
Performance Efficient Multiresilience using
Checkpoint Recovery in Iterative Algorithms

Rizwan A. Ashraf and Christian Engelmann

Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

Oak Ridge, TN, 37831, USA
{ashrafra, engelmannc}@ornl.gov

Abstract. In this paper, we address the design challenge of building
multiresilient iterative high-performance computing (HPC) applications.
Multiresilience in HPC applications is the ability to tolerate and maintain
forward progress in the presence of both soft errors and process failures.
We address the challenge by proposing performance models which are
useful to design performance efficient and resilient iterative applications.
The models consider the interaction between soft error and process fail-
ure resilience solutions. We experimented with a linear solver application
with two distinct kinds of soft error detectors: one detector has high over-
head and high accuracy, whereas the second has low overhead and low
accuracy. We show how both can be leveraged for verifying the integrity
of checkpointed state used to recover from both soft errors and process
failures. Our results show the performance efficiency and resiliency ben-
efit of employing the low overhead detector with high frequency within
the checkpoint interval, so that timely soft error recovery can take place,
resulting in less re-computed work.

Keywords: high-performance computing, resilience, soft errors, process fail-
ures, design patterns, performance, analytical models

1 Introduction

Reliable operation of extreme-scale computing systems is a significant challenge
due to evolving system architectures, hardware components and software, and

This work was sponsored by the U.S. Department of Energy’s Office of Advanced
Scientific Computing Research. This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of En-
ergy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).



sheer scale of these systems. Since it is difficult and costly to build reliable high-
performance computing (HPC) systems, its users or application developers need
to devise solutions which can ensure predictable outcome in the presence of an
array of faults, errors, and failures. Broadly, HPC applications are affected by soft
errors and hard errors. Soft errors are transient in nature, caused mostly due to
cosmic radiation particles interacting with components in the computing system.
On the other hand, permanent failures in the system can affect components such
as memory, processor, system software, and eventually the applications executing
on the HPC system.

Complete resilience of HPC applications requires tackling both soft errors
and process failures, or hereafter referred to as multiresilience. The manner in
which both errors impact applications is unique. Some kind of soft errors can
eventually cause a process failure, such as via corruption of a pointer variable,
or loop index variable. Most soft errors will corrupt the data of the application.
Hard errors which eventually cause a process failure are relatively easy to detect.
Whereas, it may not always be possible to detect soft errors, i.e., they may
silently corrupt the state of the application with no obvious indicators, which is
usually referred to as silent data corruption (SDC). SDCs can have significantly
varying consequences on the outcome of the application, ranging from no effect
to unusable results at the completion of an execution. Therefore, it is important
to be able to design applications which can tolerate and make useful forward
progress in the presence of both soft errors and process failures.

We leverage a design pattern oriented approach to the design of multiresilient
HPC applications [1]. Design patterns provide concrete and repeatable solutions
to commonly occurring problems. Based on this idea, previous work [9] identifies
and formalizes design patterns for solution of resilience problems occurring in
HPC systems. In this work, we focus on performance models for design patterns
used for soft error and process failure resilience. These models serve as a guide to
build optimal, efficient and reliable HPC applications. Specifically, we focus on
iterative HPC applications, which can tolerate soft errors by taking additional
time to converge to a solution [4, 10]. We are interested in the combination of
soft error detection and checkpoint-based recovery which has minimal impact
on application execution time and provides acceptable level of tolerance to soft
errors. Previous work has identified combination of soft error detection with
checkpoint by identifying the optimal number of verifications to perform within
a checkpoint interval [2]. However, the prior work assumes ideal soft error de-
tectors. In this work, we loosen the definition of an ideal soft error detector, and
focus on practical detectors which may let through some soft errors undetected
and corrupt checkpointed state, yet provide a satisfactory solution at the cost
of additional iterations beyond the error free case.

Checkpointing is commonly used in HPC applications to recover from process
failures [9]. It involves checkpointing the application state to a stable storage
at regular intervals and its utilization in the event of a process failure. The
application rollbacks to the last known good checkpoint and continues execution.
A checkpointing based approach becomes complicated with the presence of soft



errors since the state which is being checkpointed may be corrupted, and the
iterative application can become stuck and make no progress. Therefore, it is
important to verify the integrity of the checkpoint before it is stored to a stable
storage. This check provides a loose guarantee that the application will keep on
making forward progress.

In this paper, we develop performance models for multiresilience to both
soft and hard errors using checkpoint-based recovery, which is a well-utilized
method in the field. In our experiments, we compare the performance of two
distinct soft error detectors. One detector is high overhead and high accuracy,
whereas the other detector is low overhead and low accuracy. We investigate
experimentally and analytically, is it better to use a high overhead detector less
often or a low overhead detector more often. A tradeoff exists since the low
overhead detector can take more iterations to converge as compared to the case
when high overhead detector is used. This tradeoff is investigated in our work.
We perform our experiments with a Generalized Minimal Residual (GMRES)
solver implemented using Trilinos and Open MPI User Level Failure Mitigation
(ULFM) [3] in C++ programming language. The experiments are performed on
an in-house Linux cluster with 960 processing cores as described in Section 5.

2 Soft Error Resilience

In this section, the two distinct soft error resilience design patterns utilized in
our work are discussed. Without loss of generality and encompassing the scope
of our work to iterative applications, we introduce the patterns based on a linear
solver. The solver solves for the solution vector x in the system of equations
of the form: Ax = b, where matrix A and right hand vector b are known. Soft
errors can corrupt the state of the solver, which is composed of both static
and dynamic states. The static state in this case forms the matrix A and the
vector b, whereas the dynamic state is represented by the solution vector x.
The remaining state of the solver which is required for achieving computational
results is the environment state. The environmental state includes the variables
associated with the runtime system of the message passing library (e.g., Open
MPI), pointers, index variables, etc. Corruption of any of the above mentioned
state categorizations can cause slowdowns, unbounded errors or fatal crashes.

The SDC detection patterns assist in catching these abnormalities exploiting
the algorithmic characteristics of the solver. The two patterns namely: “Mono-
tonicity Violation” and “Bounded Computations” are listed in Tables 1 and 2
respectively. In the first case, the detection relies on the property of the solver
that it is always making forward progress with increasing iteration count, i.e.,
a characteristic of the iterative algorithms. This pattern can be utilized in all
iterative applications which use a quality metric to determine convergence of the
algorithm. To reduce the possibility of a false positive detection using this pat-
tern, the difference from prior iteration can be bounded within certain limit. For
detection in the GMRES solver, we utilize the residual which is a measurement
of the error in the current solution. The residual at iteration or time step k is
defined as: rk = b−Axk. The residual has the property of being monotonically



Table 1. Resilience Pattern: Monotonicity Violation

Pattern Name Monotonicity Violation

Problem SDC Detection in iterative algorithms
Context Check the progress of algorithm at each iteration by inspecting

the quality metric
Forces Applicable for iterative algorithms where quality metric is sup-

posed to be monotonically non-increasing
Solution Calculate quality metric at each iteration and check violation by

comparing the quality metric from previous iteration
Capability The need to calculate quality metric frequently increases compu-

tation and communication between parallel processes
Protection Domain SDCs in static and dynamic state can be detected
Resulting Context Enables timely recovery of iterative algorithm state
Rationale Inexpensive method as compared to redundant computation

decreasing in the GMRES solver [8]. Over the course of iterative computations,
if for any reason, this property is violated, we infer the presence of soft errors,
and initiate recovery. The calculation of residual is a costly operation because it
involves matrix vector multiplication, Axk. The matrix multiplication is a global
operation across all the parallel processes and involves both parallel computa-
tion and communication. However, this high overhead detector is able to catch
soft errors with high accuracy.

Table 2. Resilience Pattern: Bounded Computations

Pattern Name Bounded Computations

Problem SDC Detection in critical computations
Context Check the progress and integrity of algorithm by inspecting the

outputs produced during critical computations
Forces Applicable for algorithms with identifiable critical computations

and deterministic lower and upper bounds
Solution Compare key outputs produced during critical computations

against lower and/or upper bounds
Capability Utilize implicit calculations and local invariant checking
Protection Domain SDCs in static and dynamic state can be detected
Resulting Context Enables timely recovery of the iterative algorithm state
Rationale Inexpensive method as compared to redundant computation

The GMRES solver does not need to calculate the residual at every iteration
to determine convergence since it can use the 2-norm of the result obtained
from solving the least squares problem [8] as an indicator for convergence. The
residual only needs to be calculated after convergence has been indicated and it
is used to certify the convergence criteria has been met, i.e., the residual falls
below a certain user-specified threshold value. Even though the value of 2-norm
can be used as an indicator of errors, we rely on the more accurate residual as
a quality metric for use within the monotonicity violation resilience pattern. As



far as our low overhead detector is concerned, we rely on inexpensive invariant
checks, as highlighted by the bounded computations design pattern in table 2.
It involves checking of an algorithmic condition which is performed locally. The
GMRES solver utilizes an orthogonalization phase during every iteration of the
solver, where the projection lengths are bounded by Frobenius norm of matrix
A. This condition on the projections can be checked relatively inexpensively,
since each parallel process iterates over its projection lengths locally. These are
a good indicator of the corruption of state due to soft errors [8]. However, it is
not a high accuracy detector.

Once soft errors are detected, checkpoints can be utilized for soft rollback.
To be able to minimize the amount of re-computations, it is best to perform
soft error detections regularly such that the rollback takes place quickly, i.e., we
fail fast. Otherwise, if only a single detection or verification is performed prior
to a checkpoint, then the whole interval which is usually composed of multiple
iterations needs to be re-computed. This is because soft errors cause corruption
unlike process failures which cause disruption in the parallel environment and
are relatively easy to detect. The resilience to process failures and aspects for
multiresilience are discussed in the next section.

3 Process Failure Resilience and Multiresilience

In distributed applications based on the message passing programming model,
the failure of even one process in the parallel environment causes a fatal crash
of the application in most implementations. Recent proposal to integrate ULFM
in Message-Passing Interface (MPI) addresses some of the challenges associated
with handling process failures [3]. For example, an implementation of ULFM
based on Open MPI provides the ability to reliably detect process failures in
a MPI application using a consensus algorithm. It also provides the ability to
continue execution despite the presence of process failures, by reconstructing
communication objects. However, it does not provide the ability to recover ap-
plication state and it is left on to the user because each application has unique
traits. Multiple methods exist to recover application state including forward
and backward recovery of application state [9]. Methods which use application-
oblivious checkpointing tend to have high storage and performance overheads
as compared to an approach which only considers the minimal state required to
resume computation. In this work, we utilize application-assisted checkpointing.
For example, we only checkpoint the dynamic state of the solver at regular in-
tervals, whereas the static state of the solver only needs to be checkpointed at
the start and readjusted after each process failure to sustain future failures.

The checkpoint restart design pattern to recover from process failures is
widely utilized [9]. Recovery from process failure can be accomplished via spares
or using only the surviving processes. In this work, we utilize spare processes to
recover from failures since it avoids the need to re-balance the workload among
surviving processes. We also use in-memory checkpointing [12], whereby the
highly optimized point-to-point connectivity between nodes in the HPC system



is utilized to store the checkpoints in the memories of assigned nodes in the sys-
tem. We maintain two copies of the checkpoint, one is maintained locally, and
the other one is maintained at a neighboring process. This arrangement helps
to recover checkpointed state in case of failure of one process. The approach
is extendable to handle multiple process failures by maintaining extra level of
redundancy at more than two processes. This is beyond the scope of this work.
In a multiresilient implementation, the local checkpoints can be used to recover
from soft errors relatively inexpensively compared to the communication over-
head required in case of process failure. Thus, performing multiple soft error
detections within the interval is feasible since errors can be caught early and
timely recovery can be performed.

In a multiresilient solution, it is also important to verify the integrity of
the state being checkpointed, since use of corrupt state in recovery can hinder
the ability of the iterative application to make forward progress. It may be
possible to store multiple checkpoints, and jump back to older ones, in case no
forward progress is determined, however it results in high overheads as well as the
challenge of determining when the soft error might have started the corruption
of checkpoints. Therefore, it is important to perform soft error detection to look
for obvious abnormalities in the state being checkpointed. Herein, we assume
that the checkpoint state stored in the memory will not be corrupted. However,
with double in-memory checkpoints it is possible to drop this assumption.

4 Performance Model for Multiresilience

In this section, we develop analytical models to investigate performance charac-
teristics of multiresilient iterative applications. We focus on the combination of
soft error detection and mitigation patterns, and process failure mitigation pat-
terns that reduce the time-to-solution. Specifically, we are interested in finding
which kind of detector to use and how often to use it within a single checkpoint
interval given their overheads. We assume two types of soft error detectors D1,
a high overhead and high accuracy detector, and D2, a low overhead and low
accuracy detector, with overheads quantified in software implementation as TD1

and TD2
, respectively. Here, TD1

is mostly composed of the overhead of calcu-
lating the residual and TD2

is composed of the overhead of iterating through
multiple projection lengths and performing the comparisons. It is noteworthy to
mention that if we assume both D1 and D2 to be ideal detectors, i.e., they can
detect each and every soft error, then choosing the low-overhead detector D2 is
the obvious choice. As opposed to prior work [2], we define our detectors to be
non-ideal and are therefore interested in the overall impact on time-to-solution.
With a generic software detector having a overhead TD, the time-to-solution for
an iterative application in the error- and failure-free case (TFF ) is quantified as:

TFF = TworkNFF + bNFF γcheckc(TDND + Tcheck) (1)

Here, Twork represents the time spent doing useful work inside a single iteration
of the application, NFF represents the number of iterations required to con-
verge to a solution when no error or failure occurs, γcheck represents the factor



or frequency with which checkpoints are taken (assumes checkpoints are only
taken at the completion of an iteration, e.g., a value of 1/20 means checkpoint
is taken after every 20 iterations), Tcheck represents time spent performing the
checkpoint, and ND represents the number of soft error detections done within a
single checkpoint interval. The rate with which to take the checkpoints is depen-
dent on the cost of taking the checkpoint and failure rate of the HPC system [7].
A tradeoff exists between how often to checkpoint which causes overhead in case
of failure-free execution and the amount of re-computation in case of failure
which may be high if checkpoints are not taken frequently. We assume γcheck to
be constant for our analysis since it has nothing to do with the choice of the
soft error detector. Other parameters are dependent on the application and vary
depending on the workload used.

TcheckTDTDTD …
Twork1

Twork2
TworkND

1 …
TcheckTDTDTD …

Twork1
Twork2

TworkND

NFF*!check

…
… 1 … Nextra*!check

Fig. 1. The multiresilient checkpointing and fail-fast recovery approach.

Now, we model the time-to-solution in the presence of both detected soft
errors and process failures, Tfail. This is composed of the following components:
(1) error- and failure-free total time, (2) overhead incurred due to re-computation
after recovery from detected soft-errors and process failures, (3) recovery over-
heads of detected errors and failures, and (4) extra work done beyond error free
case due to presence of bounded errors or undetected soft errors in the state of
the application. With these overheads, Tfail can be quantified as:

Tfail = TFF +NSE(Trecomp−SE + TSE−r) +NPF (Trecomp−PF + TPF−r)

+ TworkNextra + bγcheckNextrac(TDND + Tcheck), where,
(2)

Trecomp−SE = ((1 + 2 + 3 + ...+ND)/ND).((Tworkγ
−1
check)/ND + TD)

= 0.5 (ND + 1).((Tworkγ
−1
check)/ND + TD), and, (3)

Trecomp−PF = (Tworkγ
−1
check + TDND)/2 (4)

Here, NSE is the expected number of soft errors which are detected and is there-
fore dependent on the type and frequency with which the detector is utilized
(note, this represents each time soft error detector positively flags corruption
of state which may include multiple soft errors in practice), Trecomp−SE and
TSE−r represent the re-computation and recovery overheads after recovery from
a single successful soft error detection respectively, NPF represents the expected
number of process failures which are detected, Trecomp−PF and TPF−r represent
re-computation and recovery overheads associated with detected process fail-
ures respectively, and Nextra represents the expected number of extra iterations
taken by the iterative application beyond the error-free case. Fig. 1 shows the
placement of soft error detectors within a single checkpoint interval. We assume



that the detectors are placed such that the interval is divided into equal sized
chunks which may compose multiple iterations of useful work depending on ND.
Irrespective of the original location of the soft fault, the error only has a chance
to be detected upon the execution of a detector. If the first detector after the
checkpoint catches an error, then only one chunk of work and one detection need
to be recomputed. Similarly, if the second detector catches an error, then two
chunks of work and two detections starting from the last restart location need
to be recomputed, and so on. Following this observation and assuming the fault
is equally likely to strike in each chunk, the average value for re-computation
due to detected soft errors can be estimated as in eq. 3. On the other hand, a
process failure is detected almost immediately due to its disruptive nature, there-
fore, based on a uniform distribution, the average amount of work recomputed
is estimated as in eq. 4.

Other parameters such as NSE and NPF depend on the system specifications
such as error and failure rates, respectively. Similarly, Tcheck can be determined
based on the latency of transferring checkpoints over the HPC network and the
size of the checkpoint [5]. The values for other parameters are best estimated
through statistical fault injection experiments. In the next experiment and re-
sults section, we find the value of ND for each type of soft error detector which
minimizes Tfail. We also estimate Nextra and NSE in terms of type and frequency
of detector used, although they are strongly application dependent.

5 Experiments and Results

In our experiments, we utilize the FT-GMRES solver which has been imple-
mented using the Trilinos framework [8]. Trilinos provides the ability to solve
large scale problems using an array of parallel programming models on a vari-
ety of computing platforms. Our implementation is done using ULFM 1.1 built
on top of Open MPI 1.7.1, which provides the ability to detect failed processes
and remove them from communication objects. In our previous work, we modi-
fied FT-GMRES to support multiresilience including the ability to utilize spare
processes to recover from process failures [1]. This work provides an in-depth
analysis of how to choose the right soft error detector in a multiresilient setup.

We perform our experiments on a Linux cluster with 40 nodes with 2 AMD
Opteron processors each (48 cores per node) interconnected with 1 Gbps ether-
net. We solve a linear problem with a sparse matrix A which has about 7 million
rows and 186 million non-zero elements using 512 cores. The GMRES solver is
able to converge to a solution in 320 iterations in the fault free (NFF ) case. We
perform fault injection in our experiments to determine the multiresilience of
the solver and various parameters of interest. In all cases, the number of process
failures and the time window in which these are injected are the same, and are
based on an exponential distribution. The checkpoints are also performed at the
same rate, e.g., we set γcheck = 1/20 for all our experiments. With this setup, the
variables associated with process failures have bounded values. Soft errors are
injected randomly into computed data (e.g., the resultant vector produced after
a sparse matrix vector multiplication operation) after almost every 10 iterations



of useful work. The error and failure rates are fixed across all our experiments.
Enough fault injection experiments (at least 100 for each case) are performed in
each case to keep the coefficient of variation low.

230

250

270

290

310

330

350

370

390

0 5 10 15 20 25

Ti
m

e 
(S

ec
s)

Number of Detections / Checkpoint Interval (ND)

Projections

Monotonocity

Hybrid

Calc Monotonocity

Calc Projections

Fig. 2. The effect on total time-to-solution (average and std. dev.) with different num-
ber of soft error detections inside a single checkpoint interval. The performance esti-
mations obtained from our analytical models in eqs. 1 and 2 are also plotted.

The overall time-to-solution for FT-GMRES with the two soft error detec-
tors, i.e., monotonicity violation and bounded computations (projections), is
shown in Fig. 2. The effect of performing increasing number of soft error de-
tections inside a single checkpoint interval (note: a max of 20 detections can be
performed) on time-to-solution shows the runaway effect when using the high-
overhead detector, especially when ND > 5. In our experiments, on average we
measured about 90 fold higher overhead for monotonicity detector compared to
bounded computations detector. Thus, using the high accuracy detector too of-
ten starts to dominate the time-to-solution nullifying any other positive effects.
However, the disparity among overheads of accurate and inaccurate detectors is
high for FT-GMRES solver. Consequently, the conclusions may differ for other
applications depending on the tradeoff between penalty of extra work with low
accuracy detector and overhead of using the high accuracy detector. The esti-
mations obtained from the performance model proposed in eqs. 1 and 2 are also
plotted in Fig. 2, demonstrating a decent bound on time-to-solution with both
detectors in FT-GMRES solver. Some observations on the parameters in our
models are: Tcheck is dominated by the time to store the checkpoint in remote
memory, TSE−r << TPF−r recovering checkpoint from local memory is orders
of magnitude faster than process failure recovery, and Nextra and NSE depend
on the type of the detector and the frequency (ND) with which it is used.

Based on the performance of the two detectors, we also evaluate an additional
type of detector, which is a hybrid of the monotonicity violation and bounded
computations detectors. In this case, we perform the low overhead detection at
every iteration of the solver, whereas the high overhead detector is performed
up to 5 times inside a single checkpoint interval. The time-to-solution with the
hybrid soft error detector is shown in Fig. 2. The hybrid detector gives mid-tier
overall performance, with interesting implications on total iteration count and
soft error detection success rate as discussed hereafter.



330

340

350

360

370

380

390

400

410

420

430

0 5 10 15 20 25

To
ta

l N
um

be
r o

f I
te

ra
tio

ns

Number of Detections / Checkpoint Interval (ND)

Monotonocity Projections
Hybrid Linear (Monotonocity)
Linear (Projections) Linear (Hybrid)

Fig. 3. The effect on total iterations (average and std. dev.) to converge to a solu-
tion with different number of soft error detections inside a single checkpoint interval.
Includes recomputations with errors and extra iterations beyond error-free case.

Results in Fig. 3 show the total number of iterations taken by the solver to
converge to a solution with each type of detector while using different number
of detections inside a single checkpoint interval. The total iteration count here
includes all the recomputations after each soft error and process failure recovery,
and the extra iterations taken by the solver to converge to a solution beyond the
fault free case. Overall, increasing the use of low overhead detector does not effect
the iteration count drastically when compared to the high overhead detector. For
example, the total iterations decrease at a rate of 0.08 and 0.71 per detection
when using bounded computations and monotonicity patterns, respectively. The
hybrid approach seems to provide the fastest decrease in total iteration count
among all cases. These results correspond directly to the number of additional
iterations taken by the solver beyond the fault free case, Nextra. Our estimations
for Nextra range between 18 and 46 for the high accuracy detector, and between
51 and 60 for the low accuracy detector. These results show that there is more
overhead due to additional iterations for the low accuracy detector including
extra checkpoints as compared to high accuracy detector.

The detection accuracy of each soft error detector is shown in Fig. 4. Here,
the undetected soft errors may cause any of the following cases: no effect on the
outcome or convergence of the solver, extra work to converge to a solution, and
increased chances of inducing a process failure. Another possibility is that the
solver does not converge to a solution in allocated time, which is not listed earlier
since sufficient time is given to the solver in our experiments. The results in Fig. 4
also provide a good estimate for expected number of soft errors detected NSE

in each case. We estimate NSE by averaging the number of soft errors detected
across all runs. On average, the high accuracy detector catches between 1 and 2
soft errors, whereas the low accuracy detector catches between 0 and 1 soft errors
in each run depending on the number of detections performed in each interval. In
most cases, the bounded computations soft error detection pattern achieves lower
accuracy than the monotonicity violation pattern. The low accuracy detector



0%

10%

20%

30%

40%

50%

60%

70%

80%

0 5 10 15 20 25

%
 E

xp
er

im
en

ts
 S

of
t E

rr
or

s D
et

ec
te

d 

Number of Detections / Checkpoint Interval (ND)

Monotonocity Projections
Hybrid Linear (Monotonocity)
Linear (Projections) Linear (Hybrid)

Fig. 4. Variation of soft error detection rate (total number of experiments in which
soft errors were successfully detected out of all experiments) when different number of
soft error detections are performed inside a single checkpoint interval.

seems to surpass the lowest accuracy achieved by high accuracy detector with
ND > 15. The use of high accuracy detector at low frequency combined with
low accuracy detector at highest frequency is seen to provide matching or better
accuracy than the high accuracy detector in most cases. Overall, the hybrid
detector is able to detect soft errors more often reducing the overheads due to
extra iterations and therefore is able to provide significantly better resilience
than the low overhead detector with up to 4% more performance overhead.

6 Related Work

Previous works in the design of resilient iterative methods have focused on toler-
ance to either soft errors [4,10] or process failures [6] but not both together. Most
recently, design patterns have been utilized for implementation of multiresilient
solutions in HPC applications [1]. The catalog of design patterns [9] comprehen-
sively describes various resilience solutions, a layered hierarchy of the patterns
and a patterns language. The use of algorithmic approaches to detect soft errors
for sparse linear algebra and a linear solver are demonstrated in [11] and [8],
respectively. In this work, we develop a performance model which aids in the se-
lection and tuning of soft error detectors in conjunction with a checkpoint-based
recovery approach, which is widely applicable [5,12]. Related work [2] develops a
performance model which minimizes total execution time by only focusing on a
single system-level checkpoint interval and does not consider the special case for
iterative algorithms. Furthermore, we also test the efficacy of our performance
model through experiments with a linear solver application.

7 Conclusion

We demonstrate the design of performance efficient multiresilient linear solver
application. Checkpoint restart is shown to be an effective recovery approach
in our multiresilient solution. Our approach shows the appropriate combination



of soft error and process failure resilience solutions. We evaluate two different
type of soft error detectors in our work and investigate the tradeoffs of using
them under non-ideal detection conditions. Results evaluate the affect of using
the detectors with different frequency on time-to-solution, the number of extra
iterations taken by the solver beyond the fault free case, and the rate of successful
soft error detections in simulated fault injection experiments. A hybrid approach
which uses the high overhead and high accuracy detector sparingly combined
with a low overhead detector and low accuracy detector at every iteration is
observed to have similar or better detection success rate as using a high overhead
detector at every iteration with significantly less impact on time-to-solution.

Acknowledgements This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research, program manager Lucy Nowell, under contract number DE-AC05-
00OR22725.

References

1. Ashraf, R.A., Hukerikar, S., Engelmann, C.: Pattern-based modeling of multire-
silience solutions for high-performance computing. In: Proceedings of the 2018
ACM/SPEC International Conference on Performance Engineering (2018)

2. Benoit, A., Cavelan, A., Robert, Y., Sun, H.: Optimal resilience patterns to cope
with fail-stop and silent errors. Report RR-8786, LIP - ENS Lyon (Oct 2015)

3. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure re-
covery of MPI communication capability. The International Journal of High Per-
formance Computing Applications 27(3), 244–254 (2013)

4. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra
methods. In: 22nd Annual International Conference on Supercomputing (2008)

5. Cao, J., Arya, K., Garg, R., Matott, S., Panda, D.K., Subramoni, H., Vienne, J.,
Cooperman, G.: System-level scalable checkpoint-restart for petascale computing.
In: IEEE 22nd International Conference on Parallel and Distributed Systems (2016)

6. Chen, Z.: Algorithm-based recovery for iterative methods without checkpointing.
In: 20th International Symp. on High Performance Distributed Computing (2011)

7. Daly, J.: A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Generation Computer Systems 22(3), 303 – 312 (2006)

8. Elliott, J., Hoemmen, M., Mueller, F.: Evaluating the impact of SDC on the GM-
RES iterative solver. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. pp. 1193–1202 (May 2014)

9. Hukerikar, S., Engelmann, C.: Resilience Design Patterns: A Structured Approach
to Resilience at Extreme Scale (version 1.2). Tech. Rep. ORNL/TM-2017/745, Oak
Ridge National Laboratory, Oak Ridge, TN, USA (August 2017)

10. Jaulmes, L., Casas, M., Moret, M., Ayguad, E., Labarta, J., Valero, M.: Exploiting
asynchrony from exact forward recovery for DUE in iterative solvers. In: SC15: Int’l
Conf. for High Performance Computing, Networking, Storage and Analysis (2015)

11. Sloan, J., Kumar, R., Bronevetsky, G.: An algorithmic approach to error localiza-
tion and partial recomputation for low-overhead fault tolerance. In: 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (2013)

12. Zheng, G., Shi, L., Kale, L.V.: FTC-Charm++: an in-memory checkpoint-based
fault tolerant runtime for Charm++ and MPI. In: 2004 IEEE International Con-
ference on Cluster Computing. pp. 93–103 (Sept 2004)


