
ORNL is managed by UT-Battelle
for the US Department of Energy
ORNL is managed by UT-Battelle
for the US Department of Energy

Shrink or Substitute:
Handling Process
Failures in HPC
Systems using In-
situ Recovery

PDP 2018, Cambridge, UK

March 21, 2018.

Rizwan A. Ashraf, Saurabh Hukerikar, and
Christian Engelmann
Computer Science Research Group,
Computer Science and Mathematics Division,
Oak Ridge National Laboratory (ORNL), USA.

PDP’18 Shrink or Substitute: In-Situ Recovery

Why Resilience is Important in HPC?

• Resilience is the ability to gracefully mitigate the affects of errors and
failures, prevalent in large-scale HPC systems.

• Analyses of system-logs from multiple operational large-scale HPC
systems show that errors and failures are frequent.
– Number of complex & diverse, software and hardware components,
– Technology scaling trends in hardware components,
– Complex compute, memory, interconnect and storage architectures,
– Cost (design, area, power, engineering) of achieving error- and failure-free large

scale systems is too high.

• Low time between failures affects long running simulations/applications
by hindering progress, and causing fatal crashes.
– Applications are expected to experience multiple failures during execution.
– Significant wastage of resources (compute-hours, scientific time, power, etc.).

• The situation is only expected to get worse, as we move towards the
goal of achieving more computational power, i.e., exascale systems.

2

PDP’18 Shrink or Substitute: In-Situ Recovery

Process Failures in Parallel Applications

• Multiple causes of fail-stop/process failures, e.g.,
– permanent faults in hardware (wear-out, device aging, operating

conditions),
– transient faults in hardware (radiation and manufacturing induced faults

in memory, processor, interconnect),
– segmentation or other software faults (I/O error, out-of-memory, failed

allocation).

• In parallel distributed applications, failure of even one process
causes an abort signal to be sent to all surviving processes.

• Explore software based mechanisms to mitigate and recover from
process failures.
– Hardware based protections are fixed and costly, and are not required by

all applications.

• Need systematic integration and coordination of techniques from
multiple layers of the HPC system to detect, contain and recover
from process failures.

3

PDP’18 Shrink or Substitute: In-Situ Recovery

Checkpoint/Restart and In-situ Recovery

• In HPC, Checkpoint/Restart (C/R) is predominantly used to recover from
process failures.
– Checkpoints are performed at regular intervals,
– When failure occurs, the job is re-scheduled from previous stable checkpoint.

• Checkpoints performed at system-level are intractable, especially as we
move towards exascale systems.

• Conventional C/R re-schedules the job after failure, resulting in
allocation of new resources, causing lost scientific productivity.
– A job can be allocated on the faulty resource, again!

• How can User Level Failure Mitigation (ULFM) proposal in Message
Passing Interface (MPI) standard help?
– Detects process failures and excludes faulty processes.
– Repairs communication objects to allow user to continue execution and recover

state.
– Eliminates the need to re-schedule job.
– Provides the ability to do in-situ recovery.

4

PDP’18 Shrink or Substitute: In-Situ Recovery

Shrink or Substitute (1/2)

• ULFM does not provide a concrete mitigation strategy, nor
recovers application state.
– User decides since every application is different.
– Two distinct options to continue forward progress, after a process failure.

5

X

Shrink

Reconfigure

Working Group

Failed process
removed from
working group

PDP’18 Shrink or Substitute: In-Situ Recovery

Shrink or Substitute (2/2)

• ULFM does not provide a concrete mitigation strategy, nor
recovers application state.
– User decides since every application is different.
– Two distinct options to continue forward progress, after a process failure.

6

X

Substitute

Reconfigure

Spare Pool

Working Group

Failed process
removed from
working group

PDP’18 Shrink or Substitute: In-Situ Recovery

Synopsis: Process Failure Detection

• ULFM extends MPI routines to report any anomalies in a group of
communicating processes.
– Utilizes consensus and background liveliness checks to detect failures.

• Notification and propagation of failures to all other surviving
processes, e.g., by revoking communicators once failure occurs.

• Fix communication objects by removing dead processes, e.g.,
using MPI_COMM_SHRINK().

7

MPI_Bcast

MPI_Sucess MPI_ERR_PROC
_FAILED

Collective in code,
chance to detect

failure w/o overhead

Place collectives
to detect failures

proactively
Reactive vs. Proactive

Failure Detection

PDP’18 Shrink or Substitute: In-Situ Recovery

Synopsis: Checkpointing (1/2)

• Checkpoints: facilitate recovery of lost state.
– Replicate static and dynamic state distributed across parallel processes.
– What, when and where?

8

When: Checkpoint Interval

Where: Stable Storage (parallel-file
system vs. in-memory)

What: All vs. Partial State
(user-level vs kernel-level)

Coordinated vs Un-coordinated
(message logging)

PDP’18 Shrink or Substitute: In-Situ Recovery

Synopsis: Checkpointing (2/2)

• Checkpoints: facilitate recovery of lost state.
– Replicate static and dynamic state distributed across parallel processes.
– What, when and where?

9

When: indicates a tradeoff (less often, more re-compute
vs. more often, too much overhead)

What: Partial State
(user-level)

Where: In-memory buddy process

Leverage fast point-to-
point communication

Goal: reduce waste = re-compute + time to perform checkpoint

PDP’18 Shrink or Substitute: In-Situ Recovery

Substitute

10

X

Substitute

Reconfigure

Spare Pool

Working Group

Failed process
removed from
working group

PDP’18 Shrink or Substitute: In-Situ Recovery 11

• Use pool of spare processes to replenish lost processes.
– Warm/Cold Spares: Design-time vs. runtime spawned spare processes. Employ as

need arises. Cold is intractable since some environments prohibit runtime allocation.
– Hot Spares: Redundant computation (every process has an active spare), resource

heavy. Sudden degradation in reliability once failures start to occur.

• Advantages: No workload re-distribution. Fulfills problem decomposition
restrictions, e.g., LULESH needs cubic number of processes.

• Disadvantages: Non-utilization of resources; Determination of spares;
Programming effort; Disruption of communication pattern.

Substitute: Supplemental Computation
with Spares (1/2)

PDP’18 Shrink or Substitute: In-Situ Recovery 12

• Use pool of spare processes to replenish lost processes.
– Warm/Cold Spares: Design-time vs. runtime spawned spare processes. Employ as

need arises. Cold is intractable since some environments prohibit runtime allocation.
– Hot Spares: Redundant computation (every process has an active spare), resource

heavy. Sudden degradation in reliability once failures start to occur.

• Advantages: No workload re-distribution. Fulfills problem decomposition
restrictions, e.g., LULESH needs cubic number of processes.

• Disadvantages: Non-utilization of resources; Determination of spares;
Programming effort; Disruption of communication pattern.

Substitute: Supplemental Computation
with Spares (2/2)

PDP’18 Shrink or Substitute: In-Situ Recovery

Shrink

13

X

Shrink

Reconfigure

Working Group

Failed process
removed from
working group

PDP’18 Shrink or Substitute: In-Situ Recovery 14

• Continue execution with surviving processes.
– Need to dynamically adjust workload after a failure.
– All processes do useful work throughout.

• Advantages: Utilizes all resources; Maintain communication pattern.

• Disadvantages: Mandatory workload re-distribution. Application
dependent effort; Recovery involves inter-process communication;
Workload increases per process with increase in failures mitigated.

Shrink: Graceful Degradation with
Survivors

PDP’18 Shrink or Substitute: In-Situ Recovery

Synopsis: Shrink or Substitute

15

Substitute Shrink

Allocate spares at design-time (depending on
MTTF, expected execution time, etc.)

N/A

Spares do not do useful work until employed
(resources wasted if failure-free execution)

All processes do useful work from the beginning

Maintains original workload on all survivors Balanced workload re-distribution required to fully
utilize resources and optimal performance

Employing spares disrupts regular
communication pattern of application

Communication pattern disruption is less severe
or may not occur (depends on network topology)

Checkpoint size as per design, does not
increase with failures

Checkpoint size increases with number of failures
(may run out of resources, memory checkpoints)

Only couple of communication channels required
during state recovery, survivors use local state

All processes may need to talk to each other
during state recovery

Size of spare pool determines # of process
failures which can be mitigated

Arbitrary # of failures can be mitigated until
computation is too expensive (or out-resourced)

PDP’18 Shrink or Substitute: In-Situ Recovery

FT-GMRES Solver

Use Case: Linear Solver

• GMRES minimal residual method for solving
non-symmetric linear systems.
– Solve: Ax = b
– Iterative algorithm

16

• Static State: Matrix A,
vector b.

• Dynamic State:
solution vector x
(checkpoint
periodically)

PDP’18 Shrink or Substitute: In-Situ Recovery

Implementation and Experimental Setup

17

• FT-GMRES implemented using Trilinos 12.6.4 framework,
https://trilinos.org/.
– Tpetra package for parallel linear algebra using MPI.

• Parallel Environment: ULFM release 1.1, based on Open MPI 1.7.1
http://fault-tolerance.org/.

• Our contributions to FT-GMRES include:
– Utilization of MPI-ULFM instead of standard MPI.
– Support for in-memory checkpoints of Tpetra objects (matrices, vectors).
– Dynamic workload re-distribution of Tpetra objects such as matrices and

vectors in case of shrink strategy.
– Use of warm spares for recovery in case of substitute strategy.

• Test problem: Discretization of 3D mesh. Sparse Matrix with about 7
million rows and 186 Million non-zeros.

• 40-node Linux cluster with AMD Opteron processors.
– Cores/node: 24 (Total: 960 cores); Memory/node: 64 GB; Point-to-point

bandwidth: 215 MB/s.

PDP’18 Shrink or Substitute: In-Situ Recovery

Goals of Experiments

• Goal # 1: Evaluate overall performance impact of employing
substitute vs. shrink approach for in-situ recovery.

• Goal # 2: Compare checkpoint and state recovery
overheads of substitute and shrink approaches.

• Goal # 3: Evaluate the effect on performance, checkpoint
and state recovery overhead of increasing number of
process failures.

18

PDP’18 Shrink or Substitute: In-Situ Recovery

• Up to four independent process failures are simulated using SIGKILL.
• Pre-selected processes for termination and fixed injection time window gives

results with low standard deviation, e.g., coefficient of variation b/w 0.01 & 0.15.
• Mapping of spare processes is fixed and failed process is always on a different

physical node.

Results – Straight-up Comparison

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512

Ti
m
e-
to
-S
ol
ut
io
n	
(N
o	
Pr
ot
ec
tio

n)
	/
	T
im

e-
to
-S
ol
ut
io
n	
(w

ith
	P
ro
te
ct
io
n)

Number	of	Processes

No	Protection 0	Fail 1	Fail	- Shrink 1	Fail	- Substitute 2	Fail	- Shrink
2	Fail	- Substitute 3	Fail	- Shrink 3	Fail	- Substitute 4	Fail	- Shrink 4	Fail	- Substitute

Higher is better
(less overheads) 3. Graceful

Degradation for
shrink approach,
when abundant
workers present

1. Overheads of
substitute approach
are higher at small-

scale
2. Use of spares pays
off at certain scales,
workload dependent

PDP’18 Shrink or Substitute: In-Situ Recovery

• Shrink strategy: A multiplicative linear increase in checkpoint overheads with
increase in number of failures.

• Checkpoint overheads for substitute strategy do not increase multiplicatively with
number of failures.

• Higher overheads are observed when using substitute strategy due to
communication with statically placed spares, especially at small scales.

Results – Checkpoint overhead (1/2)

20

More than 4X
increase in overhead
for substitute strategy

PDP’18 Shrink or Substitute: In-Situ Recovery

Results – Checkpoint overhead (2/2)

21

• Shrink strategy: A multiplicative linear increase in checkpoint overheads with
increase in number of failures.

• Checkpoint overheads for substitute strategy do not increase multiplicatively with
number of failures.

• Higher overheads are observed when using substitute strategy due to
communication with statically placed spares, especially at small scales.

PDP’18 Shrink or Substitute: In-Situ Recovery

• A linear increase in recovery overheads with increase in number of failures is
observed for both shrink and substitute approaches.

• Recovery overheads are comparable when using substitute and shrink strategies
despite the complexity associated with workload re-distribution (shrink strategy).

• Reconfiguration overheads are observed to be negligible, e.g., they range b/w
0.01% and 0.05%.

Results – Recovery overhead (1/2)

22

PDP’18 Shrink or Substitute: In-Situ Recovery

• A linear increase in recovery overheads with increase in number of failures is
observed for both shrink and substitute approaches.

• Recovery overheads are comparable when using substitute and shrink strategies
despite the complexity associated with workload re-distribution (shrink strategy).

• Reconfiguration overheads are observed to be negligible, e.g., they range b/w
0.01% and 0.05%.

Results – Recovery overhead (2/2)

23

PDP’18 Shrink or Substitute: In-Situ Recovery

Conclusions

24

• Two alternative in-situ process failure recovery strategies are
evaluated for a linear solver application.

• The shrink strategy demonstrated graceful performance
degradation given abundant survivors exist to share the workload
of lost processes.

• The performance advantage of having spares to substitute lost
processes is diminished due to static mapping of warm spares,
especially at small-scales. We expect this effect to hinder
performance of other parallel operations as well.

• Performance estimations for shrink strategy to mitigate multiple
process failures can be obtained from single failure experiments.
Not possible for substitute strategy due to un-expected behavior
of spare mapping (depends on failure location and network topo).

• No winner, depends on what you are doing!

