xSim: The Extreme-Scale Simulator

Swen Bohm and Christian Engelmann
Oak Ridge National Laboratory, Oak Ridge, TN, USA
bohms@ornl.gov and engelmannc @ornl.gov

ABSTRACT

Investigating parallel application performance at scale is
an important part of high-performance computing (HPC)
application development. The Extreme-scale Simulator
(xSim) is a performance toolkit that permits running an ap-
plication in a controlled environment at extreme scale with-
out the need for a respective extreme-scale HPC system.
Using a lightweight parallel discrete event simulation, xSim
executes a parallel application with a virtual wall clock
time, such that performance data can be extracted based
on a processor and a network model. This paper presents
significant enhancements to the xSim toolkit that provide
a more complete Message Passing Interface (MPI) support
and improve its versatility. These enhancements include full
virtual MPI group, communicator and collective commu-
nication support, and global variables support. The new
capabilities are demonstrated by executing the entire NAS
FParallel Benchmark suite in a simulated HPC environment.

KEYWORDS: high-performance computing; parallel
discrete event simulation; hardware/software co-design;
performance evaluation; Message Passing Interface;

1. INTRODUCTION

Today’s leading petascale high-performance computing
(HPC) systems, such as the Cray XT5 at Oak Ridge
National Laboratory (ORNL), consist of up to several
hundreds-of-thousands of processor cores organized in sev-
eral tens-of-thousands of compute nodes. As processor core
frequency scaling is limited by power consumption costs
and corresponding thermal dissipation costs, the trend is
clearly toward increasing the number of cores in future-
generation HPC systems. An exascale system may have up
to 1,000,000 compute nodes with 1,000 lightweight proces-
sor cores per node by 2018 (see http://www.exascale.org).
Parallel applications need to employ more concurrency in
order to fully utilize such future-generation HPC systems.
Due to Amdahl’s law, sequential application parts become
more dominant as the level of concurrency grows from

today’s hundreds-of-thousands to tomorrow’s hundreds-of-
millions of processor cores, a 1,000 increase. Investigat-
ing performance properties at scale is becoming an impor-
tant part of parallel application development and deploy-
ment. The identification of sequential application parts,
synchronizing communication and other bottlenecks is es-
sential to enable performance at scale. Application tuning
options may include parallelizing sequential parts or replac-
ing one parallel algorithm with another, better scaling, one.

The Extreme-scale Simulator (xSim) [6] is a parallel appli-
cation performance investigation toolkit that permits run-
ning an application in a controlled environment at extreme
scale without the need for a respective extreme-scale HPC
system. It allows the observation of performance properties
in a simulated HPC system with up to millions of concur-
rent execution threads to identify application scaling issues
and to assist in HPC hardware/software co-design. Using a
lightweight parallel discrete event simulation (PDES), xSim
executes a parallel application with a virtual wall clock
time, such that performance data can be extracted based
on a processor model and a network model. The proces-
sor model scales the virtual time based on actual execution
time, while the network model enforces virtual time laten-
cies at the Message Passing Interface (MPI) layer. A MPI
application can be executed in a highly oversubscribed fash-
ion on a much smaller HPC system and its performance
properties can be investigated properly using virtual wall
clock timing, instrumentation and monitoring.

This paper presents recently implemented significant en-
hancements to the xSim toolkit prototype that provide a
more complete MPI support and improve its versatility. The
primary goal of this work is to enable the execution of the
entire NAS Parallel Benchmark (NPB) [1] suite in the sim-
ulated HPC environment to demonstrate its capabilities and
to push the implementation to a production-type stage. To
achieve this goal, the xSim toolkit prototype is enhanced
with full virtual MPI group, communicator and collective
communication support, and with global variables support.
The NPB suite is a set of C and Fortran MPI benchmarks
that utilize a number of more complex MPI calls, such as

http://www.exascale.org

MPI_Comm_split() and MPI_Allreduce(), as well as global
program variables, such as the Fortran COMMON block
and C variables declared outside of a function. As these fea-
tures of the NPB suite are also common in today’s parallel
applications, the xSim toolkit is extended with the respec-
tive mechanisms to support them.

2. RELATED WORK

The related work has been discussed in a prior publica-
tion [6]. This Section is giving a summary of the original
xSim toolkit and of the previously discussed related efforts.

xSim The general design of the xSim simulation
toolkit [6] relies on the MPI performance tool interface
(PMPI) and its capability to intercept MPI calls from the
application. xSim sits between the MPI library and a paral-
lel application as an interposition library utilizing the PMPI
mechanism to hide all PDES-related mechanisms, such as
virtual time management, virtual process messaging, main-
taining causality, and virtual processes management. The
interposition library essentially wraps an MPI application
into a virtual execution environment controlled by the xSim
PDES. xSim intercepts MPI calls coming from the appli-
cation via its own C/Fortran MPI application programming
interface (API), i.e., xSim provides an MPI layer to the ap-
plication while the native MPI layer is used by xSim via the
PMPI API. Each virtual MPI process is encapsulated in a
user-space thread that has its own virtual time, while mes-
sages between virtual MPI processes are sent and received
via the PDES. xSim supports a basic set of MPI functions
and is able to run C and Fortran MPI applications. An ap-
plication is run in the simulator using the following steps:

e Add “#include xsim-c.h” to the C source code, or add
“#include xsim-f.h” to the Fortran source code.

e Recompile the application and link it with the xsim li-
brary, e.g., “-1xsim”, and the respective xsim program-
ming language interface library, e.g, “-lIxsim-c” for C
or “-Ixsim-f” for Fortran

e Run the application with “mpirun -np <real pro-
cess cout> <application> -xsim-np <virtual process
count>"

The PDES-driven simulation accounts for the execution
time for each virtual MPI process using the actual execution
time on the real processor scaled by a processor model. It
also accounts for the wait time incurred by communication
for each virtual MPI process using a network model. The
current implementation [6] is able to scale a basic MPI hello
world program to up to 1 million virtual MPI processes on
a small 8-core compute cluster with 8GB total RAM, using
4GB RAM just for virtual process stack. It is also capa-
ble of investigating the performance of basic computational

MPI applications to up to 16,384 virtual processors on the
same system. Recent enhancements, provide advanced net-
work models for a variety of HPC network architectures,
such as star, ring, mesh, torus, twisted torus, tree, and hi-
erarchical combinations, with the appropriate trade-off be-
tween simulation scalability and accuracy. The original
xSim offers a very primitive MPI support for point-to-point
messages in MPI_COMM_WORLD only. It also does not
support collective operations beyond a basic MPI_Barrier()
and MPI_Broadcast(). Furthermore, the user-space pthread-
based virtual process management offers virtual stack and
heap without considering global variables. The NPB suite
does not run on the original xSim due to these limitations.

JCAS The Java Cellular Architecture Simulator
(JCAS) [5] is the predecessor of xSim and was developed
in 2001 to investigate scalable and fault-tolerant algorithms
for large-scale systems. The final prototype was able to
run up to 500,000 virtual processes on a cluster with 5
native processors (using 1 for visualization) solving basic
mathematical problems. While it was able to run algo-
rithms at scale, it lacked certain important features, such
as time-accurate simulation, high performance, support
for running the simulator atop MPI, and a fully functional
virtual MPI. The JCAS project sparked a new area of
research in fault-tolerant algorithms [2, 3, 9].

BigSim The BigSim [11] project was a competitor to
JCAS and initiated to study programming issues in large-
scale HPC systems. The BigSim Emulator is for application
testing and debugging at scale and build atop Charm++ and
Adaptive MPI [8]. It supports up to 100,000 virtual MPI
processes distributed over 2,000 native processors. Simi-
lar to JCAS, it does not offer time-accurate simulation. It
provides more functionality than JCAS, but scales worse
due to the Charm++/AMPI layer. The BigSim Simulator
is for identification of performance bottlenecks and uses a
trace-driven PDES that models architectural parameters of
a HPC system. For time-accurate simulation, it supports a
variable-resolution processor model and a detailed network
model. While it uses a PDES to maintain accuracy, it does
not support running native applications.

MII pm [10]is a PDES-based system currently under de-
velopment for predicting the performance of parallel pro-
grams. It uses different grafting methods for interfacing
applications with the virtual system created by the PDES,
such as at the source code, library (currently implemented)
and virtual machine level. It supports conservative and
optimistic execution based on the psik PDES engine (see
http://kalper.net/kp/software/musik). A prototype was re-
cently tested on 216,000 cores of the Jaguar Cray XTS5
at ORNL, providing over 27 million virtual MPI ranks,

http://kalper.net/kp/software/musik

each with its own (pthread) thread context, and all ranks
fully synchronized by virtual time. xSim is far more ad-
vanced as pm requires an extreme-scale system to simulate
an extreme-scale system. p7’s virtual-to-native thread ra-
tio is only 125/core on 216,000 cores, where xSim achieves
125,000/core on 8.

Structural Simulation Toolkit The Structural Simula-
tion Toolkit (SST) (see http://www.cs.sandia.gov/sst) offers
cycle-accurate simulation of novel compute-node architec-
tures, including processor, memory, and network. It is a
modular PDES framework atop MPI that scales to a few
number of nodes. Its value is in the ability to investigate the
performance of future architectures and to generate models
for larger-scale simulations. Similar to the BigSim Emula-
tor/Simulator, SST and xSim enable this synergy between
small-scale cycle-accurate and large-scale communication-
accurate simulations.

Further Related Work Other trace-driven PDES solu-
tions for investigating parallel application performance ex-
ist and include DIMEMAS [7], which processes traces from
MPIDTrace and generates trace files that are suitable for the
two performance tools, PARAVER and Vampir. Process-
ing MPI traces at extreme scale is another research chal-
lenge and not addressed by the presented work. There are a
variety of network architecture simulators, such as ns2/ns3
(see http://nsnam.isi.edu/nsnam and http://www.nsnam.org)
and NetSim, (see http://tetcos.com/software.html) that are
able to provide network performance metrics at various ab-
straction levels, such as network, sub-network, and packet
traces. These detailed simulators offer high-accuracy/low-
scalability results that are not compatible with the low-
accuracy/high-scalability approach of xSim.

3. TECHNICAL APPROACH

The presented work focuses on adding three separate im-
provements to the xSim toolkit: (1) user-defined virtual
MPI groups and communicators, (2) virtual MPI collective
communication, and (3) global variables support.

MPI Groups and Communicators The approach for the
user-defined virtual MPI groups and communicators is as
follows. As MPI groups and communicators are inher-
ently linked with each other (there is no MPI communica-
tor without a corresponding group), the improvements tar-
get a tracking mechanism for virtual MPI groups and com-
municators. For each application-defined MPI group, xSim
keeps a record of its members and allows respective trans-
lation from virtual MPI rank to the native MPI rank of the
simulator instance and to the local virtual process rank at
this simulator instance. This translation is needed internally

by xSim for messaging between virtual MPI processes. The
xSim interposition library intercepts all MPI_Group_...()
calls to provide this functionality. For virtual MPI commu-
nicators, a similar tracking mechanism is used to link each
application-defined MPI communicator with a correspond-
ing virtual MPI group. xSim intercepts all MPI_Comm__.. . ()
calls to provide this capability.

MPI Collective Communication MPI collective com-
munication operations, such as broadcast, scatter and
gather, are as essential to today’s parallel applications as
MPI groups and communicators. The approach for adding
full MPI collective communication support to xSim adopts
a recently developed implementation from another project,
MR-MPI [4]. The modular-redundant MPI (MR-MPI) is
a solution for transparently executing HPC applications in
a redundant fashion. It uses the same PMPI mechanism
as xSim for transparently intercepting MPI calls from an
application and hiding all redundancy-related mechanisms.
In MR-MPI, each native MPI rank may have additional
shadow native MPI ranks as redundant copies that are not
exposed to the application as independent MPI rank. Sim-
ilar to xSim, virtual and native MPI ranks do not directly
translate to each other and point-to-point as well as col-
lective communication operations need to be aware of this
fact. To avoid implementing each collective with the needed
support for redundancy in MR-MPI (or oversubscription in
xSim), the collective communication operations are simply
reimplemented atop the virtual point-to-point communica-
tion and virtual communicator operations.

Global Variables The missing support for global vari-
ables in xSim is a significant hurdle for its wide-spread use.
Many parallel application have global variables to avoid dy-
namic memory allocation and to facilitate communication
between different program modules without the need for
direct function calls. The approach for providing this ca-
pability to all applications executed in xSim aims at analyz-
ing the application binary itself to identify the size and lo-
cation of data segments that cause corresponding memory
allocations by the system’s program loader prior program
start. Similar to the existing virtual process stack switch,
the global memory segment is kept separate for each vir-
tual process and changed during a virtual process context
switch.

4. IMPLEMENTATION

The implementation of the three separate improvements to
the xSim toolkit, the user-defined virtual MPI groups and
communicators, the virtual MPI collective communication
capability and the global variables support, are significant
changes to the existing source code base as several core

http://www.cs.sandia.gov/sst
http://nsnam.isi.edu/nsnam
http://www.nsnam.org
http://tetcos.com/software.html

mechanisms are replaced or changed. In the following, the
implementation details of the improvements and the result-
ing changes to xSim are described in more detail.

MPI Groups and Communicators The implemented
improvements add virtual MPI groups to xSim by intercept-
ing all MPI_Group._...() calls from the application and by
managing virtual MPI groups using an xSim-internal virtual
MPI group registry. Each defined group in the registry con-
tains a list of its members identified by their virtual MPI
rank in the virtual MPI_COMM_WORLD communicator
and ordered by their group membership. As all MPI groups
are derived from the two predefined groups that are used by
MPI_COMM _WORLD and MPI_COMM _SELF, the respec-
tive MPI_COMM _WORLD and MPI_COMM _SELF groups
are created automatically by xSim on startup. All user-
defined groups are created by MPI_Group-.. . () operations,
using the MPI_COMM_WORLD and MPI_.COMM_SELF
groups as starting point, e.g., with MPI_Group_incl/excl()
or MPI_Group_union(). MPI_Group_rank() simply returns
the index of the group member in the list. To reduce
the amount of used resources, the MPI_COMM_WORLD
and MPI_.COMM_SELF groups have no list and re-
turn the corresponding virtual process MPI rank in
the simulated environment for MPI_Group_rank() calls
with the MPI_COMM_WORLD group, or 0 for the
MPI_COMM _SELF group. MPI_ Group_size() sim-
ply returns the size of the group’s list. For the
MPI_COMM _WORLD group, this is the total number of vir-
tual MPI ranks. It is 1 for the MPI_COMM_SELF group.

The xSim toolkit essentially oversubscribes a single native
MPI process with many virtual MPI processes that are man-
aged by the PDES. To reduce the amount of used resources
by the group registry, each entry also contains a reference
counter. Multiple virtual MPI processes that are located on
the same native MPI process may create virtual MPI groups
that contain the same members in the same order. If this is
the case, they use the same virtual MPI group handle and
increase the reference counter accordingly. If a virtual MPI
group is freed, its reference counter is decreased and its en-
try is deleted if the counter reaches 0.

For supporting user-defined virtual MPI communicators,
all MPI_Comm._... () calls are intercepted and the registry
concept for virtual MPI groups is simply reused. Each
defined communicator in the virtual MPI communicator
registry contains the respective group handle the commu-
nicator is associated with and a reference counter to re-
duce the amount of used resources. The MPI_Comm_rank()
call simply returns the result of the MPI_Group_rank()
call of the associated group. MPI_Comm_size() relies on
MPI_Group_size(). An implementation of the rather com-

plex MPI_Comm_split() call is available. As all communica-
tor operations, according to the MPI standard, are collective
operations, the newly implemented collective communica-
tion operations are utilized.

For supporting Fortran applications through C-based
MPI stub functions, virtual MPI group and commu-
nicator handles are mapped between C and Fortran
by intercepting the corresponding MPI.... f2¢() and
MPI_... c2f() calls. The mapping of handles be-
tween both programming languages also considers the
existing predefined handles for MPI_COMM_WORLD,
MPI_COMM _SELF, MPI_.COMM_NULL, MPI_.GROUP_
NULL and MPI_.GROUP_EMPTY.

As the prior xSim prototype provided no support for vir-
tual MPI groups and only offered a virtual MPI_COMM _
WORLD communicator, the improvements also caused cor-
responding changes in the implementation of virtual MPI
calls that rely on MPI group or communicator information,
such as point-to-point communication calls.

MPI Collective Communication The added support for
collective communication is based on the prior implemen-
tation of MPI collectives in the redundant MPI solution
MR-MPI [4]. All collective communication calls from
the application, such as MPI _Bcast(), MPI_Gather() and
MPI Scatter(), are intercepted and re-implemented atop
the virtual MPI point-to-point communication calls. A
recent addition to the MPI standard, MPI_Reduce_ lo-
cal(), is used for collectives that involve MPI operations
on communicated data, such as MPI_Reduce(). In gen-
eral, MPI_Reduce_local() executes an MPI operation that
is registered with the MPI library, such as the predefined
MPI_SUM operation, without the need for a collective op-
eration. xSim uses this feature to transparently implement
these collective communication calls atop its nonblocking
point-to-point communication primitives.

The newly implemented collective communication opera-
tions are based on linear algorithms at this point. More
advanced algorithms, such as trees, will be considered in
the future. As the native communication cost differs dra-
matically if the destination virtual MPI process resides
on the same native MPI process or not, linear algorithms
may be more efficient locally. These optimizations and
associated trade-offs will be part of future investigations.
As the original xSim prototype offered minimal support
for collective communication operations, i.e., a hard-coded
MPI _Bcast() and MPI _Barrier() only, the collective com-
munication module was re-implemented entirely.

Global Variables The implemented capability to allow
each virtual MPI process to have its own global variables is

based on two mechanisms. The first identifies the data seg-
ments of initialized and uninitialized global program mem-
ory in the application executable file. As this depends on the
executable file format, the initial implementation presented
in this paper focuses on the widely-used ELF format, i.e.,
the format used in Linux, and offers a capability to extend
this solution to other formats, e.g., the Mach-O format used
in Apple’s MacOS. Based on the identified global memory
in the application executable, the corresponding virtual start
and end addresses of the global memory of the executed
program are calculated and a global memory backup space
is allocated for each virtual MPI process.

The second mechanism deals with managing the global
memory for each virtual MPI process. In general, xSim
uses a single user-space memory region within each na-
tive MPI process as stack for the thread (pthread) that exe-
cutes the associated virtual MPI processes [6]. This stack is
evenly split across all virtual MPI process and every virtual
MPI processes context switch includes changing the thread
stack and base pointer, i.e., switching the stack frame. The
first context switch initializes the stack memory of all vir-
tual MPI processes with the stack content of the active vir-
tual MPI process. As the first context switch is initiated
by the PDES when calling the program’s main(), all vir-
tual MPI processes start at the same initial condition. For
the global memory, the first context switch similarly ini-
tializes the global memory backup space of all virtual MPI
processes with the global memory content of the active vir-
tual MPI process. All subsequent context switches save the
global memory content of the active virtual MPI process
in its global memory backup space and restores the global
memory content of the next active virtual MPI process from
its global memory backup space.

The global memory management is based on copying. This
technique was preferred as it is simple and less error prone
than, for example, binary rewriting the instructions that ac-
cess global memory at runtime. It comes with the draw-
back of additional time spent for copying during context
switches. As the xSim PDES itself uses global memory, it
was modified to be virtual MPI process context switch safe
by accessing all PDES state through pointers only, which
are the same for all virtual MPI processes. The examination
of the application executable file is executed prior to PDES
startup and part of the overall xSim configuration setup pro-
cedure. The global memory management required only a
slight modification of the virtual MPI process management.

S. EXPERIMENTAL RESULTS

The evaluation strategy for the modified xSim toolkit in-
cluded a series of performance tests of the NPB suite on the

native hardware and within the simulation.

Hardware Environment xSim and the NPB suite were
deployed on a 16-node cluster. Each node has two 2.4GHz
AMD Opteron processors with 4-cores each, i.e., 8 cores
per node, and 8GB RAM, i.e., 1GB per core. The system
has a total of 128 cores and 128 GB RAM. The network
interconnect is dual non-blocking Gigabit Ethernet with a
central switch, which was not bonded for the native NPB
suite evaluation to get a performance baseline at 1Gbps and
bonded for the xSim toolkit evaluation to get maximum per-
formance for running the NPB suite within xSim.

Software Environment The cluster is running Ubuntu
10.04.1 LTS Linux and Open MPI 1.5 with multi-thread
support. For evaluating the modified xSim toolkit, the en-
tire NPB suite version 3.3.1 is executed at various scales
(virtual MPI process counts). The NPB suite is a set
of 9 individual MPI benchmarks with different commu-
nication/computation ratios and communication patters.
Two (DT and IS) are implemented in C, while the oth-
ers are in Fortran. All 9 utilize collective communica-
tion, such as MPI_Barrier(), MPI_Bcast(), MPI_Reduce(),
MPI Allreduce(), MPI_Alltoall() and MPI_ Alltoallv(). BT
and SP also rely on MPI_Comm_ dup(), while FT, BT and
SP further invoke the most complex communicator opera-
tion MPI_Comm_split(). The virtual execution times mea-
sured by each benchmark and the native execution times
measured by xSim for selected benchmarks are collected
and averaged over 10 runs for each parameter configuration.

Experiments The first series of experiments evaluate the
scaling performance of the NPB suite on the experimenta-
tion platform without xSim. The purpose of this evaluation
is to get a performance baseline that can be compared to the
execution with xSim. Figure 1 illustrates the measured ex-
ecution time in seconds for each benchmark executed with
the problem size A. Since the BT and SP benchmarks re-
quire a squared MPI process count, while the other bench-
marks require the MPI process count to be a power of two,
the diagrams are split between both groups. With the exe-
cution time plotted on the y-axis in log scale, it is easy to
see that all benchmarks initially show strong scaling. This
is expected as the NPB benchmarks are strong scaling, i.e.,
the problem to solve is constant in size and split up between
more and more MPI processes when scaling up. The EP and
CG benchmarks plateau at 64 MPI processes and their per-
formance worsens with 128 as the problem size is too small
and communication starts to dominate. IS shows this behav-
ior already at 8, as it performs a communication-intensive
integer sort. The others start to degrade at 16. For FT and
LU, the performance improves from 64 to 128 MPI pro-
cesses, which may be caused by a better match of the prob-

~=|SA ~B=FTA “A=MGA =>=CGA =H—EPA ~O—LUA

_

100

Execution Time in Seconds

1 4 8 16 32 64 128

Native MPI Process Count

“H=BTA —O=SPA

1000

10

Execution Time in Seconds

1 4 9 16 25 36 49 64 81 100 121

Native MPI Process Count

Figure 1. NPB Class A With Open MPI

lem size to the number of MPI processes resulting in less
communication. BT and SP show an interesting behavior
from 25 MPI processes on. This may be caused by com-
munication contention within the compute nodes in combi-
nation with the problem size being too small. Overall, the
experiment shows some interesting features.

The second series of experiments evaluate the scaling per-
formance of the NPB suite with xSim. The xSim processor
model is set to a scaling factor of 1 and the xSim network
model is configured for a star topology with 50us latency
and 1Gbps bandwidth. While the network model closely
resembles the actual Gigabit Ethernet switch performance
for MPI [6], it does not consider that multiple cores are lo-
cated on the same processor with much smaller latency and
much higher bandwidth to each other.

Figure 2 illustrates the measured virtual execution time in
seconds for each benchmark executed with the problem size
A. Comparing Figures 1 and 2, it is easy to see that EP,
LU and CG scale roughly similar. IS does not show the
performance drop beginning with 16 virtual MPI processes,
while FT and MG show similar, but slightly different, per-
formance. BT and SP show the same performance until
16 virtual MPI processes, however, they plateau instead of
displaying a degraded performance. The differences may
be caused by the network model not matching the actual
hardware topology or not considering communication con-
tention. It is also possible that the native MPI does not use
linear collectives, while xSim’s virtual MPI does.

The third set of experiments evaluate CG and EP at prob-
lem size B with oversubscription in xSim. Figure 3
plots the simulation execution time and the total execution

~4=|SA ~B=FTA “A-MGA =>=(CGA =H—=EPA —O—LUA

100

Execution Time in Seconds

1 4 8 16 32 64 128

Virtual MPI Process Count

“H=BTA —®=SPA

1000

=
15}

Execution Time in Seconds
.
]
3
)

1 4 9 16 25 36 49 64 81 100 121

Virtual MPI Process Count

Figure 2. NPB Class A With XSim

~#—CG.B Simulation Execution Time ~ =#=CG.B Total Execution Time

100000

10000
1000
N

10 —e

Execution Time in Seconds

17 T T T T T
1 4 8 16 32 64 128 256 512 1024 2048 4096

Virtual MPI Process Count

~&—EP.B Simulation Execution Time ~ =#=EP.B Total Execution Time

100000

10000
1000

Execution Time in Seconds

Virtual MPI Process Count

Figure 3. NPB Class CG/EP Class B With XSim

time of the simulator for CG and EP, respectively. The
communication-intensive CG is scaled to 4,196 virtual MPI
processes and the embarrassingly parallel EP is scaled to
16,384. EP shows strong scaling in the simulation despite
the 128 x oversubscription, while GC levels off quickly due
to the increasing communication/computation ratio. The
simulator takes longer to finish the more virtual MPI pro-
cesses exist. This behavior was already discussed in a prior
publication [6] using MPI micro-benchmark applications.

The last set of experiments (Figure 4) evaluate CG and EP
at problem size B on the native system and in xSim to asses
the introduced overhead. While there is virtually no over-
head for EP, CG experiences an overhead of up to a magni-
tude with 128 native/virtual MPI processes.

—&—Native ~#=Simulator

10000

1000

Execution Time in Seconds

1 4 8 16 32 64 128

Native/Virtual MPI Process Count

—&—Native —#=Simulator

1000

100

Execution Time in Seconds

10 +
1 4 8 16 32 64 128

Native/Virtual MPI Process Count

Figure 4. NPB Class CG/EP Class B With XSim

6. CONCLUSIONS AND FUTURE WORK

This paper presented significant enhancements to the xSim
toolkit prototype, such as full virtual MPI group, commu-
nicator and collective communication support, and global
variables support, which improve its capabilities and versa-
tility. These new capabilities were demonstrated by execut-
ing the entire NAS Parallel Benchmark suite in a simulated
HPC environment and by comparing its performance in the
real world with the performance displayed in the simulated
HPC environment. The experimental evaluation show that
the implemented enhancements work and provide an addi-
tional benefit to the xSim toolkit. As already indicated in
the paper, future work will focus on more efficient collec-
tive operations. Further planned efforts also target fault in-
jection and emulation of the MPI 3 fault tolerance semantics
to enable hardware/software codesign for fault tolerant al-
gorithms [2, 3, 9]. Furthermore, next steps will also include
more detailed analyses of HPC applications using xSim.

ACKNOWLEDGEMENTS

This research is sponsored by the Office of Advanced Scien-
tific Computing Research; U.S. Department of Energy. The
work was performed at ORNL, which is managed by UT-
Battelle, LLC under Contract No. De-AC05-000R22725.
The U.S. Government retains and the publisher, by accept-
ing the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevo-
cable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for
United States Government purposes.

REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

Advanced Supercomputing Division, National Aeronautics
and Space Administration (NASA), Ames, CA, USA. “NAS
Parallel Benchmarks (NPB) documentation”, 2009.

G. Bosilca, Z. Chen, J. Dongarra, and J. Langou. “Recov-
ery patterns for iterative methods in a parallel unstable en-
vironment”. SIAM Journal on Scientific Computing (SISC),
30(1):102-116, 2007.

Z. Chen and J. J. Dongarra. “Algorithm-based checkpoint-
free fault tolerance for parallel matrix computations on
volatile resources”. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), p. 10. IEEE Com-
puter Society, 2006.

C. Engelmann and S. Bohm. “Redundant execution of HPC
applications with MR-MPI”. In IASTED International Con-
ference on Parallel and Distributed Computing and Net-
works (PDCN). ACTA Press, Calgary, AB, Canada, 2011.

C. Engelmann and A. Geist. “Super-scalable algorithms
for computing on 100,000 processors”. In Lecture Notes
in Computer Science: International Conference on Com-
putational Science (ICCS), Part I, Vol. 3514, pp. 313-320.
Springer Verlag, Berlin, Germany, 2005.

C. Engelmann and F. Lauer. “Facilitating co-design
for extreme-scale systems through lightweight simulation”.
In IEEE International Conference on Cluster Computing
(Cluster): Workshop on Application/Architecture Co-design
for Extreme-scale Computing (AACEC), pp. 1-8. IEEE
Computer Society, 2010.

S. Girona, J. Labarta, and R. M. Badia. “Validation of
dimemas communication model for MPI collective oper-
ations”. In Lecture Notes in Computer Science: Euro-
pean PVM/MPI Users‘ Group Meeting (EuroPVM/MPI),
Vol. 1908, pp. 39-46. Springer Verlag, Berlin, Germany,
2000.

L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and
G. Zheng. “Programming petascale applications with
Charm++ and AMPI”. In D. Bader, editor, Petascale Com-
puting: Algorithms and Applications, pp. 421-441. CRC
Press, 2007.

H. Ltaief, E. Gabriel, and M. Garbey. “Fault tolerant algo-
rithms for heat transfer problems”. Journal of Parallel and
Distributed Computing (JPDC), 68(5):663—-677, 2008.

K. S. Perumalla. “um: A highly scalable and transparent sys-
tem for simulating MPI programs”. In International ICST
Conference on Simulation Tools and Techniques (SIMU-
Tools). ACM Press, New York, NY, USA, 2010.

G. Zheng, G. Kakulapati, and L. V. Kale. “BigSim: A paral-
lel simulator for performance prediction of extremely large
parallel machines”. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE Computer
Society, 2004.

http://www.iasted.org/conferences/home-719.html
http://www.iasted.org/conferences/home-719.html
http://www.iasted.org/conferences/home-719.html
http://www.actapress.com

	. INTRODUCTION
	. RELATED WORK
	. TECHNICAL APPROACH
	. IMPLEMENTATION
	. EXPERIMENTAL RESULTS
	. CONCLUSIONS AND FUTURE WORK

