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Multiresilience

• Resilience in high performance computing (HPC) applications: the ability 
of the applications to efficiently handle errors and recover from failures, 
while maintaining forward progress as desired by the user. 

• HPC Applications are affected by multiple types of errors which hinders 
with their ability to make forward progress and their correctness. 
– Soft Errors: transient in nature, e.g., silent data corruptions (SDC),
– Hard Errors: temporarily or permanently unavailable resource, e.g., process failures. 
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Motivation & Scope

• Scope: iterative HPC applications which can tolerate soft errors by taking 
additional time to converge to a solution [1][2].

• Proposed performance models for resilience design patterns which serve 
as a guide for users to build optimal and efficient applications. 

• Models consider the interaction b/w non-ideal soft error detection and 
checkpoint-based recovery. 

• Use of models to compare the impact on time-to-solution b/w:
– Inaccurate and low overhead soft-error detection —vs—
– High Accuracy and high overhead soft-error detection. 
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Design Patterns for Resilience

• Systematically integrate multiple techniques to detect and handle 
multiple error and failure events, with minimal impact on performance.

• Patterns provide generalizable solutions to recurring problems.

• Patterns do not provide concrete solutions, instead focus on a 
reproducible strategy which may be used many times, implemented in 
different manners.

• Multiple patterns are instantiated across layers of the system stack, 
interlinked using a building blocks approach. 
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Resilience Design Patterns Specification v1.2

• Taxonomy of resilience terms and metrics

• Classification of resilience design 
patterns

• Catalog of resilience design patterns
– Uses a pattern language to describe solutions
– 3 strategy patterns, 5 architectural patterns, 

11 structural patterns, and 5 state patterns 

• Case studies using the design patterns

• A resilience design spaces framework

Saurabh Hukerikar and Christian Engelmann. Resilience Design Patterns: A Structured 
Approach to Resilience at Extreme Scale (Version 1.2). Technical Report, ORNL/TM-2017/745, 
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Resilience Design Patterns Classification
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Pattern-based Modeling of Multiresilience

• Coordination among multiple patterns designed to provide optimal end-
to-end application performance [3].
– Interfaces are standardized,
– Systematic software and hardware layer coordination.

• Navigate the performance resilience tradeoff space by evaluating 
multiple solutions. 

• Each pattern has significantly different performance and implementation 
characteristics.

• Naïve stacking can lead to overprotection resulting in degradation of 
application performance.
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FT-GMRES Solver

Linear Solver

• GMRES generalized minimal residual 
method for solving non-symmetric linear 
systems.

– Solve: Ax = b
– Iterative algorithm

• Design patterns provide detection, 
containment, and mitigation for soft 
and fail-stop errors.
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Design Patterns for Soft Error Resilience

• State patterns: segregation enables exploration of detection and recovery 
patterns, reduces overheads in most cases.
– Persistent state: Matrix A and Right-hand vector b, 
– Dynamic state: Solution vector x,
– Environment state: Data-structure indices, pointers, loop counters, etc.

• Detection patterns: utilize properties/characteristics of the 
algorithm/application/state patterns to detect presence of SDCs.

• Mitigation patterns: ensure forward progress of the algorithm.
– Compensation strategy pattern: modular redundancy, can result in high overheads.
– Rollback recovery pattern: preserve dynamic state in local memory (checkpoints).
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Design Patterns for Soft Error Resilience
High Accuracy and High Cost Detector

Pattern Name Monotonicity Violation

Problem SDC Detection in iterative algorithms

Context Check the progress of algorithm at each iteration by inspecting the quality 
metric

Forces Applicable for iterative algorithms where quality metric is supposed to be 
monotonically non-increasing.

Solution Calculate quality metric at each iteration and check violation by comparing 
the quality metric from previous iteration

Capability The need to calculate quality metric frequently increases computation and 
communication between parallel processes.

Protection Domain SDCs in static and dynamic state can be detected

Resulting Context Enables timely recovery of iterative algorithm state

Rationale Inexpensive method as compared to redundant computation
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Design Patterns for Soft Error Resilience
High Accuracy and High Cost Detector

Pattern Name Monotonicity Violation

Problem SDC Detection in iterative algorithms

Context Check the progress of algorithm at each iteration by inspecting the quality 
metric

Forces Applicable for iterative algorithms where quality metric is supposed to be 
monotonically non-increasing.

Solution Calculate quality metric at each iteration and check violation by comparing 
the quality metric from previous iteration

Capability The need to calculate quality metric frequently increases computation and 
communication between parallel processes.

Protection Domain SDCs in static and dynamic state can be detected

Resulting Context Enables timely recovery of iterative algorithm state

Rationale Inexpensive method as compared to redundant computation

Quality Metric: 
Residual at time step k: rk = b – Axk 

(for approximate solution xk)

Criteria: 
Monotonic decrease in quality metric

rk <= rk-1
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Design Patterns for Soft Error Resilience
Inaccurate and Low Cost Detector

Pattern Name Bounded Computations

Problem SDC Detection in critical computations

Context Check the progress and integrity of algorithm by inspecting the outputs 
produced during critical computations

Forces Applicable for algorithms with identifiable critical computations and 
deterministic lower and upper bounds

Solution Compare key outputs produced during critical computations against lower 
and/or upper bounds

Capability Utilize implicit calculations and local invariant checking

Protection Domain SDCs in static and dynamic state can be detected

Resulting Context Enables timely recovery of iterative algorithm state

Rationale Inexpensive method as compared to redundant computation
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Design Patterns for Soft Error Resilience
Inaccurate and Low Cost Detector

Pattern Name Bounded Computations

Problem SDC Detection in critical computations
Context Check the progress and integrity of algorithm by inspecting the outputs 

produced during critical computations
Forces Applicable for algorithms with identifiable critical computations and 

deterministic lower and upper bounds

Solution Compare key outputs produced during critical computations against lower 
and/or upper bounds

Capability Utilize implicit calculations and local invariant checking
Protection Domain SDCs in static and dynamic state can be detected
Resulting Context Enables timely recovery of iterative algorithm state
Rationale Inexpensive method as compared to redundant computation

Critical Computations: 
Inner products in each iteration of Arnoldi process 
(orthogonalization kernel) inside GMRES algorithm 

Criteria: 
Theoretical upper limit for values in Hessenberg Matrix

|hij|<=||  A||      F ,
bounded by Frobenius norm of input matrix (calculated once) 
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Design Patterns for Hard Error Resilience (1/2)

• State patterns: encapsulate the application state to facilitate recovery of 
lost state after process failure. 
– Environment state: Objects in parallel runtime environment, 
– Persistent & Dynamic state: Distributed across parallel processes. 

• Detection patterns: instantiated in the environment state pattern, for 
robust detection and identification of failed processes. 
– Consensus structural pattern: proactive or reactive approach to failure detection. 

• Mitigation patterns: recover lost persistent and dynamic state, and fix 
environment state for forward progress of parallel application.
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Design Patterns for Hard Error Resilience (2/2)

• Mitigation patterns: recover lost persistent and dynamic state, and fix 
environment state to enable forward progress of parallel application.
– Reconfiguration pattern: rejuvenate parallel runtime environment by removing failed 

processes and refreshing parallel runtime objects for future communications.
– Compensation strategy pattern: maintain a pool of spare processes for substitution.
– Checkpoint restart pattern: in-memory checkpoints of persistent and dynamic state.
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Checkpoint-based Multiresilience

• Utilize local checkpoints to recover from soft errors. 

• In the presence of soft errors, checkpoints may become corrupted, and 
their use can cause the algorithm to make no progress.

• Utilize soft error detectors to verify the integrity of the checkpoints.
– Sufficient to perform soft error detection only before performing the checkpoint. 

• Performing multiple soft error detections before the checkpoint limits the 
propagation of soft errors and avoids costly re-computation à fail fast.
– How often should you perform the soft error detection?
– Previous work [4] found optimal number of verifications to perform, but assumes ideal 

soft error detection. In this work, non-ideal soft error detection is assumed. 
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Performance Model for Multiresilience

TcheckTDTDTD …
Twork1

Twork2
TworkND

1 …
TcheckTDTDTD …

Twork1
Twork2

TworkND

NFF*!check

…
… 1 … Nextra*!check

• Error and failure-free time for iterative algorithm:
– Total useful work done; Twork is useful work done in a single iteration; NFF is the total number of 

iterations consumed in error and failure-free condition
– Overhead of performing checkpoints at a rate of !check , each time ND soft error detections of 

TD overhead each are performed

TFF = TworkNFF + ⌊!checkNFF⌋(TDND + Tcheck)

2
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1 2 3

Performance Model for Multiresilience

• Components of performance model:
– Error- and failure-free total time,
– Re-computation overhead due to recovery from detected soft errors (Trecomp-SE) and 

process failures (Trecomp-PF),
– Recovery overheads from detected soft errors (TSE-r ) and process failures (TPF-r),
– Extra work beyond error free case due to presence of bounded errors or undetected 

soft errors; Nextra expected number of additional iterations beyond error free case. 

Tfail = TFF + NSE (Trecomp-SE + TSE-r) + NPF (Trecomp-PF + TPF-r) + TworkNextra + ⌊"checkNextra⌋(TDND + Tcheck)

1

2
2

3

No. of detected 
soft errors

No. of detected 
process failures
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Performance Model for Multiresilience

TcheckTDTDTD …
Twork1

Twork2
TworkND

1 …
TcheckTDTDTD …

Twork1
Twork2

TworkND

NFF*!check

…
… 1 … Nextra*!check

• Re-computation Times:
– Soft error can only be detected on the invocation of a detector, i.e., error is detected after the 

completion of first chunk, second chunk, and so on. 
– Work inside each chunk before soft error detection is done

Trecomp-SE = ((1 + 2 + 3 + … + ND)/ND)*(∑ Tworki
/ND + TD)

2



20
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Performance Model for Multiresilience

TcheckTDTDTD …
Twork1

Twork2
TworkND

1 …
TcheckTDTDTD …

Twork1
Twork2

TworkND

NFF*!check

…
… 1 … Nextra*!check

• Re-computation Times:
– Process failure can occur uniformly within checkpoint interval and is detected almost 

immediately due to its disruptive nature, given availability of runtime support.
– Sum of all useful work done before a checkpoint is performed ∑ Tworki 
– Overhead of performing multiple soft error detections (ND) inside a checkpoint interval. 

Trecomp-PF = (∑ Tworki +TDND)/2

1
2
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Experiments

• Statistical fault injection: one of the ways to estimate parameters in the 
performance models.
– Nextra is dependent on the characteristics of the algorithm.

• Some parameters can be calculated based on workload & system specs.
– Tcheck depends on size of the checkpoint and latency of transfers over the network.

– Young’s formula (using MTTF) can be used to determine checkpoint frequency, !check

• Frequency (ND) and type of error detector used affects some parameters.
– NSE number of detected soft errors, which in turn impacts Nextra or the overhead of 

additional work beyond error free case.

– Re-computation overheads.
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Experimental Goals

• Find the number of detections to perform inside a single checkpoint 
period for each type of soft error detector which minimizes the impact on 
total time-to-solution.
– Tfail (NDH, TDH) –vs– Tfail (NDL, TDL)

– Tradeoff: overhead of detector (error-free and re-computation) –vs– extra work 
beyond error free case (overhead of extra checkpoints, etc.).

• Estimate NSE, Nextra using statistical fault injection with different values of ND

• Explore the performance resilience tradeoff space.

• Evaluate the accuracy of proposed models from estimated parameters. 
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Experimental Environment

• FT-GMRES [5] implemented using Trilinos 12.6.4, https://trilinos.org/.
– Tpetra package for parallel linear algebra using MPI.

• Parallel Environment: ULFM release 1.1, based on Open MPI 1.7.1 
http://fault-tolerance.org/. User Level Failure Mitigation [6] provides:
– Process failure detection,
– Parallel environment reconfiguration capabilities (remove failed processes) 

• Test problem: Discretization of 3D mesh. Sparse Matrix with about 7 million 
rows and 186 Million non-zeros.

• 40-node Linux cluster with AMD Opteron processors. 
– Cores/node: 24 (Total: 960 cores), Memory/node: 64 GB.

https://trilinos.org/
http://fault-tolerance.org/
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Experimental Setup

• Number of error and failure-free iterations, NFF = 320.

• Checkpoint frequency constant in our experiments; checkpoint 
performed after every 20 iterations. 

• Up to four independent process failures injected at deterministic times 
such that variation in re-computation (due to process failures) times is low. 

• Soft errors injected randomly into computed data after almost every 10 
iterations of useful work. 

• Allocated max iteration count is sufficient for the solver to converge. 
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Results: Time-to-Solution 
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• Run-away effect of using the high accuracy and high overhead soft error detector, ND > 5. 

• Hybrid detector: use high accuracy detector sparingly and low accuracy detector with high 
frequency (1+20, 2+20, …, 5+20). 
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Results: Soft Error Detection Overheads

• Disparity among the overheads of the low accuracy and high accuracy detectors, TDH ≅ 90 TDL

• Using the high overhead detector with high frequency offsets any other benefits.

0

20

40

60

80

100

120

140

0 5 10 15 20 25

Ti
m

e 
(S

ec
s)

Number of Detections / Checkpoint Interval (ND)

Monotonocity

Projections

Hybrid

Linear (Monotonocity)

Linear (Projections)



27

330

340

350

360

370

380

390

400

410

420

430

0 5 10 15 20 25

To
ta

l N
um

be
r 

of
 It

er
at

io
ns

Number of Detections / Checkpoint Interval (ND)

Monotonocity Projections
Hybrid Linear (Monotonocity)
Linear (Projections) Linear (Hybrid)

Results: Total Iteration Count

• Total iteration count includes: error- and failure-free iterations (320), re-computed iterations 
(detected soft errors and process failures) and additional iterations beyond error-free case.

• Estimated Nextra range b/w 18 and 46 for high accuracy detector and b/w 51 and 60 for low 
accuracy detector depending on number of detections performed, ND.
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Results: Detectability   
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• Undetected soft errors can cause any of the following: no effect on the outcome, additional work 
to converge to a solution, increased chances of inducing a process failure, non-convergence. 

• Estimated NSE by averaging the number of soft errors detected across all experiments for each 
detector. On average, high accuracy detector caught b/w 1 and 2, whereas, low accuracy 
detector caught b/w 0 and 1 errors in each run depending on ND. 
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Conclusions

• Demonstrated the design of performance efficient and multiresilient linear 
solver application. 

• Checkpoint-based recovery in conjunction with non-ideal soft error 
detection is an effective multiresilience approach. 

• Explored performance resilience tradeoff space using distinct soft error 
detectors.

• Hybrid detector is observed to have comparable detectability as using 
the high accuracy detector at every iteration with significantly less impact 

• Results may vary for other applications depending on the tradeoff b/w 
penalty of extra work and overhead of using high accuracy detector. 
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