
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Performance Efficient Multiresilience using
Checkpoint Recovery in Iterative
Algorithms
Rizwan A. Ashraf and Christian Engelmann,
Computer Science and Mathematics Div.,
Oak Ridge National Laboratory (ORNL), USA.
11th Workshop on Resiliency in High Performance Computing
(Resilience) in Clusters, Clouds, and Grids,

Turin, Italy, 28th August, 2018.

2

Multiresilience

• Resilience in high performance computing (HPC) applications: the ability
of the applications to efficiently handle errors and recover from failures,
while maintaining forward progress as desired by the user.

• HPC Applications are affected by multiple types of errors which hinders
with their ability to make forward progress and their correctness.
– Soft Errors: transient in nature, e.g., silent data corruptions (SDC),
– Hard Errors: temporarily or permanently unavailable resource, e.g., process failures.

3

Motivation & Scope

• Scope: iterative HPC applications which can tolerate soft errors by taking
additional time to converge to a solution [1][2].

• Proposed performance models for resilience design patterns which serve
as a guide for users to build optimal and efficient applications.

• Models consider the interaction b/w non-ideal soft error detection and
checkpoint-based recovery.

• Use of models to compare the impact on time-to-solution b/w:
– Inaccurate and low overhead soft-error detection —vs—
– High Accuracy and high overhead soft-error detection.

4

Design Patterns for Resilience

• Systematically integrate multiple techniques to detect and handle
multiple error and failure events, with minimal impact on performance.

• Patterns provide generalizable solutions to recurring problems.

• Patterns do not provide concrete solutions, instead focus on a
reproducible strategy which may be used many times, implemented in
different manners.

• Multiple patterns are instantiated across layers of the system stack,
interlinked using a building blocks approach.

55

Resilience Design Patterns Specification v1.2

• Taxonomy of resilience terms and metrics

• Classification of resilience design
patterns

• Catalog of resilience design patterns
– Uses a pattern language to describe solutions
– 3 strategy patterns, 5 architectural patterns,

11 structural patterns, and 5 state patterns

• Case studies using the design patterns

• A resilience design spaces framework

Saurabh Hukerikar and Christian Engelmann. Resilience Design Patterns: A Structured
Approach to Resilience at Extreme Scale (Version 1.2). Technical Report, ORNL/TM-2017/745,
Oak Ridge National Laboratory, Oak Ridge, TN, USA, August, 2017. DOI: 10.2172/1436045

ORNL/TM-2017/745

Resilience Design Patterns
A Structured Approach to Resilience at Extreme Scale - version 1.2

Saurabh Hukerikar
Christian Engelmann

August 2017Approved for public release.

Distribution is unlimited.

66

Resilience Design Patterns Classification

R
ej

uv
en

at
io

n

Fault	Treatment Recovery Compensation

Design Diversity

R
ec

ov
er

y
bl

oc
k

n-
ve

rs
io

n
de

si
gn

n-
m
od

ul
ar
	

Re
du

nd
an
cy

Stateful

St
at

el
es

s

Fault	Diagnosis

R
ol

l f
or

w
ar

d

Checkpoint	Recovery

R
ol

lb
ac

k

Pe
rs

is
te

nt

En
vi

ro
nm

en
t

D
yn

am
ic

M
on

ito
rin

g

Pr
ed

ic
tio

n

St
ra

te
gy

St
ru

ct
ur

al

State

Reconfiguration
R

ei
ni

tia
liz

at
io

n

R
es

tru
ct

ur
e

Ar
ch

ite
ct

ur
al

Redundancy

Fo
rw

ar
d	
Er
ro
r	

Co
rr
ec
tio

n	
Co

de

Behavioral

77

Pattern-based Modeling of Multiresilience

• Coordination among multiple patterns designed to provide optimal end-
to-end application performance [3].
– Interfaces are standardized,
– Systematic software and hardware layer coordination.

• Navigate the performance resilience tradeoff space by evaluating
multiple solutions.

• Each pattern has significantly different performance and implementation
characteristics.

• Naïve stacking can lead to overprotection resulting in degradation of
application performance.

88

FT-GMRES Solver

Linear Solver

• GMRES generalized minimal residual
method for solving non-symmetric linear
systems.

– Solve: Ax = b
– Iterative algorithm

• Design patterns provide detection,
containment, and mitigation for soft
and fail-stop errors.

99

Design Patterns for Soft Error Resilience

• State patterns: segregation enables exploration of detection and recovery
patterns, reduces overheads in most cases.
– Persistent state: Matrix A and Right-hand vector b,
– Dynamic state: Solution vector x,
– Environment state: Data-structure indices, pointers, loop counters, etc.

• Detection patterns: utilize properties/characteristics of the
algorithm/application/state patterns to detect presence of SDCs.

• Mitigation patterns: ensure forward progress of the algorithm.
– Compensation strategy pattern: modular redundancy, can result in high overheads.
– Rollback recovery pattern: preserve dynamic state in local memory (checkpoints).

10

Design Patterns for Soft Error Resilience
High Accuracy and High Cost Detector

Pattern Name Monotonicity Violation

Problem SDC Detection in iterative algorithms

Context Check the progress of algorithm at each iteration by inspecting the quality
metric

Forces Applicable for iterative algorithms where quality metric is supposed to be
monotonically non-increasing.

Solution Calculate quality metric at each iteration and check violation by comparing
the quality metric from previous iteration

Capability The need to calculate quality metric frequently increases computation and
communication between parallel processes.

Protection Domain SDCs in static and dynamic state can be detected

Resulting Context Enables timely recovery of iterative algorithm state

Rationale Inexpensive method as compared to redundant computation

11

Design Patterns for Soft Error Resilience
High Accuracy and High Cost Detector

Pattern Name Monotonicity Violation

Problem SDC Detection in iterative algorithms

Context Check the progress of algorithm at each iteration by inspecting the quality
metric

Forces Applicable for iterative algorithms where quality metric is supposed to be
monotonically non-increasing.

Solution Calculate quality metric at each iteration and check violation by comparing
the quality metric from previous iteration

Capability The need to calculate quality metric frequently increases computation and
communication between parallel processes.

Protection Domain SDCs in static and dynamic state can be detected

Resulting Context Enables timely recovery of iterative algorithm state

Rationale Inexpensive method as compared to redundant computation

Quality Metric:
Residual at time step k: rk = b – Axk

(for approximate solution xk)

Criteria:
Monotonic decrease in quality metric

rk <= rk-1

12

Design Patterns for Soft Error Resilience
Inaccurate and Low Cost Detector

Pattern Name Bounded Computations

Problem SDC Detection in critical computations

Context Check the progress and integrity of algorithm by inspecting the outputs
produced during critical computations

Forces Applicable for algorithms with identifiable critical computations and
deterministic lower and upper bounds

Solution Compare key outputs produced during critical computations against lower
and/or upper bounds

Capability Utilize implicit calculations and local invariant checking

Protection Domain SDCs in static and dynamic state can be detected

Resulting Context Enables timely recovery of iterative algorithm state

Rationale Inexpensive method as compared to redundant computation

13

Design Patterns for Soft Error Resilience
Inaccurate and Low Cost Detector

Pattern Name Bounded Computations

Problem SDC Detection in critical computations
Context Check the progress and integrity of algorithm by inspecting the outputs

produced during critical computations
Forces Applicable for algorithms with identifiable critical computations and

deterministic lower and upper bounds

Solution Compare key outputs produced during critical computations against lower
and/or upper bounds

Capability Utilize implicit calculations and local invariant checking
Protection Domain SDCs in static and dynamic state can be detected
Resulting Context Enables timely recovery of iterative algorithm state
Rationale Inexpensive method as compared to redundant computation

Critical Computations:
Inner products in each iteration of Arnoldi process
(orthogonalization kernel) inside GMRES algorithm

Criteria:
Theoretical upper limit for values in Hessenberg Matrix

|hij|<=|| A|| F ,
bounded by Frobenius norm of input matrix (calculated once)

14

Design Patterns for Hard Error Resilience (1/2)

• State patterns: encapsulate the application state to facilitate recovery of
lost state after process failure.
– Environment state: Objects in parallel runtime environment,
– Persistent & Dynamic state: Distributed across parallel processes.

• Detection patterns: instantiated in the environment state pattern, for
robust detection and identification of failed processes.
– Consensus structural pattern: proactive or reactive approach to failure detection.

• Mitigation patterns: recover lost persistent and dynamic state, and fix
environment state for forward progress of parallel application.

15

Design Patterns for Hard Error Resilience (2/2)

• Mitigation patterns: recover lost persistent and dynamic state, and fix
environment state to enable forward progress of parallel application.
– Reconfiguration pattern: rejuvenate parallel runtime environment by removing failed

processes and refreshing parallel runtime objects for future communications.
– Compensation strategy pattern: maintain a pool of spare processes for substitution.
– Checkpoint restart pattern: in-memory checkpoints of persistent and dynamic state.

16

Checkpoint-based Multiresilience

• Utilize local checkpoints to recover from soft errors.

• In the presence of soft errors, checkpoints may become corrupted, and
their use can cause the algorithm to make no progress.

• Utilize soft error detectors to verify the integrity of the checkpoints.
– Sufficient to perform soft error detection only before performing the checkpoint.

• Performing multiple soft error detections before the checkpoint limits the
propagation of soft errors and avoids costly re-computation à fail fast.
– How often should you perform the soft error detection?
– Previous work [4] found optimal number of verifications to perform, but assumes ideal

soft error detection. In this work, non-ideal soft error detection is assumed.

17

1

21

Performance Model for Multiresilience

TcheckTDTDTD …
Twork1

Twork2
TworkND

1 …
TcheckTDTDTD …

Twork1
Twork2

TworkND

NFF*!check

…
… 1 … Nextra*!check

• Error and failure-free time for iterative algorithm:
– Total useful work done; Twork is useful work done in a single iteration; NFF is the total number of

iterations consumed in error and failure-free condition
– Overhead of performing checkpoints at a rate of !check , each time ND soft error detections of

TD overhead each are performed

TFF = TworkNFF + ⌊!checkNFF⌋(TDND + Tcheck)

2

18

1 2 3

Performance Model for Multiresilience

• Components of performance model:
– Error- and failure-free total time,
– Re-computation overhead due to recovery from detected soft errors (Trecomp-SE) and

process failures (Trecomp-PF),
– Recovery overheads from detected soft errors (TSE-r) and process failures (TPF-r),
– Extra work beyond error free case due to presence of bounded errors or undetected

soft errors; Nextra expected number of additional iterations beyond error free case.

Tfail = TFF + NSE (Trecomp-SE + TSE-r) + NPF (Trecomp-PF + TPF-r) + TworkNextra + ⌊"checkNextra⌋(TDND + Tcheck)

1

2
2

3

No. of detected
soft errors

No. of detected
process failures

19

1

21

Performance Model for Multiresilience

TcheckTDTDTD …
Twork1

Twork2
TworkND

1 …
TcheckTDTDTD …

Twork1
Twork2

TworkND

NFF*!check

…
… 1 … Nextra*!check

• Re-computation Times:
– Soft error can only be detected on the invocation of a detector, i.e., error is detected after the

completion of first chunk, second chunk, and so on.
– Work inside each chunk before soft error detection is done

Trecomp-SE = ((1 + 2 + 3 + … + ND)/ND)*(∑ Tworki
/ND + TD)

2

20

21

Performance Model for Multiresilience

TcheckTDTDTD …
Twork1

Twork2
TworkND

1 …
TcheckTDTDTD …

Twork1
Twork2

TworkND

NFF*!check

…
… 1 … Nextra*!check

• Re-computation Times:
– Process failure can occur uniformly within checkpoint interval and is detected almost

immediately due to its disruptive nature, given availability of runtime support.
– Sum of all useful work done before a checkpoint is performed ∑ Tworki
– Overhead of performing multiple soft error detections (ND) inside a checkpoint interval.

Trecomp-PF = (∑ Tworki +TDND)/2

1
2

21

Experiments

• Statistical fault injection: one of the ways to estimate parameters in the
performance models.
– Nextra is dependent on the characteristics of the algorithm.

• Some parameters can be calculated based on workload & system specs.
– Tcheck depends on size of the checkpoint and latency of transfers over the network.

– Young’s formula (using MTTF) can be used to determine checkpoint frequency, !check

• Frequency (ND) and type of error detector used affects some parameters.
– NSE number of detected soft errors, which in turn impacts Nextra or the overhead of

additional work beyond error free case.

– Re-computation overheads.

22

Experimental Goals

• Find the number of detections to perform inside a single checkpoint
period for each type of soft error detector which minimizes the impact on
total time-to-solution.
– Tfail (NDH, TDH) –vs– Tfail (NDL, TDL)

– Tradeoff: overhead of detector (error-free and re-computation) –vs– extra work
beyond error free case (overhead of extra checkpoints, etc.).

• Estimate NSE, Nextra using statistical fault injection with different values of ND

• Explore the performance resilience tradeoff space.

• Evaluate the accuracy of proposed models from estimated parameters.

23

Experimental Environment

• FT-GMRES [5] implemented using Trilinos 12.6.4, https://trilinos.org/.
– Tpetra package for parallel linear algebra using MPI.

• Parallel Environment: ULFM release 1.1, based on Open MPI 1.7.1
http://fault-tolerance.org/. User Level Failure Mitigation [6] provides:
– Process failure detection,
– Parallel environment reconfiguration capabilities (remove failed processes)

• Test problem: Discretization of 3D mesh. Sparse Matrix with about 7 million
rows and 186 Million non-zeros.

• 40-node Linux cluster with AMD Opteron processors.
– Cores/node: 24 (Total: 960 cores), Memory/node: 64 GB.

https://trilinos.org/
http://fault-tolerance.org/

24

Experimental Setup

• Number of error and failure-free iterations, NFF = 320.

• Checkpoint frequency constant in our experiments; checkpoint
performed after every 20 iterations.

• Up to four independent process failures injected at deterministic times
such that variation in re-computation (due to process failures) times is low.

• Soft errors injected randomly into computed data after almost every 10
iterations of useful work.

• Allocated max iteration count is sufficient for the solver to converge.

25

Results: Time-to-Solution

230

250

270

290

310

330

350

370

390

0 5 10 15 20 25

Ti
m

e
(S

ec
s)

Number of Detections / Checkpoint Interval (ND)

Projections

Monotonocity

Hybrid

Calc Monotonocity

Calc Projections

• Run-away effect of using the high accuracy and high overhead soft error detector, ND > 5.

• Hybrid detector: use high accuracy detector sparingly and low accuracy detector with high
frequency (1+20, 2+20, …, 5+20).

26

Results: Soft Error Detection Overheads

• Disparity among the overheads of the low accuracy and high accuracy detectors, TDH ≅ 90 TDL

• Using the high overhead detector with high frequency offsets any other benefits.

0

20

40

60

80

100

120

140

0 5 10 15 20 25

Ti
m

e
(S

ec
s)

Number of Detections / Checkpoint Interval (ND)

Monotonocity

Projections

Hybrid

Linear (Monotonocity)

Linear (Projections)

27

330

340

350

360

370

380

390

400

410

420

430

0 5 10 15 20 25

To
ta

l N
um

be
r

of
 It

er
at

io
ns

Number of Detections / Checkpoint Interval (ND)

Monotonocity Projections
Hybrid Linear (Monotonocity)
Linear (Projections) Linear (Hybrid)

Results: Total Iteration Count

• Total iteration count includes: error- and failure-free iterations (320), re-computed iterations
(detected soft errors and process failures) and additional iterations beyond error-free case.

• Estimated Nextra range b/w 18 and 46 for high accuracy detector and b/w 51 and 60 for low
accuracy detector depending on number of detections performed, ND.

28

Results: Detectability

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 5 10 15 20 25

%
 E

xp
er

im
en

ts
 S

of
t E

rr
or

s D
et

ec
te

d

Number of Detections / Checkpoint Interval (ND)

Monotonocity Projections
Hybrid Linear (Monotonocity)
Linear (Projections) Linear (Hybrid)

• Undetected soft errors can cause any of the following: no effect on the outcome, additional work
to converge to a solution, increased chances of inducing a process failure, non-convergence.

• Estimated NSE by averaging the number of soft errors detected across all experiments for each
detector. On average, high accuracy detector caught b/w 1 and 2, whereas, low accuracy
detector caught b/w 0 and 1 errors in each run depending on ND.

Pe
rc

en
ta

ge
 o

f E
xp

er
im

en
ts

 in
 w

hi
ch

 a
t

le
as

t a
 si

ng
le

 S
of

t E
rr

or
 is

 d
et

ec
te

d

29

Conclusions

• Demonstrated the design of performance efficient and multiresilient linear
solver application.

• Checkpoint-based recovery in conjunction with non-ideal soft error
detection is an effective multiresilience approach.

• Explored performance resilience tradeoff space using distinct soft error
detectors.

• Hybrid detector is observed to have comparable detectability as using
the high accuracy detector at every iteration with significantly less impact

• Results may vary for other applications depending on the tradeoff b/w
penalty of extra work and overhead of using high accuracy detector.

30

References

1. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra methods. In: 22nd
Annual International Conference on Supercomputing (2008).

2. Jaulmes, L., Casas, M., Moret, M., Ayguad, E., Labarta, J., Valero, M.: Exploiting asynchrony from
exact forward recovery for DUE in iterative solvers. In: SC15: International Conference for High
Performance Computing, Networking, Storage and Analysis (2015)

3. Ashraf, R.A., Hukerikar, S., Engelmann, C.: Pattern-based modeling of multiresilience solutions for
high-performance computing. In: Proceedings of the 2018 ACM/SPEC International Conference on
Performance Engineering (2018).

4. Benoit, A., Cavelan, A., Robert, Y., Sun, H.: Optimal resilience patterns to cope with fail-stop and
silent errors. Report RR-8786, LIP - ENS Lyon (Oct 2015).

5. Elliott, J., Hoemmen, M., Mueller, F.: Evaluating the impact of SDC on the GMRES iterative solver. In:
IEEE 28th International Parallel and Distributed Processing Symposium. pp. 1193-1202 (May 2014)

6. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure recovery of MPI
communication capability. The International Journal of High Performance Computing Applications
27(3), pp. 244-254 (2013)

31

Contact & Acknowledgements

• Project website: https://ornlwiki.atlassian.net/wiki/spaces/RDP

• PI: Christian Engelmann, engelmannc@ornl.gov

• Work supported by the Early Career Program of U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing
Research, with program manager Lucy Nowell, under contract number
DE-AC05-00OR22725.

https://ornlwiki.atlassian.net/wiki/spaces/RDP
mailto:engelmannc@ornl.gov

