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ABSTRACT
This paper presents a modular-redundant Message Passing
Interface (MPI) solution, MR-MPI, for transparently exe-
cuting high-performance computing (HPC) applications in
a redundant fashion. The presented work addresses the de-
ficiencies of recovery-oriented HPC, i.e., checkpoint/restart
to/from a parallel file system, at extreme scale by adding
the redundancy approach to the HPC resilience portfolio.
It utilizes the MPI performance tool interface, PMPI, to
transparently intercept MPI calls from an application and
to hide all redundancy-related mechanisms. A redundantly
executed application runs with r ∗m native MPI processes,
where r is the number of MPI ranks visible to the applica-
tion and m is the replication degree. Messages between re-
dundant nodes are replicated. Partial replication for tunable
resilience is supported. The performance results clearly
show the negative impact of the O(m2) messages between
replicas. For low-level, point-to-point benchmarks, the im-
pact can be as high as the replication degree. For applica-
tions, performance highly depends on the actual communi-
cation types and counts. On single-core systems, the over-
head can be 0% for embarrassingly parallel applications in-
dependent of the employed redundancy configuration or up
to 70-90% for communication-intensive applications in a
dual-redundant configuration. On multi-core systems, the
overhead can be significantly higher due to the additional
communication contention.
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1 Introduction

With petascale scientific computing systems in production
and exascale systems on the horizon, computing centers
at national laboratories are at the forefront of extreme-
scale scientific computing. Ensuring that these leader-
ship systems operate at an acceptable efficiency and pro-
ductivity is of utmost importance for scientific discov-
ery through computation. In order to deal with antic-
ipated high failure rates, resilience has become an ur-
gent priority for future-generation extreme-scale systems.
The 2009/2010 Scientific Grand Challenges Workshop se-
ries (http://extremecomputing.labworks.org) and Interna-
tional Exascale Software Project workshops (http://www.
exascale.org) identified several existing and emerging

threats for the planned extreme-scale systems that require
a departure from the business-as-usual approach for high-
performance computing (HPC) resilience:

• The significant growth in component count, such as the
up to 50× increase in compute nodes (1,000,000 nodes
with 1,000 cores/node by 2018), results in a respectively
higher system error rate.

• Smaller circuit sizes (22.5 nm half-pitch by 2016) as well
as lower circuit voltages increase soft error vulnerability
(bit flips caused by thermal and voltage variations as well
as radiation).

• Dynamic power management cycling, such as to re-
duce the power consumption of underutilized cores, de-
creases component lifetimes due to thermal and mechan-
ical stresses.

• Hardware fault detection and recovery, like error correct-
ing code (ECC) for registers, cache and main memory, is
limited by power consumption requirements and deploy-
ment costs (chip space needed).

• Heterogeneous architectures, e.g., different core types on
the same chip or in a co-processor setup, add more com-
plexity to fault detection and recovery.

With a few exceptions, today’s HPC systems assure
fault tolerance in the same way since the early 1990s [3].
Application-level checkpoint/restart (C/R) to/from a paral-
lel file system is the dominant HPC fault tolerance method
for hard errors, while error correcting code (ECC) through-
out the memory hierarchy is the prevalent HPC soft error
resilience technique. System-level C/R to/from a parallel
file system is employed at a few HPC centers, e.g., us-
ing Berkeley Lab Checkpoint Restart (BLCR) [9]. How-
ever, none of the current petascale HPC centers do sup-
port system-level C/R. Diskless C/R has only recently been
used in production HPC systems using the Scalable C/R
(SCR) library at Lawrence Livermore National Laboratory,
USA [2]. Message logging, algorithm-based fault toler-
ance, proactive fault tolerance, and Byzantine fault toler-
ance are not available in production HPC systems.

Recent reports [3, 5, 11] indicated that existing HPC
fault tolerance technologies are insufficient for providing
resilience, i.e., efficiency and correctness in the presence
of failures, at extreme scale. Ongoing efforts mainly focus
on improving the capabilities of recovery-oriented com-
puting by decreasing respective C/R overheads, such as
through compute-node-local non-volatile memory (flash,
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solid-state or phase-change technology). However, this
comes at the cost of global synchronization for coordinated
C/R or system noise in case of uncoordinated C/R utiliz-
ing message logging. Furthermore, there is currently no
mitigation strategy to protect against silent data corruption
(SDC) for end-to-end data integrity.

The presented work addresses the deficiencies of
recovery-oriented HPC at extreme scale by adding the re-
dundancy approach to the HPC resilience portfolio. By
aiming at redundant computation instead of rollback recov-
ery, this work offers a revolutionary, disruptive alternative
to existing technologies and planned efforts. Redundancy
has been used for decades to ensure uptime (availability) as
well as correctness (reliability and data integrity) in infor-
mation technology, aerospace, and command and control
systems (see Section 2). The effort presented in this pa-
per focuses on a software-only approach at the system soft-
ware layer, i.e., operating system and parallel programming
environment, that is completely transparent to numerical li-
braries and scientific applications. It centers on redundancy
at the Message Passing Interface (MPI) layer.

This paper is structured as follows. Section 2 dis-
cusses related work, including other efforts in redundancy
for MPI applications. Section 3 illustrates the technical ap-
proach, while Section 4 details the implementation. Sec-
tion 5 shows the results, and Section 6 summarizes the pre-
sented work and describes ongoing and planned efforts.

2 Related Work
2.1 Modular Redundancy

In general, modular redundancy is able to transparently
mask reported errors, such as detected hard and soft errors,
without recovery. It is also able to detect silent errors, like
SDC, through comparison and recover them using majority
voting if more than two replicas exist.

Historically, modular redundancy with specialized
hardware has been used to ensure availability and relia-
bility in information technology, aerospace and command
& control [16, 17]. Software-only solutions that elimi-
nate the need for expensive hardware, such as thread-level,
process-level and state-machine replication, emerged re-
cently [8, 13, 15, 4]. Another recent trend [10] embraces
the use of cheap, off-the-shelf instead of expensive, certi-
fied components as the price gap is constantly expanding
due to market forces (gaming and PC vs. special purpose)
and increasing soft error vulnerability (expensive mitiga-
tion techniques).

A computing system generally consists of multiple
components that can fail independently and even within a
component there are multiple units that can fail. The sphere
of replication [14] is the logical boundary of redundancy
for a replicated system. Components within the sphere are
protected, those outside are not. Data entering the sphere
(input) is replicated, while data leaving the sphere (output)
is compared. It can be as small as a few processor units and

as large as a computing system. Independent from the ex-
tent of the sphere, input replication and output comparison
may be performed at different granularities, i.e., at different
I/O interfaces. Instruction-level replication is the smallest
and often referred to as lock stepping. Network communi-
cation replication is the largest and sometimes described as
virtual synchrony [4].

2.2 Modular Redundancy in HPC

Our recent study [6] made the case for modular redun-
dancy in large-scale HPC systems with an availability anal-
ysis. First, modular redundancy for single compute nodes
was explored and then modular redundancy for all compute
nodes was evaluated. The results show that static modu-
lar redundancy, i.e., a failed node is not rebooted or re-
placed, allows lowering compute node mean-time to fail-
ure (MTTF) by a factor of 100-1,000 for dual redundancy
and by 1,000-10,000 for triple redundancy without lower-
ing overall system MTTF. In case of dynamic redundancy,
where a failed node is rebooted or dynamically replaced
with a hot spare, compute node MTTF can be lowered by a
factor of 1,000-10,000 for dual redundancy and by 10,000-
100,000 for triple redundancy.

Instead of a 7-nine node rating for a simplex exas-
cale HPC system with 1,000,000 compute nodes, a dy-
namic dual-redundant system with 2,000,000 3-nine nodes
or a dynamic triple-redundant system with 3,000,000 2-
nine nodes provides 90% overall system availability. It is
important to understand that the deployment costs for a sin-
gle compute node at 2- and 3- nine rating and at 7-nine rat-
ing significantly differs, thus the cost of deploying more
nodes can be recuperated by the cheaper per-node cost, as
exemplified by other recent redundancy solutions [10].

2.3 Redundant Execution with rMPI

The System-Directed Resilience for Exascale Platforms
project at Sandia National Laboratories recently completed
an initial prototype for redundant execution of MPI applica-
tions, called rMPI [7]. The rMPI library gets inserted dur-
ing link time between an application and the MPI library
using MPI’s profiling interface. rMPI transparently pro-
vides redundancy for MPI applications, which are started
on up to 2n nodes. The application sees ranks 0 . . . n − 1
and the rMPI library uses the remaining nodes for redun-
dancy. Each redundant node is maintained by rMPI and du-
plicates the work of its active partner. When one fails, the
other continues without interrupting the application. Only
when both nodes fail, does the application need to restart.

Letting one MPI rank mirror another requires that it
receives the same messages as the active node and that the
code running on the mirror uses the same rank value as
the active node. In order to preserve MPI semantics, the
rMPI library coordinates and replicates messages between
redundant nodes and forces an active node and its mirror to
return the same values to the application for MPI function



calls, including those that probe for incoming messages,
query the current time, or MPI ANY SOURCE receives.
Without this, the computation on those two ranks could di-
verge from each other. The synchronization protocols and
the additional messages incur overhead that is significant in
low-level, point-to-point benchmarks.

The reported impact on actual applications is for the
most part negligible. The overhead for LAMMPS is less
than 4%, for SAGE less than 10%, for CTH less than 20%
at 2,048 nodes, and for HPCCG less than 5%. The current
implementation of rMPI requires more work to fully sup-
port all of MPI and needs to be better integrated with the re-
liability, availability and serviceability (RAS) and runtime
system of the underlying machine. Recent enhancements
to rMPI include partial replication, where not all MPI pro-
cesses have replicas. Due to implementation problems,
rMPI does not support certain complex MPI communica-
tor operations, such as MPI Comm split(). rMPI also
depends directly on the MPICH library for implementing
collective communication operations, using rMPI’s point-
to-point communication primitives.

2.4 Redundant Execution with VolpexMPI

VolpexMPI [12], developed at the University of Houston,
USA, is an MPI library implemented from scratch that of-
fers redundancy for MPI process fault tolerance. It supports
around 40 functions of the MPI-1 specification. In contrast
to rMPI, VolpexMPI uses a polling mechanism by the re-
ceiver of point-to-point messages to avoid message replica-
tion. If a polled sender (of a replicated sender-receiver pair)
does not exist due to a prior failure or does not respond
in time due to performance degradation, a different sender
(replica of the original sender) is chosen until the receive is
successful. Messages are matched with a logical timestamp
to allow for late message retrieval. MPI ANY SOURCE
receives are not supported due to the missing synchroniza-
tion mechanisms.

VolpexMPI can achieve close to 80% of the point-to-
point message bandwidth of Open MPI. The small mes-
sage latency increases from 0.5ms with Open MPI to
1.8ms with VolpexMPI. Using the NAS Parallel Bench-
mark (NPB) suite (http://www.nas.nasa.gov/Resources/
Software/npb.html), there is no noticeable overhead for BT
and EP for 8 and 16 processes. SP shows a significant over-
head of 45% for 16 processes. The overhead for CG, FT
and IS is considerably higher as these benchmarks are com-
munication heavy.

2.5 Redundant Execution with MMPI

The recently proposed MMPI [18] offers a set of protocols
for redundant execution of MPI applications with differ-
ent replica partitioning and comparison schemes. It relies
entirely on cumbersome source code modifications for im-
plementing the redundancy protocols. It also has not yet
been adequately evaluated.
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Figure 1. Architecture and sphere of replication for redun-
dant execution of MPI applications with MR-MPI: Nodes
1a and 1b contain replicated MPI processes and non-
replicated software stacks below

3 Technical Approach
Modular-redundant MPI, MR-MPI, targets MPI-level re-
dundancy similar to rMPI and VolpexMPI to support redun-
dant execution of MPI processes (a) on the same proces-
sor using different cores, (b) on different processors in the
same compute node, and (c) on separate compute nodes.
Input replication and output comparison is enforced at the
application programming interface (API) layer between the
MPI library and the application (Figure 1). The MR-MPI
approach is similar to rMPI, such that the MPI itself be-
comes the I/O interface of the shpere of replication. Data
entering the sphere, i.e., MPI call returns and/or messages
received into application-supplied buffers, are replicated to
different MPI processes.

The current MR-MPI solution does not offer com-
parison of data leaving the sphere, such as MPI call ar-
guments and/or messages sent from application-supplied
buffers. However, it supports future extension for this fea-
ture. The fault model is fail-stop, i.e., a faulty MPI process
stops to communicate. More complex fault models, such
as practical Byzantine fault tolerance covering unexpected
deviation, are targeted in the future using more advanced
mechanisms, such as output comparison.

In contrast to rMPI, MR-MPI does not rely on a spe-
cific MPI library, such as MPICH for rMPI. Instead, it is
able to provide redundancy atop any MPI library. For for
collective communication calls that involve calling user-
defined operations, a recent addition to the MPI standard,
MPI Reduce local(), needs to be supported by this
MPI library. Also opposite to rMPI, MR-MPI does support
certain complex MPI communicator operations, such as
MPI Comm split(). MR-MPI distinguishes itself from
VolpexMPI by not reimplementing an MPI layer. Experts
spent years on optimizing MPI layers for efficiency. MR-
MPI allows to utilize the native MPI library, which is typi-
cally optimized for a particular system.
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Figure 2. Architecture of the MR-MPI library: Sitting be-
tween the application and the MPI library, intercepting MPI
calls and providing a virtual MPI

Figure 3. Message replication scheme of MR-MPI: All
sender replicas send the same message to all receiver repli-
cas to avoid recovery cycles in case of dropped messages

4 Implementation
To enable transparent redundant execution of MPI appli-
cations, MR-MPI utilizes the MPI performance tool inter-
face, PMPI, to intercept MPI calls from the application and
to hide all redundancy-related mechanisms (Figure 2). This
is the same mechanism that rMPI uses to provide replica-
tion. The PMPI allows another library to override MPI li-
brary calls, which are defined as weak symbols, and to call
the PMPI equivalents in the MPI library instead. The MPI
standard defines that an MPI library has to provide weak
MPI ...() calls and equivalent PMPI ...() calls to
enable this feature. The MR-MPI library is written in C and
provides 53 C and 53 Fortran MPI calls, i.e., the MR-MPI
library becomes the MPI layer of the application, while the
native layer MPI is used by the MR-MPI library via the
PMPI API. Since both, the application and the MR-MPI li-
brary, are compiled with and linked against the same MPI
library, they are application binary interface compatible.

With MR-MPI, a redundantly executed application
runs with r ∗ m native MPI processes, where r is the
number of MPI ranks visible to the application (virtual
MPI ranks) and m is the replication degree. To enable
seamless operation without recovery cycles, all application
communication is redundant (Figure 3), such that each of
the m replicas of rank ry sends a message to each of the
m replicas of rank rz . Application progress is guaranteed
as long as at least one replica for each rank is alive. To
provide compliance with the MPI standard, application
startup with redundancy is supported through application
command line arguments, i.e., mpirun -np <procs>
<application> -mrmpi-np <vprocs>. The
<vprocs> parameter sets the number of virtual MPI
ranks exposed to the application. MR-MPI automatically
uses any additionally provided resources for redundancy.

Partial replication, e.g., a replication degree of 1.3 or
2.3 instead of just 1, 2 or 3, for tunable resilience is sup-
ported. This permits the utilization of free resources to
enhance resilience and to improve time to solution. For
example, extreme-scale systems are typically managed by
a batch job scheduler, which tends to schedule jobs at a
certain efficiency. In cases, where there are unallocated re-
sources available due to the number and size of submitted
jobs, these free resources may be allocated with a job to en-
able redundant execution or to add even more replicas. This
increases the resilience of a particular job and decreases its
likelihood to fail and to be restarted at a later time.

The core of the MR-MPI library performs mes-
sage replication for nonblocking point-to-point com-
munication and offers the respective MPI primitives,
MPI Isend(), MPI Irecv(), MPI Wait...() and
MPI Test...(). For MPI point-to-point communica-
tion requests, MR-MPI does some additional book keeping
as more than one native communication request may exist
for each application initiated virtual MPI request due to the
message replication scheme.

The blocking point-to-point and collective communi-
cation calls are based on these nonblocking point-to-point
communication calls. A recent addition to the MPI stan-
dard, MPI Reduce local(), is used for collective com-
munication calls that involve calling user-defined opera-
tions, such as MPI Reduce(). MPI Reduce local()
allows to execute a user-defined operation that is regis-
tered with the MPI library, such as the predefined MPI SUM
operation, without performing a collective communica-
tion operation. MR-MPI uses this feature to implement
the collective communication calls atop its nonblocking
point-to-point communication primitives. Also, persis-
tent point-to-point communication requests, e.g., using
MPI Recv init() and MPI Request free(), are
supported as well as replicated persistent point-to-point
communication requests.

Specific consideration is needed in cases where
there is the possibility that replicas may not receive
the same input due to certain nondeterminism. Ex-
amples are MPI ANY SOURCE receives, MPI Wtime(),
MPI Test(), and MPI Probe(). These cases are re-
lated to a message delivery order on the network or to lo-
cal unsynchronized time. An internal master with fail-over
mechanism is employed that performs the operation on the
lowest ranking replica and informs the higher ranking repli-
cas about the result. The higher ranking replicas then either
return the respective result, such as for MPI Wtime(), or
execute the operation in a deterministic way to get the same
result, such as for MPI ANY SOURCE receives. In case of a
failure, the next replica in-line is performing the operation
and informs its higher ranking replicas about the result.

The MR-MPI library has its own internal book keep-
ing for MPI groups and MPI communicators as these dif-
fer between the underlying MPI library and the virtual
MPI exposed to the application. MR-MPI translates be-
tween the native and virtual MPI ranks, such that for



Figure 4. Point-to-point latency performance

Figure 5. Normalized point-to-point latency performance

each native rank there is a virtual/replica rank pair in the
respective group or communicator. In order to be able
to utilize the native MPI’s communicator and group op-
erations, the ranks are always organized in a predeter-
mined order: 11. . . (r − 1)1,. . . ,1m. . . (r − 1)m. This
allows the MR-MPI library to simply map ranks, even
in the case of partial replication, and to implement its
own MPI communicator and group operations on top of
the native MPI’s communicator and group calls. Rather
complex operations, such as MPI Comm split() and
MPI Group intersection() are supported through
this mechanism, again, even for partial replication, where
certain replicas do not exist.

5 Results

The developed MR-MPI prototype was deployed on an
older 32-node Intel-based Linux cluster. Each node has an
Intel Pentium 4 2GHz processor and 0.75GB of memory.
The system is running the Ubuntu 8.04 32-bit Linux dis-
tribution without swap and Open MPI 1.5.rc3 with the re-
cently added MPI Reduce local() support. All nodes
are connected via Fast Ethernet (100Mbps). Excluding the
fact that generally more resources are used in a replication
scenario, the performance of redundant MPI application
execution with MR-MPI is highly influenced by the O(m2)
messages between replicas.

Figure 6. NPB performance

Figure 7. Normalized NPB performance

In the first experiment, MR-MPI’s point-to-point mes-
sage latency performance was evaluated. Figures 4 and 5
clearly show the impact of the message replication scheme
on point-to-point message latency performance. As already
discovered with rMPI, the impact is rather significant. For
small messages (16B-1kB), the latency is lower due to the
fact that MR-MPI uses nonblocking communication. For
all other messages (<16B,>1kB), network contention oc-
curs on the node network cards caused by the replicated
message send and receive operations. Note that this latency
increase is also additionally influenced by the native MPI’s
switch from the eager to the rendezvous protocol for big-
ger messages, which adds an additional contention penalty
at the native MPI library for the message replication.

In a second experiment, the NAS Parallel Benchmark
(NPB) [1] suite was run to measure the overhead intro-
duced by MR-MPI with different benchmarks. The NPB
benchmarks with class A, B, or C problem size were exe-
cuted at a replication degree of 1, 1.5 (partial replication at
50%) and 2, and averaged over 10 test runs. The classes and
number of nodes differ for the benchmarks due to individ-
ual processor count (square vs. power of two) and memory
requirements. Figures 6 and 7 clearly show the different
impact MR-MPI has on the various NPB benchmark appli-
cations. The embarrassingly parallel (EP) benchmark did
not had any overhead under any redundancy configuration,
while the communication-heavy integer sort (IS) and fast



Figure 8. NPB core-scaling performance

Figure 9. Normalized NPB core-scaling performance

Fourier transform (FT) benchmarks have an enormous 70-
90% overhead under dual-modular redundancy. Again, this
overhead is caused by the O(m2) messages between repli-
cas. In terms of MR-MPI functionality, it is important to
note that FT, BT and SP use MPI Comm split(), and
BT and SP use MPI Comm dup(). These communicator
operations are supported in MR-MPI.

The developed MR-MPI prototype was also deployed
on a new 16-node AMD-based Linux cluster. Each node
has two 4-core AMD Opteron 2378 2.4GHz processors and
8GB of memory. The system is running the Ubuntu 10.04
64-bit Linux distribution with swap and Open MPI 1.5 with
the MPI Reduce local() support. All nodes are con-
nected via a non-blocking Gigabit Ethernet switch.

In the third experiment, a subset of the NPB suite was
run to measure the overhead introduced by MR-MPI with
different benchmarks on multi-core systems. The class C
NPB benchmarks LU and SP, and the class D NPB bench-
marks EP and MG were executed at a replication degree
of 1, 1.5 (partial replication at 50%) and 2, and averaged
over 10 test runs. The benchmark classes are different from
the prior experiment as this system has much better com-
putation and communication capabilities. The benchmarks
were executed on all 16 nodes using 2, 4, and 8 cores, such
that the lower 8 nodes executed one entire replica and the
upper 8 nodes executed another half or full replica. Due
to the non-blocking nature of the Gigabit Ethernet switch,

Figure 10. NPB performance with simplistic redundancy

all introduced overhead stems from the redundancy pro-
tocol. Figures 8 and 9 clearly show the different impact
the MR-MPI redundancy protocol has on the NPB bench-
mark subset with core scaling. They also show that with
increasing per-node core counts, the overhead is increasing
as well. The only exception is the embarrassingly paral-
lel (EP) benchmark, which did not had any overhead under
any redundancy configuration and scaled perfectly.

There are two interesting aspects obtained from this
experiment. First, the non-redundant LU, MG and SP
benchmarks do not scale perfectly with this system setup,
i.e., they are communication bound. Second, all MPI pro-
cesses on the same node share a single network card, which
causes local contention. In both cases, any additional com-
munication introduced by a redundancy protocol likely re-
sults in a significant performance degradation.

In a last experiment, the MR-MPI replication protocol
was modified to execute MPI applications independently
from each other, i.e., messages are not sent to all replicas,
just to the intended target. This protocol has two disadvan-
tages: (1) processes are not actively replicated, and (2) par-
tial replication is not supported. The missing active repli-
cation causes any single MPI process failure to stall the en-
tire execution of one out of the set of many redundantly run
MPI applications. The missing partial replication results
in coarse-grain resource utilization. The third experiment
was re-executed with the modified MR-MPI. The results in
Figure 10 show that there is no performance overhead at
all as the network switch is non-blocking and replication is
performed on different resources without coordination.

6 Summary and Future Work

This paper presents the implementation details and perfor-
mance results of a recently developed modular-redundant
MPI solution, MR-MPI. The work addresses the defi-
ciencies of recovery-oriented HPC, i.e., checkpoint/restart
to/from a parallel file system, at extreme scale by adding
the redundancy approach to the HPC resilience portfolio.
Redundancy has been used for decades to ensure uptime
(availability) as well as correctness (reliability and data in-
tegrity) in other areas, typically for single services. Re-



cent efforts in redundancy for HPC focused on an avail-
ability analysis that convincingly makes the case for redun-
dant computation in HPC environments and on two proto-
types, rMPI and VolpexMPI. The presented solution, MR-
MPI, follows the rMPI model and architecture by utiliz-
ing the MPI performance tool interface, PMPI, to intercept
MPI calls from the application and to hide all redundancy-
related mechanisms, and by replicating messages between
redundant nodes. In contrast to rMPI, MR-MPI does not
rely on a specific MPI library, such as MPICH for rMPI.
It also supports certain complex MPI communicator oper-
ations, such as MPI Comm split(), which rMPI does
not. MR-MPI distinguishes itself from VolpexMPI by not
reimplementing the MPI layer.

The performance results clearly show the negative im-
pact of the O(m2) messages between replicas. For low-
level, point-to-point benchmarks, the impact can be as high
as the replication degree, i.e., message latency can be three
times as much in a triple-redundant configuration. For ap-
plication benchmarks, such as the NAS Parallel Bench-
mark suite, performance highly depends on the commu-
nication types and counts of a particular benchmark. For
the embarrassingly parallel (EP) benchmark the overhead
is 0%, while the communication-heavy integer sort (IS)
and fast Fourier transform (FT) benchmarks experience 70-
90% overhead in a dual-redundant configuration on single-
core systems. On multi-core systems, the overhead can be
significantly higher due to the additional communication
contention.

The presented work is only a first step toward redun-
dancy in HPC environments. For MR-MPI, planned im-
provements include removing the costly message replica-
tion scheme and implementing a VolpexMPI-like message
caching without reimplementing the MPI layer. As men-
tioned earlier, MR-MPI improvements will also focus on
output comparison to support more complex fault models,
such as to detect SDC. Other planned work focuses on com-
bining redundancy with checkpoint/restart to cover faults
where all replicas fail and to evaluate the synergistic effect.
The key challenge here is to provide seamless resilience
capabilities and to integrate the two orthogonal resilience
schemes. In conjunction with this effort, redundant check-
points and checkpoint comparison for SDC detection will
be considered as well.
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