-grain synchronization of state transitions.

In both cases, an internal or external service-side
interceptor component deals with receiving incoming
request messages and routing them through the group



Service Service Service

Service-Side
Interceptor

Service-Side
Interceptor

Service-Side
Interceptor

Client Client

Service Node A Service Node B Service Node C

Group Communication

Peer-to-Peer Communication

Non-Transparent Connection Fail-Over

Client Node A Client Node B

Figure 1. Original Symmetric Active/Active
Replication Software Architecture with Non-
Transparent Client Connection Fail-Over

communication system for total message order and re-
liable message delivery (Figure 1). It also routes out-
put back to the client, which interacts with the service-
side interceptor component instead with the original
service. In case of a failure, clients need to be reconfig-
ured in order to interact with the service-side intercep-
tor component of another member of the active service
group. This requires clients to be informed about ser-
vice group membership and to perform a consistent con-
nection fail-over in case of a failure. Clients need to be
made aware of the service-level symmetric active/active
replication technique and need to be modified for inter-
nal and external service-side replication. More details
about the implemented high availability programming
model can be found in an earlier paper [11].

Our previously developed prototype implemen-
tations for the HPC batch job scheduler service
Torque [22] using external symmetric active/active
replication and for the Parallel Virtual File System
2 (PFVS2) [19] metadata server (MDS) using inter-
nal symmetric active/active replication utilized a Tran-
sis [4, 21] group communication system feature at the
client side by interacting with the active service group
without actually being a full member of the group.

The lack of transparency in both symmetric ac-
tive/active replication methods resulted in an insuffi-
cient reuse of code between individual prototype imple-
mentations. Each service required a customized sym-
metric active/active environment at the service-side as
well as at the client-side. Moreover, the client needed
to be significantly modified even in the external sym-
metric active/active replication method.

In the following, we propose to refine the internal
and external symmetric active/active replication soft-
ware architecture using a virtual communication layer
that accommodates both replication methods and allows

Virtual Communication Layer

Service Service Service

Service-Side
Interceptor

Service-Side
Interceptor

Service-Side
Interceptor

Client-Side
Interceptor

Client-Side
Interceptor

Client Client

Service Node A Service Node B Service Node C

Group Communication

Peer-to-Peer Communication

Transparent Connection Fail-Over

Client Node A Client Node B

Figure 2. Refined Symmetric Active/Active
Replication Software Architecture with Trans-
parent Client Connection Fail-Over

for transparent client connection fail-over as well as
for more reuse of code between individual service-level
replication implementations.

3. Transparent Symmetric A/A Replication

3.1. Architecture

The main idea behind the service-side interceptor
concept of our original internal and external symmet-
ric active/active replication software architecture was
to hide the interaction of the service with the group
communication system from the service. While the in-
ternal replication method tightly integrates the service
with the service-side interceptor, the external replica-
tion method utilizes the service interface. In both cases,
the client interacts with the service-side interceptor.

In the proposed refined symmetric active/active
replication software architecture with transparent client
connection fail-over (Figure 2), an additional client-side
interceptor hides the interaction of the client with the
service-side interceptor from the client in the same fash-
ion the service-side interceptor hides the interaction of
the service with the service-side interceptor.

Similar to the service-side interceptor, the client-
side interceptor may be implemented internally by
tightly integrating the client with the client-side inter-
ceptor or externally by utilizing the service interface at
the client-side interceptor. In both cases, the client rec-
ognizes the client-side interceptor as the service.

The client- and service-side interceptors maintain
a virtual communication layer (VCL), which client and
service are unaware of. In fact, the client is only aware



of a connection to a local service represented by the
client-side interceptor, while the service is only aware
of a connection to a local client represented by the
service-side interceptor.

The VCL enforces certain group communication
semantics at the service-side interceptor as well as at the
client-side interceptor based on the existing symmetric
active/active high availability model [11]. In addition to
maintaining the previous role of service-side intercep-
tors, the VCL assures that client-side interceptors are
informed about service group membership and perform
a consistent connection fail-over in case of a failure.

The proposed VCL not only provides transparency
to services, but to clients as well. Additionally, the
client- and service-side interceptors communicate with
client and service via standard input/output channels,
such as sockets, network connections, and command
line, in order to further increase reuse of code be-
tween individual service-level replication implementa-
tions. An adaptation to a specific client/server protocol
may be performed by using a modular pluggable com-
munication protocol substrate, as exemplified by the
RMIX communication framework [5].

The transparency provided by the VCL also hides
any communication across administrative domains, i.e.,
communication appears to be local. This has two con-
sequences. First, client and server still need to perform
any necessary authentication, authorization, and audit-
ing (AAA) using the client- and server-side interceptors
as virtual protocol routers. Second, the VCL itself may
need to perform similar AAA mechanisms to assure its
own integrity across administrative domains.

At this moment, we do not consider complex AAA
mechanisms in the proposed symmetric active/active
replication software architecture as they require map-
ping of peer-to-peer AAA protocols to group commu-
nication semantics. This is an open research issue we
currently do not address.

3.2. Transparent Connection Fail-Over

In addition to fault-tolerant group communication
mechanisms for the group of service-side interceptors
described in earlier papers [8, 9], the VCL provides
fault-tolerant communication fail-over for client con-
nections [11] in a transparent fashion, i.e., clients are
unaware of the failure of a service-side interceptor.

Upon initial connection to a service-side intercep-
tor, the client-side interceptor receives the current list of
service-side interceptor group members. All client-side
interceptors are notified about membership changes by
the service-side interceptor they are connected to after
all service-side interceptor group members agree.

A client-side interceptor that detects a failure of its
service-side interceptor performs a connection fail-over
to another service-side interceptor based on its current
list of service-side interceptor group members. After
reconnection to the service-side interceptor group, a re-
covery protocol retrieves any undelivered messages.

The connection between client- and service-side
interceptors uses a basic message numbering and ac-
knowledgment scheme in both directions to assure cor-
rect message delivery even in case of failures. While the
message numbering assures that already received mes-
sages can be ignored, acknowledgments are used in cer-
tain intervals to clear cached messages on the sending
side. However, acknowledgments from the client-side
interceptor are interleaved with request messages, reli-
ably multicast, and totally ordered, so that each service-
side interceptor is able to maintain a consistent message
cache for service-side output messages in order to per-
form the connection fail-over transparently.

In case of a connection fail-over, all cached mes-
sages are resent in the same order and doubled mes-
sages are ignored accordingly to the number of the last
received message before the failure due to the enforced
total message order in both directions.

3.3. Client- and Service-Side VCL Interfaces

The provided interfaces of the VCL at the client-
side and service-side inteceptors depend on actual client
and service interfaces as well as on the replication
method, i.e., internal or external. The standard in-
put/output channels provided by the VCL to clients and
services virtualize client/service communication based
on the utilized replication method.

In case of internal replication, inter-process com-
munication is intercepted inside the client and the ser-
vice by libraries that provide the same internal com-
munication protocols and semantics to client and ser-
vice while communicating over the VCL. For example,
a simple TCP/IP-based client/service system is modi-
fied by replacing the system calls for TCP/IP communi-
cation (open/read/write/close) in the client and service
codes with calls to client- and service-side interceptor
library equivalents.

In case of external replication, inter-process com-
munication is intercepted outside the client and the ser-
vice by processes that provide the same external com-
munication protocols and semantics to client and ser-
vice while communicating over the VCL. For example,
a simple TCP/IP-based client/service system is modi-
fied by configuring the client-side interceptor process as
a service for the client, and the service-side interceptor
process as a client for the service.



In both cases, the main advantage provided by
the transparent symmetric active/active replication ap-
proach is that client- and service-side interceptor li-
braries and processes can be reused for different ser-
vices that have the same communication protocols and
semantics. For example, for any simple TCP/IP-based
client/service system. The VCL provides transparency
and high availability.

Furthermore, the client- and service-side intercep-
tor libraries and processes of the VCL may be con-
figurable and extensible in order to adapt to different
communication protocols and semantics, including sup-
porting multiple different communication methods, e.g.,
network and command line, at the same time. This will
not only help to further improve reuse of code, it will
also enable efficient symmetric active/active replica-
tion in complex distributed computing scenarios, where
multiple services are clients of each other.

3.4. Performance Impact

Introducing external interceptors into the commu-
nication path of a client/service system inherently re-
sults in a certain performance degradation. Also, totally
ordering messages using a group communication sys-
tem at the service-side interceptor is further impacting
client/service communication performance.

Preliminary results (Tables 1 and 2) in a 100Mbps
LAN environment using external replication show that
latency increases and throughput decreases with a
service-side interceptor, and both further degrade with
an additional client-side interceptor. The performance
penalty for small payloads (<= 1KB) for using client
and service-side interceptors can be as high as 22% for
latency and 17% for bandwitdh in comparison to an un-
modified client/service system, and 19% and 15%, re-
spectively, in comparison to using server-side intercep-
tors only. However, the overall performance impact dra-
matically decreases with increasing payload.

The tests emulate a remote procedure call (RPC)
pattern by sending a payload to the service and waiting
for its return. The latency is measured at the client for
the entire round trip of the payload. The tests do not
include any group communication system as its perfor-
mance impact has been studied earlier [9, 3].

4. Related Work

Apart from our already mentioned related efforts,
there has been a substantial amount of work on pro-
cess group communication algorithms that focuses on
providing quality of service guarantees for networked
communication in distributed systems with failures. An

Payload Without With Service With Both
Interceptors Interceptor Interceptors

100B 149.9µs 150.6µs/ +0.5% 178.4µs/+19.0%
1KB 284.3µs 314.6µs/+10.7% 346.7µs/+21.9%

10KB 1.9ms 1.9ms/ ±0.0% 2.0ms/ +5.3%
100KB 22.3ms 22.5ms/ +0.8% 22.7ms/ +1.8%

Table 1. Ping-Pong Latency Comparison

Payload Without With Service With Both
Interceptors Interceptor Interceptors

100B 667KBps 664KBps/−0.4% 561KBps/−15.9%
1KB 3.5MBps 3.2MBps/−8.6% 2.9MBps/−17.1%

10KB 5.3MBps 5.2MBps/−1.9% 5.0MBps/ −5.7%
100KB 4.5MBps 4.4MBps/−2.2% 4.4MBps/ −2.2%

Table 2. Ping-Pong Bandwidth Comparison

overview of process group communication system im-
plementations and semantics, as well as references to
further related work can be found in [2] and [3].

Further related research focuses on programming
models for replicated objects using virtual synchrony.
The Object Group Pattern [16] designs objects as state
machines, which may be replicated using totally or-
dered and reliably multicast state transitions. The
follow-on research projects Orbix+Isis and Electra [15]
focus on extending this object-oriented high availability
support to CORBA using object request brokers (ORBs)
on top of virtual synchrony toolkits.

Ongoing research and development efforts in
adding security features to group communication sys-
tems, such as mapping of peer-to-peer AAA protocols
to group communication semantics, focuses on group
keys for securing multicast channels [20].

Lastly, the presented research is part of the MO-
LAR [7, 17] project, which concentrates on adaptive,
reliable, and efficient operating and runtime system so-
lutions for ultra-scale scientific high-end computing as
part of the Forum to Address Scalable Technology for
Runtime and Operating Systems (FAST-OS) [13].

5. Conclusions and Future Work

With this paper, we propose a refined symmetric
active/active replication software architecture using a
virtual communication layer (VCL) that accommodates
both replication methods, internal and external, and al-
lows for transparent client connection fail-over as well
as for more reuse of code between individual service-
level replication implementations.

With the introduction of client-side interceptors,
the proposed solution additionally hides the interaction
of the client with the service-side interceptor from the



client in the same fashion the service-side interceptor
hides the interaction of the service with the service-
side interceptor. Adaptation of these interceptors to
clients and services is only needed with regards to the
used communication protocol and its semantics. Clients
and services are unaware of the symmetric active/active
replication infrastructure as it provides all necessary
mechanisms internally via the VCL.

Preliminary test results using external replication
in a 100Mbps LAN environment show that latency in-
creases and throughput decreases with increasing num-
ber of interceptors, while the greatest impact, 22% for
latency and 17% for bandwidth, occurs with small pay-
loads (<= 1KB). The performance overhead for inter-
nal replication is negligible, since there are no interm-
mediate communicating processes.

The proposed solution is able to provide transpar-
ent service-level high availability using the symmetric
active/active replication approach for services in par-
allel and distributed computing systems. It is applica-
ble to any service-oriented architecture, such as in dis-
tributed Grid computing, or service-dependent architec-
ture, like large-scale closely coupled massively parallel
high performance computing systems.

Future work will focus on fully implementing re-
spective proof-of-concept prototypes with added basic
communication security mechanisms.

References

[1] Berkeley Lab Checkpoint/Restart (BLCR) project at
Lawrence Berkeley National Laboratory, Berkeley, CA,
USA. Available at http://ftg.lbl.gov/checkpoint.

[2] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study.
ACM Computing Surveys, 33(4):1–43, 2001.

[3] X. Defago, A. Schiper, and P. Urban. Total order broad-
cast and multicast algorithms: Taxonomy and survey.
ACM Computing Surveys, 36(4):372–421, 2004.

[4] D. Dolev and D. Malki. The Transis approach to high
availability cluster communication. Communications of
the ACM, 39(4):64–70, 1996.

[5] C. Engelmann and G. A. Geist. RMIX: A dynamic, het-
erogeneous, reconfigurable communication framework.
In Lecture Notes in Computer Science: Proceedings
of International Conference on Computational Science,
Part II, volume 3992, pages 573–580, Reading, UK,
May 28-31, 2006.

[6] C. Engelmann, H. Ong, and S. L. Scott. Middleware
in modern high performance computing system archi-
tectures. In Lecture Notes in Computer Science: Pro-
ceedings of International Conference on Computational
Science, Beijing, China, May 27-30, 2007.

[7] C. Engelmann, S. L. Scott, D. E. Bernholdt, N. R.
Gottumukkala, C. Leangsuksun, J. Varma, C. Wang,

F. Mueller, A. G. Shet, and P. Sadayappan. MOLAR:
Adaptive runtime support for high-end computing op-
erating and runtime systems. ACM SIGOPS Operating
Systems Review (OSR), 40(2):63–72, 2006.

[8] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He.
Active/active replication for highly available HPC sys-
tem services. In Proceedings of 1st International Con-
ference on Availability, Reliability and Security, pages
639–645, Vienna, Austria, Apr. 20-22, 2006.

[9] C. Engelmann, S. L. Scott, C. Leangsuksun, and
X. He. Symmetric active/active high availability for
high-performance computing system services. Journal
of Computers, 1(8):43–54, 2006.

[10] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He.
Towards high availability for high-performance comput-
ing system services: Accomplishments and limitations.
In Proceedings of High Availability and Performance
Workshop, Santa Fe, NM, USA, Oct. 17, 2006.

[11] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He.
On programming models for service-level high avail-
ability. In Proceedings of 2nd International Conference
on Availability, Reliability and Security, Vienna, Aus-
tria, Apr. 10-13, 2007.

[12] T. Erl. Service-Oriented Architecture: Concepts, Tech-
nology, and Design. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2005.

[13] Forum to Address Scalable Technology for Runtime
and Operating Systems (FAST-OS). Available at
http://www.fastos.org.

[14] C. Kesselman and I. Foster. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, San Francisco, CA, USA, 1998.

[15] S. Landis and S. Maffeis. Building reliable distributed
systems with CORBA. Theory and Practice of Object
Systems, 3(1):31–43, 1997.

[16] S. Maffeis. The object group design pattern. Pro-
ceedings of 2nd USENIX Conference on Object-Oriented
Technologies (COOTS), June 17-21, 1996.

[17] Modular Linux and Adaptive Runtime Support for High-
end Computing Operating and Runtime Systems (MO-
LAR). Available at http://www.fastos.org/molar.

[18] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agar-
wal. Extended virtual synchrony. Proceedings of IEEE
14th International Conference on Distributed Comput-
ing Systems, pages 56–65, June 21-24, 1994.

[19] Parallel Virtual File System (PVFS). Available at
http://www.pvfs.org/pvfs2.

[20] M. Steiner, G. Tsudik, and M. Waidner. Key agreement
in dynamic peer groups. IEEE Transactions on Parallel
and Distributed Systems, 11:769–780, Nov. 2000.

[21] Transis Project at Hebrew University of Jerusalem, Is-
rael. Available at http://www.cs.huji.ac.il/labs/transis.

[22] K. Uhlemann, C. Engelmann, and S. L. Scott. JOSHUA:
Symmetric active/active replication for highly available
HPC job and resource management. In Proceedings of
IEEE International Conference on Cluster Computing,
Barcelona, Spain, Sept. 25-28, 2006.


