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Why Resilience is Important in HPC?

• Resilience is the ability to gracefully mitigate the affects of errors and 
failures, prevalent in large-scale HPC systems. 

• Analyses of system-logs from multiple operational large-scale HPC 
systems show that errors and failures are frequent.
– Number of complex & diverse, software and hardware components,
– Technology scaling trends in hardware components,
– Complex compute, memory, interconnect and storage architectures,
– Cost (design, area, power, engineering) of achieving error- and failure-free large 

scale systems is too high.

• Low time between failures affects long running simulations/applications 
by hindering progress, and causing fatal crashes. 
– Applications are expected to experience multiple failures during execution.
– Significant wastage of resources (compute-hours, scientific time, power, etc.).

• The situation is only expected to get worse, as we move towards the 
goal of achieving more computational power, i.e., exascale systems.
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Process Failures in Parallel Applications

• Multiple causes of fail-stop/process failures, e.g., 
– permanent faults in hardware (wear-out, device aging, operating 

conditions),
– transient faults in hardware (radiation and manufacturing induced faults 

in memory, processor, interconnect),
– segmentation or other software faults (I/O error, out-of-memory, failed 

allocation). 

• In parallel distributed applications, failure of even one process 
causes an abort signal to be sent to all surviving processes.

• Explore software based mechanisms to mitigate and recover from 
process failures.
– Hardware based protections are fixed and costly, and are not required by 

all applications.

• Need systematic integration and coordination of techniques from 
multiple layers of the HPC system to detect, contain and recover 
from process failures.
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Checkpoint/Restart and In-situ Recovery

• In HPC, Checkpoint/Restart (C/R) is predominantly used to recover from 
process failures. 
– Checkpoints are performed at regular intervals,
– When failure occurs, the job is re-scheduled from previous stable checkpoint.

• Checkpoints performed at system-level are intractable, especially as we 
move towards exascale systems. 

• Conventional C/R re-schedules the job after failure, resulting in 
allocation of new resources, causing lost scientific productivity. 
– A job can be allocated on the faulty resource, again!

• How can User Level Failure Mitigation (ULFM) proposal in Message 
Passing Interface (MPI) standard help?
– Detects process failures and excludes faulty processes. 
– Repairs communication objects to allow user to continue execution and recover 

state.
– Eliminates the need to re-schedule job.
– Provides the ability to do in-situ recovery.
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Shrink or Substitute (1/2)

• ULFM does not provide a concrete mitigation strategy, nor 
recovers application state.
– User decides since every application is different. 
– Two distinct options to continue forward progress, after a process failure.
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Shrink or Substitute (2/2)

• ULFM does not provide a concrete mitigation strategy, nor 
recovers application state.
– User decides since every application is different. 
– Two distinct options to continue forward progress, after a process failure.
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Synopsis: Process Failure Detection

• ULFM extends MPI routines to report any anomalies in a group of 
communicating processes.
– Utilizes consensus and background liveliness checks to detect failures.

• Notification and propagation of failures to all other surviving 
processes, e.g., by revoking communicators once failure occurs.

• Fix communication objects by removing dead processes, e.g., 
using MPI_COMM_SHRINK().
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Synopsis: Checkpointing (1/2)

• Checkpoints: facilitate recovery of lost state.
– Replicate static and dynamic state distributed across parallel processes.
– What, when and where?
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Synopsis: Checkpointing (2/2)

• Checkpoints: facilitate recovery of lost state.
– Replicate static and dynamic state distributed across parallel processes.
– What, when and where?
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When: indicates a tradeoff (less often, more re-compute 
vs. more often, too much overhead)

What: Partial State    
(user-level)

Where: In-memory buddy process

Leverage fast point-to-
point communication

Goal: reduce waste = re-compute + time to perform checkpoint
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Substitute

10

X

Substitute

Reconfigure

Spare Pool

Working Group

Failed process 
removed from 
working group



PDP’18 Shrink or Substitute: In-Situ Recovery 11

• Use pool of spare processes to replenish lost processes. 
– Warm/Cold Spares: Design-time vs. runtime spawned spare processes. Employ as 

need arises. Cold is intractable since some environments prohibit runtime allocation.
– Hot Spares: Redundant computation (every process has an active spare), resource 

heavy. Sudden degradation in reliability once failures start to occur.

• Advantages: No workload re-distribution. Fulfills problem decomposition 
restrictions, e.g., LULESH needs cubic number of processes. 

• Disadvantages: Non-utilization of resources; Determination of spares; 
Programming effort; Disruption of communication pattern. 

Substitute: Supplemental Computation 
with Spares (1/2)
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Shrink
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• Continue execution with surviving processes. 
– Need to dynamically adjust workload after a failure. 
– All processes do useful work throughout.

• Advantages: Utilizes all resources; Maintain communication pattern.

• Disadvantages: Mandatory workload re-distribution. Application 
dependent effort; Recovery involves inter-process communication;  
Workload increases per process with increase in failures mitigated.

Shrink: Graceful Degradation with 
Survivors
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Synopsis: Shrink or Substitute
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Substitute Shrink

Allocate spares at design-time (depending on 
MTTF, expected execution time, etc.)

N/A

Spares do not do useful work until employed 
(resources wasted if failure-free execution)

All processes do useful work from the beginning

Maintains original workload on all survivors Balanced workload re-distribution required to fully 
utilize resources and optimal performance

Employing spares disrupts regular 
communication pattern of application

Communication pattern disruption is less severe 
or may not occur (depends on network topology)

Checkpoint size as per design, does not 
increase with failures

Checkpoint size increases with number of failures 
(may run out of resources, memory checkpoints)

Only couple of communication channels required 
during state recovery, survivors use local state

All processes may need to talk to each other 
during state recovery

Size of spare pool determines # of process 
failures which can be mitigated

Arbitrary # of failures can be mitigated until 
computation is too expensive (or out-resourced)
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FT-GMRES Solver

Use Case: Linear Solver

• GMRES minimal residual method for solving 
non-symmetric linear systems.
– Solve: Ax = b
– Iterative algorithm
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• Static State: Matrix A, 
vector b.

• Dynamic State: 
solution vector x 
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Implementation and Experimental Setup
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• FT-GMRES implemented using Trilinos 12.6.4 framework, 
https://trilinos.org/.
– Tpetra package for parallel linear algebra using MPI.

• Parallel Environment: ULFM release 1.1, based on Open MPI 1.7.1   
http://fault-tolerance.org/. 

• Our contributions to FT-GMRES include:
– Utilization of MPI-ULFM instead of standard MPI.
– Support for in-memory checkpoints of Tpetra objects (matrices, vectors).
– Dynamic workload re-distribution of Tpetra objects such as matrices and 

vectors in case of shrink strategy.
– Use of warm spares for recovery in case of substitute strategy.

• Test problem: Discretization of 3D mesh. Sparse Matrix with about 7 
million rows and 186 Million non-zeros.

• 40-node Linux cluster with AMD Opteron processors. 
– Cores/node: 24 (Total: 960 cores); Memory/node: 64 GB; Point-to-point 

bandwidth: 215 MB/s.
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Goals of Experiments

• Goal # 1: Evaluate overall performance impact of employing 
substitute vs. shrink approach for in-situ recovery.

• Goal # 2: Compare checkpoint and state recovery 
overheads of substitute and shrink approaches.

• Goal # 3: Evaluate the effect on performance, checkpoint 
and state recovery overhead of increasing number of 
process failures. 
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• Up to four independent process failures are simulated using SIGKILL.
• Pre-selected processes for termination and fixed injection time window gives 

results with low standard deviation, e.g., coefficient of variation b/w 0.01 & 0.15.  
• Mapping of spare processes is fixed and failed process is always on a different 

physical node. 

Results – Straight-up Comparison
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• Shrink strategy: A multiplicative linear increase in checkpoint overheads with 
increase in number of failures.  

• Checkpoint overheads for substitute strategy do not increase multiplicatively with 
number of failures.

• Higher overheads are observed when using substitute strategy due to 
communication with statically placed spares, especially at small scales.

Results – Checkpoint overhead (1/2)
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Results – Checkpoint overhead (2/2)
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• Shrink strategy: A multiplicative linear increase in checkpoint overheads with 
increase in number of failures.  

• Checkpoint overheads for substitute strategy do not increase multiplicatively with 
number of failures.

• Higher overheads are observed when using substitute strategy due to 
communication with statically placed spares, especially at small scales.
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• A linear increase in recovery overheads with increase in number of failures is 
observed for both shrink and substitute approaches.

• Recovery overheads are comparable when using substitute and shrink strategies 
despite the complexity associated with workload re-distribution (shrink strategy).

• Reconfiguration overheads are observed to be negligible, e.g., they range b/w 
0.01% and 0.05%.

Results – Recovery overhead (1/2)
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Conclusions
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• Two alternative in-situ process failure recovery strategies are 
evaluated for a linear solver application. 

• The shrink strategy demonstrated graceful performance 
degradation given abundant survivors exist to share the workload 
of lost processes. 

• The performance advantage of having spares to substitute lost 
processes is diminished due to static mapping of warm spares, 
especially at small-scales. We expect this effect to hinder 
performance of other parallel operations as well.

• Performance estimations for shrink strategy to mitigate multiple 
process failures can be obtained from single failure experiments. 
Not possible for substitute strategy due to un-expected behavior 
of spare mapping (depends on failure location and network topo).

• No winner, depends on what you are doing!


