ORNL/TM-2023/3171

INTERSECT Architecture
Specification: Microservice
Architecture (Version 0.9)

Michael J. Brim
Christian Engelmann

September 30, 2023 Approved for public release.

Distribution is unlimited.

%OAK RIDGE

National Laboratory

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

ORNL/TM-2023/3171

Laboratory Directed Research and Development Program
Self-Driven Experiments for Science/Interconnected Science Ecosystem (INTERSECT) Initiative

INTERSECT Architecture Specification: Microservice Architecture (Version (.9)

Michael J. Brim, Christian Engelmann

September 30, 2023

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-Battelle LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

CONTENTS

LISTOF FIGURES e e e e s v
LISTOF TABLES e s e e e vii
ACRONYMS AND ABBREVIATIONS e ix
INTERSECT TERMINOLOGY e e e e e xi
ACKNOWLEDGEMENTS e e e e e e e e e xiii
ABSTRACT XV
REVISION RECORD e e e e e Xvii
1 INTRODUCTION e e e e e e s 1
2 INTERSECT MICROSERVICE ARCHITECTURE 2
2.1 INTRODUCTION TO MICROSERVICES ARCHITECTURE 2

2.2 MICROSERVICES ARCHITECTURE IN INTERSECT 3

23 COMMONALITIES OF INTERSECT MICROSERVICES 4

3 CLASSIFICATION OF INTERSECT MICROSERVICES 6
3.1 INTERSECT MICROSERVICE CAPABILITY DEFINITION FORMAT 6

3.2 INTERSECT INFRASTRUCTURE MICROSERVICE CAPABILITIES 8

3.2.1 General Utility 9

3.2.1.1 Capability: Availability Status 10

3212 Capability: Controller Status 11

3213 Capability: Parameter Configuration 13

32.1.4 Capability: UUID Generation 15

3.2.2 INTERSECT Data and Information Management 15

3221 Data Storage Serviceso 15

3222 Data Transfer Services 16

3223 Database and Information Management Services 16

3224 A Data Model for INTERSECT Microservices 16

3225 Capability: Entity-Relationship Catalog 18

3.2.2.6 Capability: Data Catalog 23

3227 Capability: Data Storage 27

3228 Capability: Data Stream 34

3229 Capability: Data Transfer Orchestration 39

3.2.2.10 Capability: Data Transfer Endpoint 41

323 INTERSECT System Management 44

3.2.3.1 Capability: System Information Catalog 46

3232 Capability: System Manager 51

3233 Capability: Systems Registrar 56

324 INTERSECT Resource Adapters 60

32.4.1 Compute Adapters 60

iii

3242 Capability: Compute Allocation 61

3243 Capability: Compute Queue 65

3244 Capability: Compute Queue Reservation 68

3245 Capability: Application Execution 71

3.2.4.6 Capability: Container Execution 73

3.24.7 Capability: Host Command Execution 76

3.3 EXPERIMENT-SPECIFIC MICROSERVICE CAPABILITIES 77

3.3.1 Experiment Control Microservices 77

3.3.1.1 Instrument Adapters 77

3.3.1.2 Capability: Instrument Controller 78

3.3.2 Experiment Data Microservices 81

333 Experiment Design Microservices 81

4 ORCHESTRATION AND DEPLOYMENT OF INTERSECT MICROSERVICES 82

4.1 MICROSERVICE ORCHESTRATION DESIGN PATTERNS 82

4.1.1 Asynchronous Messaging vs. RESTful Services 82

4.1.2 Conductor vs. Choreography 83

4.2 MICROSERVICE DEPLOYMENT DESIGN PATTERNS 84

4.2.1 Sidecar Pattern L 85

422 Ambassador Proxy Pattern. oo 86

4.2.3 Service Mesh Pattern 86

REFERENCES 89

APPENDICES e e 91
A INTERSECT INFRASTRUCTURE MICROSERVICE INTERACTION

SEQUENCES 91

A-1 Registration of INTERSECT Systems, Services, and Resources 91

A-2 Running Applications using On-Demand or Batch Computing Resources . 96

A-3 Data Management for Application Data Products 103

LIST OF FIGURES

2-1 Potential Classes of INTERSECT Microservices 3
2-2 Interaction Patterns for INTERSECT Microservices 4
3-1 Microservice Capability Definition Format 7
3-2 INTERSECT DataModel e 17
3-3 INTERSECT System, Subsystem, Service, and Resource Hierarchy 44
3-4 INTERSECT System Entity-Relation Model 45
4-1 Command Interaction Pattern for Client-Server and Asynchronous Messaging 83
4-2 Request-Reply Interaction Pattern for Client-Server and Asynchronous Messaging 84
4-3 Asynchronous Status or Event Interaction Pattern for Client-Server and Asynchronous

MeSSagINg e e e e e e e e e e e e e 85
4-4 Sidecar Pattern L. 86
4-5 Ambassador Proxy Pattern 87
4-6 Service Mesh Pattern 88
A-1 Example interaction sequence showing common components. 92
A-2 Sequence for registering an INTERSECT system. 93
A-3 Sequence for registering INTERSECT system resources. 94
A-4 Sequence for registering an INTERSECT system service. 95
A-5 Sequence for running an application within an on-demand allocation of computing resources. 97
A-6 Sequence for allocating and releasing computing resources. 98
A-7 Sequence for running and monitoring a program within allocated computing resources. . . . 99
A-8 Sequence for running an application within a batch computing job. 100
A-9 Sequence for running and monitoring a batch compute job. 101
A-10 Sequence for discovery of batch computing queues. 102
A-11 Sequence for an application to manage a data namespace. 104
A-12 Sequence for an application to manage a data collection. 105
A-13 Sequence for an application to manage its dataitems. 106
A-14 Sequence for an application to publish data products. 107
A-15 Sequence for negotiating data transfers between INTERSECT systems. 108
A-16 Sequence for transferring a data product between INTERSECT systems. 109

A-17 Sequence for transferring a data item between INTERSECT systems. 110

LIST OF TABLES

3-1 Generic Data Types and Structures and Associated Schema-specific Representations

ACRONYMS AND ABBREVIATIONS

ACID atomic, consistent, idempotent, and durable. 17
Al artificial intelligence. xv, 1, 60

API application programming interface. 3

DOE U. S. Department of Energy. 1

E-R Entity-Relationship. 17, 18

FTP File Transfer Protocol. 16

GPFS General Parallel File System. 15

HDD hard disk drive. 16

HPC high-performance computing. 44, 60

HPSS High Performance Storage System. 15

HTTP Hypertext Transfer Protocol. 3, 16, 82
HTTPS Hypertext Transfer Protocol Secure. 16
INTERSECT Self-driven Experiments for Science / Interconnected Science Ecosystem. xv
LSF IBM Spectrum Load Sharing Facility. 60

NFS Network File System. 15

NVM non-volatile memory. 16

ORNL Oak Ridge National Laboratory. xv, 1

PBS Portable Batch System. 60

REST Representational State Transfer. 3

SLURM Simple Linux Utility for Resource Management. 60
SME subject matter expert. 2

SoS system of systems. xv, 1, 3

SSL Secure Sockets Layer. 16

UUID universally unique identifier. 15

ix

Activity

Administrator

Administrative Domain

Application

Campaign

Capability

Experiment

Facility

Institution
I-System
Jurisdiction
Maintainer
Microservice

Microservice Architecture

Microservice Function

Microservice Contract

Operator

Organization

INTERSECT TERMINOLOGY

Work, not specific to a single organization, weapon system or individual
that transforms inputs (Resources) into outputs (Resources) or changes their
state. [DODAF]

Role of entity that maintains one or more systems; complete view of “their”
system (their jurisdiction/domain/realm/area); Limited to a given jurisdic-
tion (i.e., their administrative domain). [IAT]

Jurisdiction of control. [IAT]

A computer process, or a set of coordinating computer processes, that per-
form activities to accomplish one or more predetermined goals. [IAT]

A scientific endeavor that may consist of one or more Experiments that
may take place sequentially or in parallel to answer a broader overarching
scientific question. [IAT]

The ability to achieve a desired effect under specified [performance] stan-
dards and conditions through combinations of ways and means [activities
and resources] to perform a set of activities. [DODAF]

An indivisible component of a scientific endeavor that typically involves
measurements, computation, and/or data analysis. An experiment is per-
formed with a unique set of conditions and/or parameters. So long as the
parameters are feasible, every Experiment will have a clear start and a pred-
icable end. Insights of an experiment are often narrow and may not answer
broader scientific questions. [IAT]

A real property entity consisting of underlying land and one or more of
the following: a building, a structure (including linear structures), a utility
system, or pavement. [DODAF]

See Organization.

Abbreviation for an “INTERSECT System”. [IAT]

Realm of authority; Administrative domain. [IAT]

See Operator.

A service that is designed according to the Microservices Architec-
ture methodology and that implements a Microservice Contract for its
clients. [IAT]

A design methodology for structuring a distributed Application as a net-
worked collection of loosely-coupled services that are independently devel-
oped, maintained, and operated. [IAT]

A specific Microservice functionality with clearly defined input and output
data. The function may have associated service state pre-conditions and/or
post-conditions. [IAT]

The complete set of Microservice Functions provided by a Microservice to
its clients, typically scoped using domain-driven design and defined using
an APL. [IAT]

Role of entity that maintains one or more resources; different view of system
(i.e., in contrast to User). [IAT]

A specific real-world assemblage of people and other resources organized
for an on-going purpose. [DODAF]

X1

Owner
Performer
PersonType

Provider

Resource
Role

Service

Sub-system!

Sub-system?

System (or I-System)

User
Workflow

Sources
[DoDAF]

[IAT]

Role of entity fiscally responsible for a resource; Vested interest; Possibly
approver for a resource. [IAT]

Any entity - human, automated, or any aggregation of human and/or auto-
mated - that performs an activity and provides a capability. [DODAF]

A category of persons defined by the role or roles they share that are relevant
to an architecture. [DODAF]

Role of entity that manufactures a resource (intention is distinction between
provider/owner), e.g., SecDevOps is provider of SDK. Provider creates the
Service that the Operator maintains. Provider creates the Instrument that
the Operator maintains. [IAT]

Data, Information, Performers, Materiel, or Personnel Types that are pro-
duced or consumed. [DODAF]

Performs a specific function; implies access rights for resources; checks for
adherence to resource/jurisdiction/facility polices. [IAT]

A mechanism to enable access to a set of one or more capabilities, where
the access is provided using a prescribed interface and is exercised con-
sistent with constraints and policies as specified by the service descrip-
tion. The mechanism is a Performer. The “capabilities” accessed are Re-
sources — Information, Data, Materiel, Performers, and Geo-political Ex-
tents. [DODAF]

A self-contained system within a larger system that is capable of both in-
dependent operation as well as coordinated interaction with other systems.
[IAT]

(Alt. definition) A self-contained system within a larger integrated Sys-
tem. [IAT]

A logical entity with operational and managerial independence that provides
utility to the overall System of Systems. A System may utilize one or more
physical resources and may be geographically distributed. Systems commu-
nicate with each other with the INTERSECT protocol for control purposes.
A System provides this utility via one or more Services. A System may
have Sub-systems. [IAT]

Role for entity using the system (not responsible for administration). [IAT]
Activities that are performed according to a recipe (i.e. sequential, in a
DAG) or script. Static or Dynamic Workflow. [IAT]

DoD Architecture Framework v2.02 Glossary, https://dodcio.defense.gov/
Library/DoD- Architecture-Framework/dodaf20_glossary
INTERSECT Architecture Team

Xii

https://dodcio.defense.gov/Library/DoD-Architecture-Framework/dodaf20_glossary
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/dodaf20_glossary

ACKNOWLEDGEMENTS

Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

xiii

ABSTRACT

Oak Ridge National Laboratory (ORNL)’s Self-driven Experiments for Science / Interconnected Science
Ecosystem (INTERSECT) architecture project, titled “An Open Federated Architecture for the Laboratory
of the Future”, creates an open federated hardware/software architecture for the laboratory of the future
using a novel system of systems (SoS) and microservice architecture approach, connecting scientific
instruments, robot-controlled laboratories and edge/center computing/data resources to enable autonomous
experiments, “self-driving” laboratories, smart manufacturing, and artificial intelligence (Al)-driven
design, discovery and evaluation. The project describes science use cases as design patterns that identify
and abstract the involved hardware/software components and their interactions in terms of control, work
and data flow. It creates a SoS architecture of the federated hardware/software ecosystem that clarifies
terms, architectural elements, the interactions between them and compliance. It further designs a federated
microservice architecture, mapping science use case design patterns to the SoS architecture with loosely
coupled microservices, standardized interfaces and multi programming language support. The primary
deliverable of this project is an INTERSECT Open Architecture Specification, containing the science use
case design pattern catalog, the federated SoS architecture specification and the microservice architecture
specification. This document represents the microservice architecture specification of the INTERSECT
Open Architecture Specification.

XV

REVISION RECORD

Version

Date

Description

0.9

09/30/2023

Public release with the following changes:

e Moved ’Instrument Controller’ microservice capability to *’Experiment Control’

e Updated ’System Manager’ and ’Data Transfer Endpoint’ capabilities

o Added data storage, publishing, and transfer orchestration sequence examples
in Appendix

0.8

06/30/2023

Internal draft release with the following changes:

o Improved navigation to specific microservice capability definitions
e Introduced *Asynchronous Status’ interaction pattern

e Updated ’Compute Allocation’ capability

e Added orchestration sequence examples in Appendix

0.7

03/31/2023

Internal draft release with the following changes:

o New ’Instrument Adapter’ microservice capabilities: Instrument Controller
e Merge classification and catalog sections

e Rename capability classes for alignment with SoS logical view

e Update ’Potential Classes of INTERSECT Microservices’ figure

0.6

12/31/2022

Internal draft release with the following changes:

e New ’Data and Information Management’ microservice capabilities: Data
Stream, Data Transfer Orchestration, Data Transfer Endpoint

e Miscellaneous fixes for grammar and spelling

e Placeholder for Infrastructure Service Interaction Sequence Diagrams as Ap-
pendix

0.5

08/30/2022

Public release with the following changes:

o Added figure to describe INTERSECT data model

e Added figures to describe INTERSECT system hierarchy and associated entity-
relationship model

e New ’General Utility’ microservice capabilities: Availabilty Status, Controller
Status

e New Computing’ microservice capabilities: Container Execution, Host Com-
mand Execution

e New ’Data and Information Management’ microservice capabilities: Data Cat-
alog, Data Storage

e New ’System Management’ microservice capabilities: System Manager, Sys-
tem Information Catalog

XVvii

Version | Date Description

0.4 06/30/2022 | Internal draft release with the following changes:

o Added figure to describe microservice capability definition format

e Added table of generic types and structures used in capability definitions

o New ’General Utility’ microservice capabilities: Parameter Description, Ser-
vice Configuration, UUID Generation

e New 'Computing’ microservice capabilities: Application Execution

e New ’Data and Information Management’ microservice capabilities: Entity-
Relationship Catalog

e New ’System Management’ microservice capabilities: Availabilty Status, Sys-
tem Registrar

e Updates to common microservice interaction patterns

0.3 04/08/2022 | Internal draft release with the following changes:

e Added terminology and concepts

o Identified common microservice interaction patterns and message contents

e Provided implementation strategies for interaction patterns using REST and
PubSub communication models

e Reorganized microservice classification approach to use capabilities

e Refactored infrastructure computing capabilities

0.2 01/14/2022 | Internal draft release

0.1 12/31/2021 | Initial, unpublished draft

1 INTRODUCTION

The U. S. Department of Energy (DOE)’s artificial intelligence (Al) for Science report [31] outlines the
need for intelligent systems, instruments, and facilities to enable science breakthroughs with autonomous
experiments, “self-driving” laboratories, smart manufacturing, and Al-driven design, discovery and
evaluation. The DOE’s Computational Facilities Research Workshop report [22] identifies intelligent
systems/facilities as a challenge with enabling automation and eliminating human-in-the-loop needs as a
cross-cutting theme.

Autonomous experiments, “self-driving” laboratories and smart manufacturing employ
machine-in-the-loop intelligence for decision-making. Human-in-the-loop needs are reduced by an
autonomous online control that collects experiment data, analyzes it, and takes appropriate operational
actions to steer an ongoing or plan a next experiment. It may be assisted by an Al that is trained online
and/or offline with archived data and/or with synthetic data created by a digital twin. Analysis and decision
making may also rely on rule-based approaches, causal models, and advanced statistical methods. Human
interaction for experiment planning, observation and steering is performed through a human-machine
interface.

A federated hardware/software architecture for connecting instruments with edge and center computing
resources is needed that autonomously collects, transfers, stores, processes, curates, and archives scientific
data in common formats. It must be able to communicate with scientific instruments and computing and
data resources for orchestration and control across administrative domains, and with humans for critical
decisions and feedback. Standardized communication and programming interfaces are needed that leverage
community and custom software for scientific instruments, automation, workflows and data transfer.
Pluggability is required to permit quickly adaptable and deployable solutions, reuse of partial solutions for
different use cases, and the use of digital twins, such as a virtual instrument, robot or experiment. This
federated hardware/software architecture needs to be an open standard to enable adoption by DOE’s
science facilities.

Oak Ridge National Laboratory (ORNL)’s INTERSECT architecture project, titled “An Open Federated
Architecture for the Laboratory of the Future”, creates an open federated hardware/software architecture
for the laboratory of the future using a novel system of systems (SoS) and microservice architecture
approach, connecting scientific instruments, robot-controlled laboratories and edge/center computing/data
resources to enable autonomous experiments, “self-driving” laboratories, smart manufacturing, and
Al-driven design, discovery and evaluation.

The project describes science use cases as design patterns that identify and abstract the involved
hardware/software components and their interactions in terms of control, work and data flow. It creates a
SoS architecture of the federated hardware/software ecosystem that clarifies terms, architectural elements,
the interactions between them and compliance. It further designs a federated microservice architecture,
mapping science use case design patterns to the SoS architecture with loosely coupled microservices,
standardized interfaces and multi programming language support. The primary deliverable of this project is
an INTERSECT Open Architecture Specification, containing the science use case design pattern catalog,
the federated SoS architecture specification and the microservice architecture specification. This document
represents the microservice architecture specification of the INTERSECT Open Architecture Specification.

2 INTERSECT MICROSERVICE ARCHITECTURE

2.1 INTRODUCTION TO MICROSERVICES ARCHITECTURE

Microservices architecture is a design methodology for structuring a distributed application as a networked
collection of loosely-coupled services that are independently developed, maintained, and operated. Each
microservice provides a well-defined set of functions that is domain-scoped to ensure separation of
concerns between differing microservices, avoid duplicate functionality, and encourage reuse. The
supported functions are defined by the microservice contract, which describes the purpose for each service
function and associated data (e.g., request parameters and response types). A microservice may have
several different implementations, where each implementation provides the same contract but uses different
underlying technologies or supports a particular deployment environment. Where multiple implementations
exist, an application can choose the implementation most suitable for its environment or application needs.
A microservice may be self-contained such that all its functions can be serviced directly, or it may have
external dependencies on other microservices that are needed to service one or more functions.

Microservices architecture is not prescriptive, but rather offers design guidelines and patterns for
decomposing monolithic applications or systems into independent services, and for constructing new
applications or systems through composition of independent services. A common and recommended
approach for decomposition is through domain-driven design. In domain-driven design the domain
corresponds to a particular subject area, and a subject matter expert (SME) helps to define the activities
relevant to the domain, known as the domain’s bounded context. An abstract conceptual model of the
domain is then constructed that captures the important technical aspects of interactions with the domain.
The domain model is also used to establish shared context when composing complex systems from
different domains. In microservices architecture, the domain model forms the basis for defining the
functions comprising the microservice contract.

Microservices are currently in wide use for cloud computing applications. There are two predominant
communication architectures used for interactions between microservices: client-server and asynchronous
messages. In client-server microservice communication, each interaction uses a synchronous
request-response sequence, where one microservice (the client) issues a request of a specific type to
another microservice (the server), who then handles the request and sends a specific response type based on
the results of handling the request. Typical response types include formatted data that was requested (e.g.,
user account details or service status) or error codes. In microservice communication based on
asynchronous messages, a microservice (the producer) publishes messages to a specific topic (or channel)
and other microservices (the consumers) subscribe to the topic in order to register as interested parties for
messages on that topic. Messages may represent service requests (e.g., control commands or information
queries) or describe the occurrence of an event (e.g., a service action or state change). Due to the latter,
asynchronous messaging is also commonly referred to as an event-based or event-driven communication
architecture. This publish-subscribe mechanism enables one-to-many communications without the
producer having to individually send messages to each consumer. Typically, a separate entity known as the
message broker tracks the set of topics and the consumers subscribed to each topic, and is responsible for
ensuring the delivery of topic messages to subscribers. Publish-subscribe also supports asynchronous
request-response communication by using separate topics for requests and responses.

In response to these two common microservice communication architectures, two community-driven
specification standards have evolved to document a microservice’s contract. Both standards intend to

E Connected !
E Laboratory/Instruments | P R PR PRI PP \

E : Experiment-Specific Services : INTERSECT Infrastructure Services .

: : — : —

.| Data Collection Data Processing : : | System Management and o

' / Services Services : : Monitoring Services o

H E : : 1] : : N 7] 1
' HE 2 .| Campaign Workflow and 3 : :
: I = . | Experiment Orchestration = T
! ' @ : i o) i
. Lo : »n : Services » o
' . : : [Steering Service] [Design Service] § : § o
: Experiment ol 3 " | Communication Services % || :
H or Test : Experiment Parameter Updates New Experiment Plan % . % o
' . c : c H
1) ' : = : Computing Services = !
: ' : Control Plan § : [%p 9 8 !
: I : Approval Service Approval Service = . : = :
! . : g : : Data and S H
' : N N : . E i
: HE : Approved Experiment Parameters ~ Approved Experiment Plan g : : Information Management S H
H v : T : : Services T '
Robots, Actuators, é= : Control Service Plan Service Identit; d A l
Sensors & Instruments : : : : entity and Access o

1 ' : — :| Management Services — .

Experiment-as-a-Service Interface for Human-guided Interactive Access to Instrument,
Laboratory Automation Design and Steering of Experiments Computing and Data Resources

Figure 2-1. Potential Classes of INTERSECT Microservices

provide a programming language-agnostic method for application programming interface (API) definition
that is understandable to both humans and machines, which enables a wide variety of automated tooling for
code development, testing, and documentation. The OpenAPI Specification [30] targets client-server
microservices that provide a Representational State Transfer (REST) API accesible via Hypertext Transfer
Protocol (HTTP). The AsyncAPI Specification [28] targets microservices based on asynchronous
messaging and supports a wide variety of messaging protocols. AsyncAPI was originally derived from
OpenAPI and thus shares much terminology. In some cases, AsyncAPI directly supports referencing
components of OpenAPI specifications such as data schemas.

2.2 MICROSERVICES ARCHITECTURE IN INTERSECT

Within the INTERSECT Open Architecture, the microservice architecture specification provides a catalog
of infrastructure and experiment-specific microservices that may be useful within an interconnected science
ecosystem. All microservices are defined to facilitate composition within federated SoS architectures,
where each subsystem corresponds to one or more coordinating microservices. INTERSECT infrastructure
microservices represent common service functionality and capabilities, such as data management,
computing, system management, and workflow orchestration that are likely to be generally useful across
many science ecosystems without the need for customization. Experiment-specific microservices, on the
other hand, represent services whose implementation may require detailed application knowledge, such as
experiment planning or steering services that require knowledge of experiment-specific control parameters
and their associated constraints. The INTERSECT science use case design patterns help identify the
relevant infrastructure and experiment-specific microservices for a given science ecosystem. Figure 2-1
provides an architectural overview of the potential classes of microservices that may be involved with a
given interconnected science ecosystem. Section 3 provides additional information on the various
INTERSECT microservice classes and their shared capabilities and data requirements.

2.3 COMMONALITIES OF INTERSECT MICROSERVICES

To enable federation of INTERSECT microservices, it is useful to understand the types of interactions a
given microservice may reasonably expect from one of its clients. As shown in Figure 2-2, we have
identified three common patterns that substantively cover the expected interactions: Command,
Request-Reply, and Asynchronous Status or Event. The Command Interaction Pattern involves the client
asking the microservice to do something. The microservice typically responds immediately with a simple
acknowledgement that the command has been received successfully or some error status indicating why the
command was not acceptable. A command may initiate an activity within the microservice, but that
activity is not ordered with respect to the command acknowledgment message. Thus, commands are
asynchronous interactions from the client perspective. The Request-Reply Interaction Pattern has the client
making a request of the microservice that includes an expected reply containing pertinent information or
data related to the request. Because the reply is not sent until the request has been fully processed, this is a
synchronous interaction pattern from the client perspective. Finally, the Asynchronous Status or Event
Interaction Pattern represents cases where the microservice generates status or event information that is
broadcast to any interested parties at irregular intervals as a result of internal operational state changes or
ongoing activities. Events are informational in nature and there is no expectation that the associated
message must be delivered. However, status messages are typically associated with activities initiated by
clients, and therefore must provide some limited form of message durability to ensure that the message is
delivered to at least one interested party. Each of these interaction patterns supports implementations based
on RESTful client-server communication or asynchronous messaging, as described later in Section 4.1.

Client Microservice Client Microservice

[}< Command ‘E Request
VJ-'J

Reply

A 4

processRequest()

processCommand()

Client Microservice Client

Event or Status Event or Status

1@ >[|

Figure 2-2. Interaction Patterns for INTERSECT Microservices

B I TETTE
A

The messages used in these interaction patterns also share common information that should be included in
the message contents. For instance, in all three patterns, messages should include information that

describes the source of the message and the specific type of Command, Request, Reply, Event, or
Status. For a Command message, the type should indicate the requested action. For a Request or Reply
message, the type should indicate the requested information or data. For an Event message, the type
should identify the generator of the event. For a Status message, the type should identify the activity or
resource whose status is being reported. This type information can also be used by the receiver to know
what other information may be included in the message, such as any parameters or data associated with a
Command, Request or Reply, or codes and descriptions associated with a particular Event. Similarly, a
timestamp associated with the sending of the initial message is useful in all three patterns. For a Command
or Request message, this timestamp represents the time when a client issued the request, which may be
used in situations requiring a completion deadline or for communication retry purposes. For an Event or
Status message, the timestamp indicates when the event or status change occurred. Finally, it is useful
within Command and Request-Reply interactions to support trace identifiers that clients can use to associate
messages with specific client state. Trace identifiers are particularly useful when a client interaction
requires the target microservice to make further requests of other microservices. The target microservice
should pass on the trace identifier it received from the client along with its own external requests. When
combined with a distributed message logging facility, the trace identifier enables a complete view of the
request progress from the initial client, through one or more remote microservice requests and replies, and
ending with a reply to the initial client. This complete traceability of requests through microservices is also
crucial for operational insight when investigating and resolving problems encountered in deployed
microservices architectures.

3 CLASSIFICATION OF INTERSECT MICROSERVICES

We first describe the format used to document microservice capabilities in Section 3.1. In the following
two sections that focus on microservice capabilities for infrastructure services (Section 3.2) and
experiment-specific services (Section 3.3), we classify capabilities into groups based on their general
purpose, such as computation or data management for infrastructure services, and experimental control or
design for experiment-specific services.

3.1 INTERSECT MICROSERVICE CAPABILITY DEFINITION FORMAT

As previously described in Section 2.1, a Microservice provides a well-defined set of functionality that is
scoped to focus on a particular domain of interest. The set of Microservice Functions with associated input
and output data is known as the Microservice Contract. In the following subsections, we define
microservice capabilities that describe the purpose and proposed functionality for a wide range of unique
focus domains. For each capability, the proposed functionality (i.e., methods and associated data) is
grouped by the corresponding microservice interaction pattern. Together, the functionality definitions can
serve as the basis for an implementation’s microservice contract. Where applicable, we also indicate
relationships to other microservice capabilities, such as functionality extensions or required dependencies.

The functionality provided by a microservice will necessarily change over time to adapt to new
requirements or use cases. As a result, each microservice capability definition should be versioned to
ensure that providers and clients of the capability can agree on a consistent set of the included functionality
and any custom data type defintions. A suitable approach to versioning of microservice APIs is that defined
by Semantic Versioning [1].

Figure 3-1 is an example of the capability definition format that describes the information provided by each
element of the definition. The data types used in defining each capability are generic names for common
types and structures supported by the data models of most data schema standards (e.g., JSON Schema [6],
XML Schema Definition (XSD) [33], and Apache Avro [7]). To avoid confusion with specific schema data
model types, Table 3-1 provides a description for each generic type or structure and lists compatible
specific types for a few data schema formats commonly used in microservice messaging.

Capability: Capability Name

Description: A short summary description of the domain of interest for this capability and the provided
functionality.

Version: A meaningful version number for the capability and its provided interaction methods and data
types. For new versions, the changes from the previous version (i.e., additions, deprecations, or
deletions) should be enumerated.

Related Capabilities: Where applicable, provides references to related capabilities.

o FExtends: A list of base capabilities that the functionality of this capability extends. A service
implementing this capability must also implement the base capabilities.

o Requires: A list of required capabilities that are necessary to implement the functionality of
this capability. The required capabilities are most often provided by other services, but may be
implemented in the same service. Where necessary, specific versions of the required capabilities
may be specified.

Custom Data Type: Where applicable, provides definitions of new data types or structures.

Interactions: Command

e MethodName ()

Purpose: A short description of the purpose of the current command method.
Command Data: A list of input data for the current method formatted as:
— dataName (DataType) : A description of the data, including any format or value con-
straints.

Interactions: Request-Reply

e MethodName()

Purpose: A short description of the purpose of the current request method.
Request Data: A list of input data for the current method formatted as:
— dataName (DataType) : A description of the data, including any format or value con-
straints.
Reply Data: A list of output data for the current method formatted as:
— dataName (DataType) : A description of the data, including any format or value con-
straints.

Interactions: Asynchronous Event

e EventName
Purpose: A description of the event and its cause, if any.

Event Data: A list of pertinent data for the current event formatted as:
— dataName (DataType) : A description of the data, including any format or value con-
straints.

Interactions: Asynchronous Status

e StatusName
Purpose: A description of the activity status or state change.

Status Data: A list of pertinent data for the current status formatted as:
— dataName (DataType) : A description of the data, including any format or value con-
straints.

Figure 3-1. Microservice Capability Definition Format

Data Type or JSON
P Description Schema XSD Types Apache Avro Types
Structure
Types
A logical value represent-
Boolean . boolean boolean boolean
ing True or False values.
N v AT
y) encoded) y
An integral numeric value,
Integer preferably supporting up to | number decimal long
64-bit values.
An absolute path to a local
Filepath file system entry (i.e., a file | string string string
or directory).
A floating point numeric
Float value, preferably support- | number double double
ing double precision.
A uniquely- i
uniquely named String object:
KeyVal<type> key paired with an asso- {ke <key> element | ma
Y yp ciated value of the given v Y P
value}
type.
. A list of items of the given list,
List<type> array array
type. sequence
A character string of un-
String specified length, preferably | string string string
encoded using Unicode.
A value representing the
difference between a start | string string
TimeDuration| and end TimeStamp, | (format: duration (logicalType:
preferably with a minimum | duration) duration)
resolution of seconds.
A timestamp value, prefer- | string string
TimeStamp ably in Universal Coordi- | (format: dateTimeStamp| (logicalType:
nated Time (UTC) format. | date-time) timestamp-millis)
. . . string string
A universally unique iden- . .
ID) f : 1 1T :
w tifier (RFC 4122). (format: | string (logicallype
uuid) uuid)

Table 3-1. Generic Data Types and Structures and Associated Schema-specific Representations

3.2 INTERSECT INFRASTRUCTURE MICROSERVICE CAPABILITIES

In this section, we classify INTERSECT infrastructure microservices into five groups according to their
purpose: (1) General Utility, (2) INTERSECT Data and Information Management, (3) INTERSECT
System Management, and (4) INTERSECT Resource Adapters.

3.2.1 General Utility

General utility microservice capabilities represent functionality that may be useful to support a wide range
of infrastructure or experiment-specific services. They are not intended to exist in isolated services, rather
other capabilities should include their functionality through an Extends relationship.

3.2.1.1 Capability: Availability Status

Description: Provides inspection and control of the availability status of a service. NOTE: All services
are expected to provide this capability.

Custom Data Type: AvailabilityStatus
e uuid (UUID) : The UUID of the entity reporting its status.
e currentStatus (String) : The current status.
e previousStatus (String) : The previous status.

e statusDescription (String) : Additional information related to the current status (e.g.,
why a status change occurred).

Interactions: Command
e SetAvailabilityStatus()

Purpose: Update the status using the given statusCode. On success, triggers the
AvailabilityStatusChange event.

Command Data: dataName (Data Type) : Data description.

— status (String) : The new status (e.g., "AVAILABILITY_UNKNOWN",
"AVAILABLE", "PARTIAL_AVAILABILITY", or "UNAVAILABLE").

— statusDescription (String) : (Optional) A description of the reason for the status
change.

Interactions: Request-Reply
e GetAvailabilityStatus()
Purpose: Request the current availability status.
Reply Data: dataName (Data Type) : Data description.
— status (AvailabilityStatus) : The current availability status information.
Interactions: Asynchronous Status
e AvailabilityStatusChange
Purpose: Notification of changes to availability status.
Event Data: dataName (Data Type) : Data description.

— status (AvailabilityStatus) : The current availability status information.

10

3.2.1.2 Capability: Controller Status

Description: Provides inspection and control of the controller status of a system or service. NOTE: All
services are expected to provide this capability.

Custom Data Type: ControllerStatus
e uuid (UUID) : The UUID of the entity reporting its status.
e primaryController (UUID) : The UUID of the primary controller.
e secondaryController (UUID) : The UUID of the secondary controller.

e statusDescription (String) : Additional information related to the current controller
change event.

Interactions: Command
e SetPrimaryController()

Purpose: Change the primary controller to the given primaryUUID. On success, triggers the
ControllerStatusChange event.

Command Data: dataName (Data Type) : Data description.
— primaryUUID (UUID) : The UUID of the new primary controller.
— controllerSecret (Bytes) : A secret for use in validating primary control changes.

— description (String) : (Optional) Additional information for use in generating the
ControllerStatusChange event.

e ReleaseSecondaryControl ()

Purpose: Release secondary control permission for the given secondaryUUID. On success,
triggers the ControllerStatusChange event.

Command Data: dataName (Data Type) : Data description.
— secondaryUUID (UUID) : The UUID of the new secondary controller.

— controllerSecret (Bytes) : A secret for use in validating secondary control
changes.

— description (String) : (Optional) Additional information for use in generating the
ControllerStatusChange event.

Interactions: Request-Reply
e AcquireSecondaryControl()

Purpose: Request that the given secondaryUUID be given secondary control permission. On
success, triggers the ControllerStatusChange event.

Request Data: dataName (Data Type) : Data description.

11

— secondaryUUID (UUID) : The UUID of the new secondary controller.

— controllerSecret (Bytes) : A secret for use in validating secondary control
changes.

— description (String) : (Optional) Additional information for use in generating the
ControllerStatusChange event.

Reply Data: dataName (Data Type) : Data description.

— errorMsg (String) : (Optional) An error message describing why secondary control
permission could not be granted.

e GetControllerStatus()
Purpose: Request the current controller status.
Reply Data: dataName (Data Type) : Data description.
— status (ControllerStatus) : The current controller status information.
Interactions: Asynchronous Status
e ControllerStatusChange
Purpose: Notification of changes to controller status.
Event Data: dataName (Data Type) : Data description.

— status (ControllerStatus) : The current controller status information.

12

3.2.1.3 Capability: Parameter Configuration

Description: Provides description and configuration of service parameters, allowing clients to query the
supported parameters and their associated constraints and to set their values. Service parameters
represent settings that affect the behavior of the service independent of any of its underlying
capability interaction methods. Service parameters are defined in a generic fashion to allow
representation of a wide variety of uses, including but not limited to static configuration settings,
dynamic or runtime settings, instrument control parameters, machine learning model parameters, etc.

Custom Data Type: ParameterInfo

e paramName (String) : The name of the parameter. The name must be unique among all
parameters supported by a given service (which may implement several capabilities).

e paramDescription (String): A detailed description of the parameter’s intended usage,
including a discussion of its type and acceptable values.

e paramType (String) : The name of the generic data type for the parameter.
e defaultValue (String) : A string representation of the parameter’s default value.

e permittedValues (List<String>): An optional list of strings that enumerates acceptable
values for the parameter. For numeric parameters, each string may represent a value range (e.g.,
"[0,100]M).

Interactions: Command
e AddConfigurationParameters()
Purpose: Add the given parameters to the service’s supported configuration set.
Command Data: dataName (Data Type) : Data description.
— parameters (List<ParameterInfo>): A list of parameter information structures.
e SetConfigurationValues()
Purpose: Update the service’s configuration using the given parameter name-value list.
Command Data: dataName (Data Type) : Data description.

— configValues (List< KeyVal<String> >): The list of configuraton parameter
name-value String pairs.

Interactions: Request-Reply
o GetParameterNames()
Purpose: Request a list of the service’s supported configuration parameter names.
Reply Data: dataName (Data Type) : Data description.
— paramNames (List<String>) : The list of supported parameter names.

e GetParameterDetails()

13

Purpose: Request detailed information for the given list of paramNames.
Request Data: dataName (Data Type) : Data description.

— paramNames (List<String>) : A list of service parameter names.
Reply Data: dataName (Data Type) : Data description.

— paramDetails (List<ParameterInfo>) : A list of parameter information structures
for the requested service parameters.

GetConfiguration()
Purpose: Request the current values for all service configuration parameters.
Reply Data: dataName (Data Type) : Data description.

— configValues (List< KeyVal<String> >): A list of name-value String pairs
for all supported service parameters.

GetConfigurationValues()
Purpose: Request the current values for the given list of configNames.
Request Data: dataName (Data Type) : Data description.
— configNames (List<String>) : A list of service configuration parameter names.
Reply Data: dataName (Data Type) : Data description.

— configValues (List< KeyVal<String> >): A list of name-value String pairs
for the requested service parameters.

ValidateParameters()
Purpose: Validate the given list of service configuration parameter name-value pairs.
Request Data: dataName (Data Type) : Data description.

— paramValues (List< KeyVal<String> >): A list of parameter name-value pairs.
Reply Data: dataName (Data Type) : Data description.

— invalidCount (Integer) : The number of supplied parameters that were invalid.

— invalidParams (List< KeyVal<String> >): A list of name-reason pairs for the
supplied parameters that were determined to be invalid.

14

3.2.1.4 Capability: UUID Generation

Description: Provides generation of universally unique identifier (UUID) according to RFC 4122 [23].
Interactions: Request-Reply
e GetNamespaceUUID()
Purpose: Request a new name-based (i.e., version 3 or version 5) UUID value.
Request Data: dataName (Data Type) : Data description.
— namespaceId (UUID) : The namespace base UUID base.

— name (String) : The unique name within the namespace to use in generation of the
UUID.

Reply Data: dataName (Data Type) : Data description.
— 1id (UUID) : The new UUID.
— errorMsg (String) : An error message describing why UUID generation failed.
e GetUUID(Q)
Purpose: Request a new time-based (i.e., version 1) UUID value.
Reply Data: dataName (Data Type) : Data description.
— id (UUID) : The new UUID.

— errorMsg (String) : An error message describing why UUID generation failed.

3.2.2 INTERSECT Data and Information Management

Data and information management services support the storage, transfer, and introspection needs of data,
metadata, and information produced or consumed within INTERSECT campaign ecosystems.

3.2.2.1 Data Storage Services

Data storage services generally store and retrieve data items or data collections in one or more data
namespaces. The services may optionally provide data compression for efficient use of storage space,
data-at-rest encryption for secure storage, and data versioning. Three common types of data storage
services include file storage, key-value storage, and object storage.

File storage services store and retrieve files in a hierarchical file system namespace. File names are strings
that are unique only within their enclosing directory. Related technologies include archival storage systems
(e.g., High Performance Storage System (HPSS)), local file systems, cloud file storage and sharing services
(e.g., DropBox [18], Google Drive [12], and Microsoft OneDrive [26]), and distributed or parallel file
systems (e.g., General Parallel File System (GPFS), Lustre, and Network File System (NFS)).

15

Key-value storage services store and retrieve key-value pairs in a flat namespace. The unique keys are often
strings, but may be arbitrary data blobs. Values may be arbitrary data blobs or have service-specific
structure. These services typically provide volatile memory-based storage, but some offer data durability
functionality to store data on stable storage devices such as hard disk drive (HDD) or non-volatile memory
(NVM) devices. Related technologies include popular cloud infrastructures such as Memcached [5] and
Redis [24].

Object storage services store and retrieve named objects or object collections in a flat namespace. Object
names are unique strings within their namespace. The data associated with objects may be arbitrary blobs,
including structured and unstructured data. Relevant technologies include Amazon S3 [17], Google Cloud
Storage [11], Microsoft Azure Blob Storage [25], and MinlO [19].

3.2.2.2 Data Transfer Services

Data transfer services facilitate the transfer of data products or data streams from producers to consumers.
The services may optionally provide data compression for efficient use of network resources and
encryption for secure data communication. Two common types of data transfer services include file
transfer and data streaming.

File transfer services are designed to transfer files from one file storage service to another file storage
service, typically via a custom file transfer protocol such as File Transfer Protocol (FTP) or GridFTP [2].
These services may support batched file transfers containing multiple files or entire directory hierarchies.
Relevant technologies include Globus [32] and file transfers based on HTTP, Hypertext Transfer Protocol
Secure (HTTPS), and Secure Sockets Layer (SSL).

Data streaming services provide streaming data transfers from one source service to another destination
service. The data streams may be raw, object- or structure-based, or file-based. Some services support
concurrent transfers of multiple data streams between a given source and destination. Relevant technologies
include cloud data and event streaming frameworks such as Apache Kafka [9] and Amazon Kinesis [15].

3.2.2.3 Database and Information Management Services

Database and information management services store, retrieve, and support queries over data and
associated metadata with potentially complex relationships. These services may optionally provide data
indexing or compute-in-data features to optimize query performance. Relevant technologies include
relational databases (e.g., MySQL [27], PostgreSQL [13], and SQLite [3]) and non-relational document
stores (e.g., MongoDB [20]), columnar stores (e.g., Amazon DynamoDB [14], Apache Cassandra [8],
Google BigTable [10]), and graph databases (e.g., Neo4J [21] and Amazon Neptune [16]).

3.2.2.4 A Data Model for INTERSECT Microservices

The INTERSECT microservice capabilities for data management are designed around a flexible,
generalized data model as shown in Figure 3-2. A campaign workflow produces or consumes data from
one or more Data Namespaces, which are uniquely-named logical containers for Data Items, Data
Collections, and Data Streams. Data Items represent uniquely-named pieces of data such as files, objects,
or key-value pairs. Data Collections are uniquely-named collections of Data Items, and correspond to
grouping mechanisms such as directories, object buckets, or table records. Data Streams represent

16

uniquely-named streaming data sources that can support multiple stream consumers. The data stream
elements are Data Items with names corresponding to the element indices.

Data Namespaces are uniquely named D ata N a m eS p ace

logical containers for Data Items, Data
Collections, and Data Streams.

Data Items represent uniquely named
Eieces of data such as files, objects, or
ey-value pairs.

Data ltem

Data Collections are uniquely named
groups of items, and correspond to
grouping mechanisms such as
directories, object buckets, or table
records.

Data Streams represent uniquely named D a ta D Z_ / ZL
streaming data sources. The data stream Sfl’ eam ata ltem
elements are Data Items with names

corresponding to the element indices.

Figure 3-2. INTERSECT Data Model

The microservice capabilities for information management represent well-established methods such as
Entity-Relationship (E-R) models and both relational and non-relational databases. E-R models provide a
flexible representation of arbitrary information about unique entities and their relationships to other
entities. Relational databases provide atomic, consistent, idempotent, and durable (ACID) transactions and
complex queries over structured relations defined by a schema in one or more tables, and may support
advanced data indexing for query performance optimization. Non-relational databases provide
non-transactional data updates and queries over unstructured data and information such as objects,
columnar data, time-series data, or graphs.

To facilitate workflows across interconnected science ecosystems, each INTERSECT system is expected to
provide a Data Management service that supports the data storage and transfer needs of services and
applications within the system. Furthermore, the Campaign Orchestrator service that orchestrates the
execution of campaign workflows is expected to manage a catalog of Data Products corresponding to Data
Items or Data Collections and orchestrate data movement between producers and consumers. Additional
details on the expected microservice interactions related to campaign data management can be found in
Appendix A-3.

17

3.2.2.5 Capability: Entity-Relationship Catalog

Description: Provides a generic E-R information catalog that maintains names, descriptions, properties,
and labels for uniquely-identified entities and tracks named relationships between entities.

Custom Data Type: CatalogEntityInformation
e entityName (String) : The name of the entity.
e entityType (String) : The type name of the entity.
e entityDescription (String) : The description of the entity.

e entityProperties (List< KeyVal<String> >): (Optional) A list of key-value String
pairs for the entity’s properties.

e entityLabels (List<String>): (Optional) A list of String labels for the entity.
Custom Data Type: CatalogEntityRelationship

e relationName (String) : The name of the relation.

e sourceld (UUID) : The unique id for the source entity.

e targetId (UUID) : The unique id for the target entity.
Interactions: Command

e CreateEntity()

Purpose: Create a new entity with the given id and information (i.e., name, type, description,
properties, and labels). On successful creation, triggers the CatalogEntityCreation
event.

Command Data: dataName (Data Type) : Data description.
— entityId (UUID) : The unique id for the entity.
— entityInfo (CatalogEntityInformation) : The entity information.
e RemoveEntity()

Purpose: Remove the entity with given entityId. Also removes any relationships associated
with the removed entity. On successful removal, triggers the CatalogEntityRemoval
event.

Command Data: dataName (Data Type) : Data description.
— entityId (UUID) : The unique id of the entity to remove.
e CreateRelation()

Purpose: Create a new named relation between the given source and target entities. On
successful creation, triggers the CatalogRelationCreation event.

Command Data: dataName (Data Type) : Data description.

18

— relation (CatalogEntityRelationship) : The relation to add, which identifes
the relation name and the source and target entity ids.

e RemoveRelation()

Purpose: Remove the relationship(s) having the given name. If both the sourcelId and
targetId are provided, removes only the relationship between those entities. If only the
sourceld is provided, removes all relationships with the given name that are sourced at
that entity. If only the targetId is provided, removes all relationships with the given
name that are targeted at that entity. Also removes any relationships associated with the
removed entity. On successful removal, triggers the CatalogRelationRemoval event.

Command Data: dataName (Data Type) : Data description.
— relationName (String) : The name of the relation to remove.

— sourceld (UUID) : The unique id of the relation’s source entity, or the ALL_UUID
value to represent all sources.

— targetId (UUID) : The unique id of the relation’s target entity, or the ALL_UUID value
to represent all targets.

Interactions: Request-Reply
e GetEntityInformation()
Purpose: Get the information of the entity with given entityId.
Request Data: dataName (Data Type) : Data description.
— entityId (UUID) : The unique id for the entity.
Reply Data: dataName (Data Type) : Data description.
— entityInfo (CatalogEntityInformation) : The entity information.
e GetEntityRelationships()

Purpose: Get the source and target relationships of the entity with given entityId.
Optionally, return only the relations with the given relationName.

Request Data: dataName (Data Type) : Data description.
— entityId (UUID) : The unique id for the entity.

— relationName (String) : (Optional) The name of a specific relation for which to
return results.

Reply Data: dataName (Data Type) : Data description.

— relationshiplList (List<CatalogEntityRelationship>) : The list of entity
relationships.

e GetEntitySourceRelationships()

19

Purpose: Get the relationships that are sourced from the entity with given entityId.
Optionally, return only the relations with the given relationName.

Request Data: dataName (Data Type) : Data description.
— entityId (UUID) : The unique id for the entity.

— relationName (String) : (Optional) The name of a specific relation for which to
return results.

Reply Data: dataName (Data Type) : Data description.

— relationshipList (List<CatalogEntityRelationship>): The list of entity
source relationships.

e GetEntityTargetRelationships()

Purpose: Get the relationships that target the entity with given entityId. Optionally, return
only the relations with the given relationName.

Request Data: dataName (Data Type) : Data description.
— entityId (UUID) : The unique id for the entity.

— relationName (String) : (Optional) The name of a specific relation for which to
return results.

Reply Data: dataName (Data Type) : Data description.

— relationshipList (List<CatalogEntityRelationship>): The list of entity
target relationships.

e GetSourceEntitiesByRelation()
Purpose: Get the entities that are sources for relationships with the given relationName.
Request Data: dataName (Data Type) : Data description.
— relationName (String) : The name of a specific relation for which to return results.
Reply Data: dataName (Data Type) : Data description.
— sourcelds (List<UUID>) : The list of source entities.
e GetTargetEntitiesByRelation()
Purpose: Get the entities that are targets for relationships with the given relationName.
Request Data: dataName (Data Type) : Data description.
— relationName (String) : The name of a specific relation for which to return results.
Reply Data: dataName (Data Type) : Data description.
— targetIds (List<UUID>) : The list of target entities.

e GetEntitiesByType()

20

Purpose: Get the entities with the given entityType.
Request Data: dataName (Data Type) : Data description.
— entityType (String) : The type name of the requested entities.
Reply Data: dataName (Data Type) : Data description.
— entityIds (List<UUID>) : The list of entities of the requested type.
e GetEntitiesByLabel ()
Purpose: Get the entities whose labels include the given 1abelName.
Request Data: dataName (Data Type) : Data description.
— labelName (String) : The name of the label.
Reply Data: dataName (Data Type) : Data description.
— entityIds (List<UUID>) : The list of entities with the requested label.
e GetEntitiesByProperty()

Purpose: Get the entities whose properties include the given propertyName. Optionally, only
return entities whose property value matches the valueExpression.

Request Data: dataName (Data Type) : Data description.
— propertyName (String) : The name of the property.

— valueExpression (String) : (Optional) An expression to evaluate against the
property value.

Reply Data: dataName (Data Type) : Data description.

— entityIds (List<UUID>) : The list of entities with the requested property.

Interactions: Asynchronous Event

e CatalogEntityCreation
Purpose: Notification of catalog entity creations.
Event Data: dataName (Data Type) : Data description.
— entityId (UUID) : The unique id of the created entity.
— entityName (String) : The name of the created entity.
— entityType (String) : The type name of the created entity.
e CatalogRelationCreation
Purpose: Notification of catalog relationship creations.
Event Data: dataName (Data Type) : Data description.

— relation (CatalogEntityRelationship) : The relation that was created.

21

e CatalogEntityRemoval
Purpose: Notification of catalog entity removals.
Event Data: dataName (Data Type) : Data description.
— entityId (UUID) : The unique id of the removed entity.
— entityName (String) : The name of the removed entity.
— entityType (String) : The type name of the removed entity.
e CatalogRelationRemoval
Purpose: Notification of catalog relationship removals.
Event Data: dataName (Data Type) : Data description.
— relationName (String) : The name of the removed relation.

— sourceld (UUID) : The unique id of the relation’s source entity, or the ALL_UUID
value to represent all sources.

— targetId (UUID) : The unique id of the relation’s target entity, or the ALL_UUID value
to represent all targets.

22

3.2.2.6 Capability: Data Catalog

Description: Provides information on published data products and data streams.
Related Capabilities: Requires

o Entity-Relationship Catalog
Interactions: Command

e PublishDataProduct()

Purpose: Publish the availability of a data product (i.e., a data item or data collection).
Successful publication will trigger the DataCatalogProductAvailable event and
creation of a DataItem or DataItemCollection entity with the given information and a
relationship to the new entity with the parent DataNamespace.

Command Data: dataName (Data Type) : Data description.

productDescription (String) : A user-friendly description of the product.

— productId (UUID) : The UUID of the data product.

— serviceld (UUID) : The UUID of the Data Storage service hosting the data product.
— namespaceName (String) : The name of the data namespace containing the product.

— collectionName (String) : (Optional) The name of the data collection for the
product.

— itemName (String) : (Optional) The name of the data item for the product.

— productLabels (List<String>) : (Optional) A list of String labels for the data
product.

— productProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs for the data product’s properties.

e PublishDataStream()

Purpose: Publish the availability of a data stream. Successful publication will trigger the
DataCatalogStreamAvailable event and creation of a DataStream entity with the
given information and a relationship to the new entity with the parent DataNamespace.

Command Data: dataName (Data Type) : Data description.

streamDescription (String) : A user-friendly description of the data stream.

streamId (UUID) : The UUID of the data product.

serviceld (UUID) : The UUID of the Data Stream service hosting the data stream.

namespaceName (String) : The name of the data namespace containing the stream.

streamName (String) : The name of the data stream.

23

— streamLabels (List<String>) : (Optional) A list of String labels for the data
stream.

— streamProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs for the data streams’s properties.

e RemoveDataProduct()

Purpose: Remove a data product from the catalog. Successful removal will trigger the
DataCatalogProductRemoval event.

Command Data: dataName (Data Type) : Data description.
— productId (UUID) : The UUID of the data product.
e RemoveDataStream()

Purpose: Remove a data product from the catalog. Successful removal will trigger the
DataCatalogStreamRemoval event.

Command Data: dataName (Data Type) : Data description.
— streamId (UUID) : The UUID of the data stream.
Interactions: Request-Reply
e CreateDataProductUUID()
Purpose: Create a UUID for a new data product (i.e., a data item or data collection).
Reply Data: dataName (Data Type) : Data description.
— productId (UUID) : The assigned UUID for the data product.
— errorMsg (String) : An error message describing why UUID creation failed.
e CreateDataStreamUUID()
Purpose: Create a UUID for a new data stream.
Reply Data: dataName (Data Type) : Data description.
— streamId (UUID) : The assigned UUID for the data stream.
— errorMsg (String) : An error message describing why UUID creation failed.
e GetDataProductInformation()
Purpose: Get the full set of data catalog information for the given productId.
Request Data: dataName (Data Type) : Data description.
— productId (UUID) : The UUID of the data product.
Reply Data: dataName (Data Type) : Data description.

— productInfo (CatalogEntityInformation) : The catalog information for the data
product.

24

— errorMsg (String) : An error message describing why the lookup failed.
e GetDataStreamInformation()
Purpose: Get the full set of data catalog information for the given streamId.
Request Data: dataName (Data Type) : Data description.
— streamId (UUID) : The UUID of the data stream.
Reply Data: dataName (Data Type) : Data description.

— streamInfo (CatalogEntityInformation) : The catalog information for the data
stream.

— errorMsg (String) : An error message describing why the lookup failed.
Interactions: Asynchronous Status
e DataCatalogProductAvailable
Purpose: Notification of published data products.

Event Data: dataName (Data Type) : Data description.

productId (UUID) : The UUID of the data product.

serviceld (UUID) : The UUID of the Data Storage service hosting the data product.

namespaceName (String) : The name of the data namespace containing the product.

collectionName (String) : (Optional) The name of the data collection for the
product.

— itemName (String) : (Optional) The name of the data item for the product.
e DataCatalogProductRemoval
Purpose: Notification of data product removal.
Event Data: dataName (Data Type) : Data description.
— productId (UUID) : The UUID of the data product.
e DataCatalogStreamAvailable
Purpose: Notification of published data streams.

Event Data: dataName (Data Type) : Data description.

streamId (UUID) : The UUID of the data stream.

serviceld (UUID) : The UUID of the Data Stream service hosting the data stream.

namespaceName (String) : The name of the data namespace containing the stream.

streamName (String) : The name of the data stream.

e DataCatalogStreamRemoval

25

Purpose: Notification of data stream removal.
Event Data: dataName (Data Type) : Data description.
— streamId (UUID) : The UUID of the data stream.

26

3.2.2.7 Capability: Data Storage

Description: Provides storage for data items and collections of data items within one or more namespaces
as shown in Figure 3-2.

Custom Data Type: DataCollectionDetails

collectionName (String) : The name of the data item collection.
collectionNamespace (String) : The name of the namespace that contains the collection.
collectionItemCount (Integer) : The number of data items in the collection.

collectionSize (Integer) : The aggregate size in bytes of all the data items in the
collection.

collectionCreationTime (TimeStamp) : Creation timestamp for the collection.

collectionProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs for the collection’s properties.

Custom Data Type: DataltemDetails

itemName (String) : The name of the data item.

itemNamespace (String) : The name of the namespace that contains the data item.
itemSize (Integer) : The size in bytes of the data item.

itemCreationTime (TimeStamp) : Timestamp of the data item’s creation.
itemUpdateTime (TimeStamp) : (Optional) Timestamp of the most recent update data item.

itemCollection (String) : (Optional) When part of a collection, the name of the collection
that contains the data item.

itemProperties (List< KeyVal<String> >): (Optional) A list of key-value String pairs
for the data item’s properties.

Custom Data Type: DataNamespaceDetails

namespaceName (String) : The name of the data item collection.

namespaceCollectionCount (Integer) : The number of data item collections in the
namespace.

namespaceItemCount (Integer) : The total number of data items in the namespace,
including all collections.

namespaceSize (Integer) : The aggregate size in bytes of all the data items in the
namespace, including all collections.

Interactions: Command

CreateDataCollection()

27

Purpose: Create a new data item collection in the given namespace. On successful creation,
triggers the DataCollectionCreation event.

Command Data: dataName (Data Type) : Data description.
— collectionName (String) : The name of the data item collection.

— collectionNamespace (String) : The name of the namespace in which to place the
collection.

— collectionProperties (List< KeyVal<String> >): (Optional) A list of
key-value String pairs to use as the collection’s properties.

e CreateDataltemFromBytes()

Purpose: Create a new data item with provided contents. The item is placed in the given
namespace and optional collection. On successful creation, triggers the
DataItemCreation event. (NOTE: An implementation may limit the maximum size of a
data item that can be created from bytes.)

Command Data: dataName (Data Type) : Data description.

itemName (String) : The name of the data item.

— itemNamespace (String) : The name of the namespace in which to place the data
item.

— contentBytes (Bytes) : The data item contents.

— itemCollection (String) : (Optional) The name of the collection in which to place
the data item.

— itemProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs to use as the data item’s properties.

e CreateDataltemFromLocalFile()

Purpose: Create a new data item associated with an existing local file. The item is placed in
the given namespace and optional collection. On successful creation, triggers the
DataItemCreation event.

Command Data: dataName (Data Type) : Data description.
— itemName (String) : The name of the data item.

— itemNamespace (String) : The name of the namespace in which to place the data
item.

— localFilePath (Filepath) : The absolute path of the local file from which to create
the data item.

— itemCollection (String) : (Optional) The name of the collection in which to place
the data item.

28

— itemProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs to use as the data item’s properties.

e CreateDataNamespace()

Purpose: Create a new data namespace. On successful creation, triggers the
DataNamespaceCreation event.

Command Data: dataName (Data Type) : Data description.
— namespaceName (String) : The name of the data namespace.
e RemoveDataCollection()

Purpose: Remove an existing data item collection from the given namespace. All data items in
the collection will also be removed. On successful removal, triggers the
DataCollectionRemoval event.

Command Data: dataName (Data Type) : Data description.
— collectionName (String) : The name of the data item collection.
— collectionNamespace (String) : The name of the collection’s namespace.
e RemoveDataIltem()

Purpose: Remove an existing data item from the given namespace and optional collection.
Data item removal has no impact on any associated local file. On successful removal,
triggers the DataltemRemoval event.

Command Data: dataName (Data Type) : Data description.
— itemName (String) : The name of the data item.

— itemNamespace (String) : The name of the namespace from which to remove the
data item.

— itemCollection (String) : (Optional) The name of the collection from which to
remove the data item.

e RemoveDataNamespace()

Purpose: Remove an existing data namespace. All data items and collections in the namespace
will also be removed. On successful removal, triggers the DataNamespaceRemoval event.

Command Data: dataName (Data Type) : Data description.
— namespaceName (String) : The name of the data namespace.
e UpdateDataltem()

Purpose: Update the properties or details for an existing data item. For items created from
byte buffers, only the properties can be updated. If the item is associated with a local file,
the existing item’s details are compared with the local file metadata and updated if the file
contents have changed since the item was created (or last updated). On successful update,
triggers the DataItemUpdate event.

29

Command Data: dataName (Data Type) : Data description.

itemName (String) : The name of the data item.

— itemNamespace (String) : The name of the namespace in which the data item
resides.

— itemCollection (String) : (Optional) The name of the collection in which the data
item resides.

— itemProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs to use to update the data item’s properties.

Interactions: Request-Reply
e GetDataCollectionDetails()
Purpose: Get the detailed information for the named data item collection.
Request Data: dataName (Data Type) : Data description.
— collectionName (String) : The name of the collection.

— collectionNamespace (String) : The name of the namespace in which the
collection resides.

Reply Data: dataName (Data Type) : Data description.
— collectionDetails (DataCollectionDetails) : The details for the collection.
e GetDataItemAsBytes()

Purpose: Get the contents of the named data item as bytes. (NOTE: An implementation may
limit the maximum size of a data item that can be fetched as bytes.)

Request Data: dataName (Data Type) : Data description.
— itemName (String) : The name of the data item.

— itemNamespace (String) : The name of the namespace in which the data item
resides.

— itemCollection (String) : (Optional) The name of the collection in which the data
item resides.

Reply Data: dataName (Data Type) : Data description.
— contentBytes (Bytes) : The data item contents.
e GetDataItemAsLocalFile()
Purpose: Get the absolute path of a local file that can be used to retrieve the data item contents.
Request Data: dataName (Data Type) : Data description.

— itemName (String) : The name of the data item.

30

— itemNamespace (String) : The name of the namespace in which the data item
resides.

— itemCollection (String) : (Optional) The name of the collection in which the data
item resides.

Reply Data: dataName (Data Type) : Data description.
— localFilePath (Filepath) : The absolute path to a local file.

— isTempFile (Boolean) : Flag indicating whether the returned path is for a temporary
file that should be deleted by the client when it is done using the file.

GetDataltemDetails()
Purpose: Get the detailed information for the named data item.
Request Data: dataName (Data Type) : Data description.

— itemName (String) : The name of the data item.

— itemNamespace (String) : The name of the namespace in which the data item
resides.

— itemCollection (String) : (Optional) The name of the collection in which the data
item resides.

Reply Data: dataName (Data Type) : Data description.

— itemDetails (DataltemDetails) : The details for the data item.
GetDataNamespaceDetails()
Purpose: Get the detailed information for the given namespace.
Request Data: dataName (Data Type) : Data description.

— namespaceName (String) : The name of the namespace.
Reply Data: dataName (Data Type) : Data description.

— namespaceDetails (DataNamespaceDetails) : The details for the namespace.
ListDataCollections()
Purpose: Get a list of the data item collections that reside in the given namespace.
Request Data: dataName (Data Type) : Data description.

— namespaceName (String) : The name of the namespace to query for collections.
Reply Data: dataName (Data Type) : Data description.

— collectionNames (List<String>) : The list of collection names.
ListDataItems()

Purpose: Get a list of the data items that reside in the given namespace and optional collection.

31

Request Data: dataName (Data Type) : Data description.
— itemNamespace (String) : The name of the namespace to query for data items.

— itemCollection (String) : (Optional) The name of the collection to query for data
items.

Reply Data: dataName (Data Type) : Data description.
— itemNames (List<String>) : The list of data item names.
e ListDataNamespaces()
Purpose: Get a list of the available namespaces.
Reply Data: dataName (Data Type) : Data description.
— namespaceNames (List<String>) : The list of namespaces.
Interactions: Asynchronous Status
e DataCollectionCreation
Purpose: Notification of data item collection creations.
Event Data: dataName (Data Type) : Data description.
— collectionDetails (DataCollectionDetails) : The details for the collection.
e DataCollectionRemoval
Purpose: Notification of data item collection removals.
Event Data: dataName (Data Type) : Data description.
— collectionDetails (DataCollectionDetails) : The details for the collection.
e DataltemCreation
Purpose: Notification of data item creations.
Event Data: dataName (Data Type) : Data description.
— itemDetails (DataltemDetails) : The details for the data item.
e DataltemRemoval
Purpose: Notification of data item removals.
Event Data: dataName (Data Type) : Data description.
— itemDetails (DataltemDetails) : The details for the data item.
e DataItemUpdate
Purpose: Notification of data item updates.
Event Data: dataName (Data Type) : Data description.

— itemDetails (DataltemDetails) : The details for the data item.

32

e DataNamespaceCreation
Purpose: Notification of data namespace creations.
Event Data: dataName (Data Type) : Data description.
— namespaceDetails (DataNamespaceDetails) : The details for the namespace.
e DataNamespaceRemoval
Purpose: Notification of data item collection removals.
Event Data: dataName (Data Type) : Data description.

— namespaceDetails (DataNamespaceDetails) : The details for the namespace.

33

3.2.2.8 Capability: Data Stream

Description: Provides producer/consumer access to named streams of sequenced data items. A data
stream can be considered a specialized form of data collection where each item in the collection is
assigned a unique monotonically increasing index as its name when it is added to the collection.
Stream data indices are numbered starting from 1. Consumers of the data stream may access its
items in any order using the assigned indices, although the expectation is that sequential accesses
will be most common.

Custom Data Type: DataStreamDetails
e streamName (String) : The name of the data item stream.
e streamNamespace (String) : The name of the namespace that contains the stream.
e streamItemCount (Integer) : The number of data items that have been added to the stream.
e streamSize (Integer) : The aggregate size in bytes of all the data items in the stream.
o streamCreationTime (TimeStamp) : Creation timestamp for the stream.

e streamProperties (List< KeyVal<String> >): (Optional) A list of key-value String
pairs for the stream’s properties.

Related Capabilities: Extends

e Data Storage
Interactions: Command

e CreateDataStream()

Purpose: Create a new data item stream in the given namespace. On successful creation,
triggers the DataStreamCreation event.

Command Data: dataName (Data Type) : Data description.
— streamName (String) : The name of the data item stream.

— streamNamespace (String) : The name of the namespace in which to place the
stream.

— streamProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs to use as the stream’s properties.

e AddDataStreamItem()

Purpose: Add an existing data item to the named stream. The item is a reference to the
existing named item in the given namespace and optional collection, and thus no additional
data is stored. On successful creation, triggers the DataStreamItemAddition event.

Command Data: dataName (Data Type) : Data description.

— itemName (String) : The name of the existing data item.

34

itemNamespace (String) : The name of the namespace in which the data item
resides.

itemCollection (String) : (Optional) The name of the collection in which the data
item resides.

streamName (String) : The name of the data item stream in which to put the new
data item.

streamNamespace (String) : The name of the stream’s namespace.

e AddDataStreamCollection()

Purpose: Adds all items from an existing data item collection to the named stream. The items
from the existing named collection are added to the stream as references, and thus no
additional data is stored. On successful creation, triggers the DataStreamItemAddition
event.

Command Data: dataName (Data Type) : Data description.

collectionName (String) : The name of the existing data item collection.

collectionNamespace (String) : The name of the namespace in which the
collection resides.

streamName (String) : The name of the data item stream in which to put the
collection’s data items.

streamNamespace (String) : The name of the stream’s namespace.

e AddDataStreamItemFromBytes()

Purpose: Add a new data item with provided contents to the named stream. On successful
creation, triggers the DataStreamItemAddition event. (NOTE: An implementation may
limit the maximum size of a data item that can be created from bytes.)

Command Data: dataName (Data Type) : Data description.

streamName (String) : The name of the data item stream in which to put the new
data item.

streamNamespace (String) : The name of the stream’s namespace.
contentBytes (Bytes) : The data item contents.

itemProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs to use as the data item’s properties.

e AddDataStreamItemFromLocalFile()

Purpose: Add a new data item associated with an existing local file to the named stream. On
successful creation, triggers the DataStreamItemAddition event.

Command Data: dataName (Data Type) : Data description.

35

— streamName (String) : The name of the data item stream in which to put the new
data item.

— streamNamespace (String) : The name of the stream’s namespace.

— localFilePath (Filepath) : The absolute path of the local file from which to create
the data item.

— itemProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs to use as the data item’s properties.

e RemoveDataStream()

Purpose: Remove an existing data item stream from the given namespace. All data items in
the stream that are not references to existing data items will also be removed. On
successful removal, triggers the DataStreamRemoval event.

Command Data: dataName (Data Type) : Data description.
— streamName (String) : The name of the data item stream.
— streamNamespace (String) : The name of the stream’s namespace.
Interactions: Request-Reply
e GetDataStreamDetails()
Purpose: Get the detailed information for the named data item collection.
Request Data: dataName (Data Type) : Data description.
— streamName (String) : The name of the data item stream.

— streamNamespace (String) : The name of the namespace in which the stream
resides.

Reply Data: dataName (Data Type) : Data description.
— streamDetails (DataStreamDetails) : The details for the data item stream.
e GetDataStreamItemAsBytes()

Purpose: Get the contents of the named data item as bytes. (NOTE: An implementation may
limit the maximum size of a data item that can be fetched as bytes.)

Request Data: dataName (Data Type) : Data description.

— streamName (String) : The name of the data item stream.

— streamNamespace (String) : The name of the stream’s namespace.

— itemIndex (Integer) : The index of the data item within the named stream.
Reply Data: dataName (Data Type) : Data description.

— contentBytes (Bytes) : The data item contents.

e GetDataStreamItemAsLocalFile()

36

Purpose: Get the absolute path of a local file that can be used to retrieve the data item contents.
Request Data: dataName (Data Type) : Data description.

— streamName (String) : The name of the data item stream.

— streamNamespace (String) : The name of the stream’s namespace.

— itemIndex (Integer) : The index of the data item within the named stream.
Reply Data: dataName (Data Type) : Data description.

— localFilePath (Filepath) : The absolute path to a local file.

— isTempFile (Boolean) : Flag indicating whether the returned path is for a temporary
file that should be deleted by the client when it is done using the file.

GetDataStreamItemDetails()
Purpose: Get the detailed information for the named data item.
Request Data: dataName (Data Type) : Data description.

— streamName (String) : The name of the data item stream.

— streamNamespace (String) : The name of the stream’s namespace.

— itemIndex (Integer) : The index of the data item within the named stream.
Reply Data: dataName (Data Type) : Data description.

— itemDetails (DataItemDetails) : The details for the data item.
ListDataStreams()
Purpose: Get a list of the data item streams that reside in the given namespace.
Request Data: dataName (Data Type) : Data description.

— namespaceName (String) : The name of the namespace to query for streams.
Reply Data: dataName (Data Type) : Data description.

— streamNames (List<String>) : The list of stream names.

Interactions: Asynchronous Status

e DataStreamCreation

Purpose: Notification of data item stream creations.
Event Data: dataName (Data Type) : Data description.

— collectionDetails (DataCollectionDetails) : The details for the data item
stream.

e DataStreamRemoval

Purpose: Notification of data item stream removals.

37

Event Data: dataName (Data Type) : Data description.
— streamDetails (DataStreamDetails) : The details for the data item stream.
e DataStreamItemAddition
Purpose: Notification of data item additions to a stream.
Event Data: dataName (Data Type) : Data description.
— streamName (String) : The name of the data item stream.
— streamNamespace (String) : The name of the stream’s namespace.

— itemIndex (Integer) : The index of the most recently added data item.

38

3.2.2.9 Capability: Data Transfer Orchestration

Description: Orchestrates data product and stream transfers between Data Storage services using Data
Transfer Endpoint agents.

Related Capabilities: Requires
e Data Catalog
e Data Storage

Data Stream

Data Transfer Endpoint
Interactions: Command
e TransferDataProduct()

Purpose: Using the given transfer channel, transfer a data product (i.e., a data item or data
item collection) from the source to destination according to the given transfer mode.

Command Data: dataName (Data Type) : Data description.

transferChannelId (Integer) : A unique transfer channel identifier.
— productId (UUID) : The source catalog id of the data product to transfer.

— transferlMode (String) : The transfer mode (e.g., "COPY", "MOVE", or
"MIRROR"). Copying duplicates the product at the destination, while moving entail
removal of the source product. Mirroring is only supported for data item collections,
and ensures that any data items added to the collection will be transferred.

— transferTimeout (Integer) : (Optional) Timeout in seconds to complete the
transfer (not valid for mirroring).

e TransferDataStream()

Purpose: Using the given transfer channel, transfer a data item stream from the source to
destination according to the given transfer mode.

Command Data: dataName (Data Type) : Data description.
— transferChannelId (Integer) : A unique transfer channel identifier.
— streamId (UUID) : The source catalog id of the data stream to transfer.

— transferlMode (String) : The transfer mode (e.g., "COPY" or "MIRROR").
Copying will transfer all items currently in the stream, while mirroring will only
transfer new items added to the stream.

Interactions: Request-Reply

e NegotiateDataTransfer()

39

Purpose: Negotiate a data transfer channel between Data Transfer Endpoint agents to enable
data product and data stream transfers between Data Storage services. On successful
negotiation, triggers the DataTransferChannelCreation event.

Request Data: dataName (Data Type) : Data description.
srcCatalogService (UUID) : The UUID of the source Data Catalog service.

— srcStorageService (UUID) : The UUID of the source Data Storage service.
— dstStorageService (UUID) : The UUID of the destination Data Storage service.

— transferOptions (List<String>) : A list of requested transfer options (e.g.,
"compression=on, transferBlock=4M"). There is no guarantee that any requested
options will be used, as option availability dependencies on the negotiated transfer
method and endpoint agent features.

Reply Data: dataName (Data Type) : Data description.
— transferChannelld (Integer) : A unique transfer channel identifier.

— errorMsg (String) : An error message describing why the transfer channel
negotiation failed.

Interactions: Asynchronous Status
e DataTransferChannelCreation
Purpose: Notification of data transfer channel creations.

Event Data: dataName (Data Type) : Data description.

transferChannelId (Integer) : A unique transfer channel identifier.

srcStorageService (UUID) : The UUID of the source Data Storage service.

dstStorageService (UUID) : The UUID of the destination Data Storage service.

srcTransferEndpoint (String) : The channel endpoint information for the source
Data Transfer Endpoint agent.

dstTransferEndpoint (String) : The channel endpoint information for the
destination Data Transfer Endpoint agent.

transferMethod (String) : The transfer method used by the channel.

40

3.2.2.10 Capability: Data Transfer Endpoint

Description: Provides data transfer channels for data product and data stream transfers between Data
Storage services.

Related Capabilities: Requires
e Data Storage
e Data Stream
Interactions: Command
e SendDataItem()

Purpose: Send the named data item from the source storage service on the transfer channel.
(NOTE: only valid for source endpoints)

Command Data: dataName (Data Type) : Data description.

transferChannelId (Integer) : A unique transfer channel identifier.

itemName (String) : The name of the data item to send on the transfer channel.

itemNamespace (String) : The name of the namespace in which the data item
resides.

itemCollection (String) : [Optional] The name of the collection in which the data
item resides.

e ReceiveDataltem()

Purpose: Receive the named data item on the transfer channel and store it in the destination
storage service. (NOTE: only valid for destination endpoints)

Command Data: dataName (Data Type) : Data description.

transferChannelId (Integer) : A unique transfer channel identifier.

itemName (String) : The name of the data item to send on the transfer channel.

itemNamespace (String) : The name of the namespace in which the data item
resides.

itemCollection (String) : [Optional] The name of the collection in which the data
item resides.

e SendDataStreamItems()

Purpose: Send a sequence of data items denoted by first and last indices in the named stream
from the source storage service on the transfer channel. (NOTE: only valid for source
endpoints)

Command Data: dataName (Data Type) : Data description.

— transferChannelld (Integer) : A unique transfer channel identifier.

41

streamName (String) : The name of the data item stream.

streamNamespace (String) : The name of the namespace in which the data item
stream resides.

firstItemIndex (Integer) : The stream index of the first data item in the sequence.

lastItemIndex (Integer) : The stream index of the last data item in the sequence.
e ReceiveDataStreamItems()

Purpose: Receive a sequence of data items denoted by first and last indices in the named
stream on the transfer channel and add them to the corresponding stream in the destination
storage service. (NOTE: only valid for destination endpoints)

Command Data: dataName (Data Type) : Data description.
— transferChannellId (Integer) : A unique transfer channel identifier.
— streamName (String) : The name of the data item stream.

— streamNamespace (String) : The name of the namespace in which the data item
stream resides.

— firstItemIndex (Integer) : The stream index of the first data item in the sequence.
— lastItemIndex (Integer) : The stream index of the last data item in the sequence.
Interactions: Request-Reply
e GetSupportedTransferMethods ()
Purpose: Get a list of the supported data transfer methods.
Reply Data: dataName (Data Type) : Data description.
— transferMethods (List< String >): A list of supported data transfer methods.
e CreateDataTransferSource()

Purpose: Using the given transfer channel id, transfer method, and transfer channel options,
establish a data transfer channel and return its source endpoint information. On successful
creation, triggers the DataTransferSourceEndpointCreation event.

Request Data: dataName (Data Type) : Data description.

srcStorageService (UUID) : The UUID of the source Data Storage service.

transferChannelId (Integer) : A unique transfer channel identifier.

transferMethod (String) : The transfer method to use for the channel endpoint.

transferOptions (List<String>) : The transfer options requested for the channel.
Reply Data: dataName (Data Type) : Data description.

— endpointInfo (String) : The information needed by the destination endpoint to
establish a channel connection to the source endpoint.

42

— transferOptions (List<String>) : The transfer options used for the channel.

— errorMsg (String) : An error message describing why the transfer channel endpoint
could not be established.

e CreateDataTransferDestination()

Purpose: Using the given transfer channel id, transfer method, and transfer channel options,
establish a data transfer channel and return its destination endpoint information. On
successful creation, triggers the DataTransferDestinationEndpointCreation event.

Request Data: dataName (Data Type) : Data description.

dstStorageService (UUID) : The UUID of the destination Data Storage service.

transferChannelId (Integer) : A unique transfer channel identifier.

transferMethod (String) : The transfer method to use for the channel endpoint.

transferOptions (List<String>) : The transfer options requested for the channel.
Reply Data: dataName (Data Type) : Data description.

— endpointInfo (String) : The information needed by the source endpoint to
establish a channel connection to the destination endpoint.

— transferOptions (List<String>) : The transfer options used for the channel.

— errorMsg (String) : An error message describing why the transfer channel endpoint
could not be established.

Interactions: Asynchronous Status
e DataTransferSourceEndpointCreation
Purpose: Notification of data transfer channel source endpoint creations.

Event Data: dataName (Data Type) : Data description.

transferChannelId (Integer) : A unique transfer channel identifier.

srcStorageService (UUID) : The UUID of the source Data Storage service.

srcTransferEndpoint (String) : The channel endpoint information for the source
Data Transfer Endpoint agent.

transferMethod (String) : The transfer method used by the channel.

transferOptions (List<String>) : The transfer options used by the channel.
e DataTransferDestinationEndpointCreation

Purpose: Notification of data transfer channel destination endpoint creations.

Event Data: dataName (Data Type) : Data description.

— transferChannelld (Integer) : A unique transfer channel identifier.

43

dstStorageService (UUID) : The UUID of the destination Data Storage service.

dstTransferEndpoint (String) : The channel endpoint information for the
destination Data Transfer Endpoint agent.

transferMethod (String) : The transfer method used by the channel.

transferOptions (List<String>) : The transfer options used by the channel.

3.2.3 INTERSECT System Management

Service
Microservice B8 Microservice Subsystem
Capability Capability Service

Figure 3-3. INTERSECT System, Subsystem, Service, and Resource Hierarchy

Subsystem
Resource

As shown in Figure 3-3, a System within INTERSECT consists of one or more Services and a collection of
associated Resources. Each service provides utility in the form of a set of microservice capabilities. All
INTERSECT activities involving system resources are facilitated through service interactions. A given
resource may be exclusive to a system or shared amongst systems. An Exclusive Resource is one that is
only accessed by the parent system’s services. A Shared Resource may be accessed by services from other
systems.

A system may also include Subsystems, which are self-contained systems that are used by the parent
system. Subsystems typically exist to maintain operational independence over a group of services that
provide access and control of one or more system resources.

System management services broadly represent the ability to control and inspect systems, subsystems, and
resources. Examples of systems include, but are not limited to:

e computing systems (e.g., cloud, edge, or high-performance computing (HPC) systems)
e data and information systems (e.g., file systems, databases, and data catalogs)
e industrial control systems (e.g., programmable logic controllers and robotics)

e scientific instruments (e.g., electron microscopes and neutron detectors)

44

To enable dynamic interconnected science ecosystems, each INTERSECT system is expected manage its
associated services, resources, and subsystems for its entire useful lifetime. It is therefore assumed that
every INTERSECT system will have an associated System Management service that coordinates all aspects
related to system information management, control of services and subsystems, and status monitoring of
associated resources, services, and subsystems. When a system is newly introduced to an ecosystem, it
must register itself with the ecosystem and provide contact details for its System Management service so
that other members of the ecosystem may obtain information on the system’s underlying services,
resources, and subsystems. Additional details on the expected microservice interactions related to system,
service, and resource registration can be found in Appendix A-1.

A\
Microservice
Capability

Figure 3-4. INTERSECT System Entity-Relation Model

45

3.2.3.1 Capability: System Information Catalog

Description: Provides subsystem, service, and resource information for a single parent system. Maintains
system relationships as shown in Figure 3-4.

Related Capabilities: Requires

o FEntity-Relationship Catalog

Interactions: Command

e CreateSystemResource()

Purpose: Creates a new resource of the parent system. Successful creation will result in the
creation of a SystemResource entity with the given information and a relationship to the
new entity with the parent system. Figure A-3 provides an example orchestration sequence
demonstrating the use of this method.

Command Data: dataName (Data Type) : Data description.

resourceDescription (String) : A user-friendly description of the resource.
resourceld (UUID) : The UUID of the resource.
resourceName (String) : A user-friendly name for the resource.

resourcelabels (List<String>) : (Optional) A list of String labels for the
resource.

resourceProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs for the resource’s properties.

e CreateSystemService()

Purpose: Creates a new service of the parent system or an existing subsystem. Successful
creation will result in the creation of a SystemService entity with the given information
and relationships to the new entity with the parent system or subsystem, provided
capabilities, and any associated resources. Figure A-4 provides an example orchestration
sequence demonstrating the use of this method.

Command Data: dataName (Data Type) : Data description.

serviceDescription (String) : A user-friendly description of the service.
serviceId (UUID) : The UUID of the service.
serviceName (String) : A user-friendly name for the service.

serviceCapabilities (List<String>) : A list of names for the microservice
capabilities provided by the service.

subsystemId (UUID) : (Optional) The UUID of the subsystem in which this service
exists.

servicelLabels (List<String>): (Optional) A list of String labels for the service.

46

— serviceProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs for the service’s properties.

— serviceResources (List<UUID>) : (Optional) A list of system resources used by
the service.

e CreateSubsystem()

Purpose: Creates a new subsystem of the parent system. Successful creation will result in the
creation of a System entity with the given information and relationships to the new entity
with the parent system and any associated resources.

Command Data: dataName (Data Type) : Data description.

subsystemDescription (String) : A user-friendly description of the subsystem.

subsystemId (UUID) : The UUID of the subsystem.

subsystemName (String) : The name of the subsystem.

subsystemLabels (List<String>) : (Optional) A list of String labels for the
entity.

— subsystemProperties (List< KeyVal<String> >): (Optional) A list of
key-value String pairs for the entity’s properties.

— subsystemResources (List<UUID>) : (Optional) A list of system resources
associated with the subsystem.

Interactions: Request-Reply
e GetSubsystemInformation()

Purpose: Get the full set of system catalog information for the given subsystemId or
subsystemName.

Request Data: dataName (Data Type) : Data description.

— subsystemId (UUID) : The UUID of the subsystem.

— subsystemName (String) : The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.

— subsystemInfo (CatalogEntityInformation) : The catalog information for the
subsystem.

— errorMsg (String) : (Optional) An error message describing why the lookup failed.
e GetSubsystemIds()
Purpose: Get a list of subsystem UUIDs for the parent system.
Reply Data: dataName (Data Type) : Data description.

— subsystemIds (List<UUID>) : The list of subsystem UUIDs.

47

— errorMsg (String) : (Optional) An error message describing why the lookup failed.
e GetSubsystemNames ()
Purpose: Get a list of subsystem names for the parent system.
Reply Data: dataName (Data Type) : Data description.
— subsystemNames (List<String>) : The list of subsystem names.
— errorMsg (String) : (Optional) An error message describing why the lookup failed.
e GetSystemResourceInformation()

Purpose: Get the full set of system catalog information for the given resourceId or
resourceName.

Request Data: dataName (Data Type) : Data description.

— resourceld (UUID) : The UUID of the resource.

— resourceName (String) : The name of the resource.
Reply Data: dataName (Data Type) : Data description.

— resourceInfo (CatalogEntityInformation) : The catalog information for the
resource.

— errorMsg (String) : (Optional) An error message describing why the lookup failed.
e GetSystemResourcelds()
Purpose: Get a list of resource UUIDs for the parent system or given subsystemName.
Request Data: dataName (Data Type) : Data description.
— subsystemName (String) : (Optional) The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.
— resourcelds (List<UUID>) : The list of system resource UUIDs.
— errorMsg (String) : (Optional) An error message describing why the lookup failed.
e GetSystemResourceNames()
Purpose: Get a list of resource names for the parent system or given subsystemName.
Request Data: dataName (Data Type) : Data description.
— subsystemName (String) : (Optional) The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.
— resourceNames (List<String>) : The list of system resource names.
— errorMsg (String) : (Optional) An error message describing why the lookup failed.

e GetSystemServiceInformation()

48

Purpose: Get the full set of system catalog information for the given servicelId or
serviceName.

Request Data: dataName (Data Type) : Data description.
— serviceld (UUID) : The UUID of the service.
— serviceName (String) : The name of the service.
Reply Data: dataName (Data Type) : Data description.

— servicelInfo (CatalogEntityInformation) : The catalog information for the
service.

— errorMsg (String) : (Optional) An error message describing why the lookup failed.
GetSystemServiceIds()
Purpose: Get a list of service UUIDs for the parent system or the given subsystemName.
Request Data: dataName (Data Type) : Data description.

— subsystemName (String) : (Optional) The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.

— servicelds (List<UUID>) : The list of system service UUIDs.

— errorMsg (String) : (Optional) An error message describing why the lookup failed.
GetSystemServiceNames ()
Purpose: Get a list of service names for the parent system or the given subsystemName.
Request Data: dataName (Data Type) : Data description.

— subsystemName (String) : (Optional) The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.

— serviceNames (List<String>) : The list of system service names.

— errorMsg (String) : (Optional) An error message describing why the lookup failed.
GetSystemServicesByCapability ()

Purpose: Get a list of UUIDs for services in the parent system or given subsystemName that
provide the microservice capability with given capabilityName.

Request Data: dataName (Data Type) : Data description.

— capabilityName (String) : The name of the desired capability.

— subsystemName (String) : (Optional) The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.

— servicelds (List<UUID>) : The list of matching system service UUIDs.

49

— errorMsg (String) : (Optional) An error message describing why the lookup failed.
e GetSystemServicesByResource()

Purpose: Get a list of UUIDs for services in the parent system or given subsystemName that
use the resource with given resourceName.

Request Data: dataName (Data Type) : Data description.

— resourceName (String) : The name of the resource.

— subsystemName (String) : (Optional) The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.

— servicelds (List<UUID>) : The list of matching system service UUIDs.

— errorMsg (String) : (Optional) An error message describing why the lookup failed.

50

3.2.3.2 Capability: System Manager

Description: Provides interfaces for aggregate control and status of all subsystems, resources, and
services for a single parent system. Uses the Availability Status capability of each system service.

Related Capabilities: Requires
o System Information Catalog
o Availability Status
Interactions: Command
e EnableResource()

Purpose: Enable the target resource identified by resourceId or resourceName in the
parent system. Any services or subsystems associated with the resource will have their
status updated accordingly.

Command Data: dataName (Data Type) : Data description.
— resourcelId (UUID) : (Optional) The UUID of the resource.
— resourceName (String) : (Optional) The name of the resource.

— statusNote (String) : (Optional) An optional short description to use when
updating the resource status.

e DisableResource()

Purpose: Disable the target resource identified by resourceId or resourceName in the
parent system. Any services or subsystems associated with the resource will have their
status updated accordingly.

Command Data: dataName (Data Type) : Data description.
— resourcelId (UUID) : (Optional) The UUID of the resource.
— resourceName (String) : (Optional) The name of the resource.

— statusNote (String) : (Optional) An optional short description to use when
updating the resource status.

e EnableService()

Purpose: Enable the target service identified by serviceId or serviceName in the parent
system. If the service is associated with a subsystem, its status will be updated accordingly.

Command Data: dataName (Data Type) : Data description.
— serviceld (UUID) : (Optional) The UUID of the service.
— serviceName (String) : (Optional) The name of the service.

— statusNote (String) : (Optional) An optional short description to use when
updating the service status.

51

e DisableService()

Purpose: Disable the target service identified by serviceId or serviceName in the parent
system. If the service is associated with a subsystem, its status will be updated accordingly.

Command Data: dataName (Data Type) : Data description.
— serviceld (UUID) : (Optional) The UUID of the service.
— serviceName (String) : (Optional) The name of the service.

— statusNote (String) : (Optional) An optional short description to use when
updating the service status.

e EnableSubsystem()

Purpose: Enable all services in the target subsystem identified by subsystemId or
subsystemName.

Command Data: dataName (Data Type) : Data description.
— subsystemId (UUID) : (Optional) The UUID of the subsystem.
— subsystemName (String) : (Optional) The name of the subsystem.

— statusNote (String) : (Optional) An optional short description to use when
updating the status of the subsystem services.

e DisableSubsystem()

Purpose: Disable all services in the target subsystem identified by subsystemId or
subsystemName.

Command Data: dataName (Data Type) : Data description.
— subsystemId (UUID) : (Optional) The UUID of the subsystem.
— subsystemName (String) : (Optional) The name of the subsystem.

— statusNote (String) : (Optional) An optional short description to use when
updating the status of the subsystem services.

e EnableSystem()
Purpose: Enable all subsystems, services, and resources in the parent system.
Command Data: dataName (Data Type) : Data description.

— statusNote (String) : (Optional) An optional short description to use when
updating the system status.

e DisableSystem()
Purpose: Disable all subsystems, services, and resources in the parent system.

Command Data: dataName (Data Type) : Data description.

52

— statusNote (String) : (Optional) An optional short description to use when
updating the system status.

Interactions: Request-Reply
e RegisterService()

Purpose: Registers a new service with the target system and an optional subsystem.
Figure A-4 provides an example orchestration sequence demonstrating the use of this
method.

Request Data: dataName (Data Type) : Data description.

serviceName (String) : A user-friendly name for the service.
— serviceDescription (String) : A user-friendly description of the service.

— serviceCapabilities (List<String>) : A list of names for the microservice
capabilities provided by the service.

— subsystemId (UUID) : (Optional) The UUID of the subsystem in which this service
exists.

— serviceResources (List<UUID>) : (Optional) A list of system resources used by
the service.

— servicelabels (List<String>): (Optional) A list of String labels for the service.

— serviceProperties (List< KeyVal<String> >): (Optional) A list of key-value
String pairs for the service’s properties.

Reply Data: dataName (Data Type) : Data description.
— serviceUUID (String) : The UUID assigned to the service by the system.

— errorMsg (String) : (Optional) An error message describing why the service could
not be registered.

e GetResourceStatus()

Purpose: Get the current status of the target resource identified by resourceId or
resourcelLabelsceName in the parent system.

Request Data: dataName (Data Type) : Data description.

— resourcelId (UUID) : (Optional) The UUID of the resource.

— resourceName (String) : (Optional) The name of the resource.
Reply Data: dataName (Data Type) : Data description.

— resourceStatus (String) : The current status of the resource.

— errorMsg (String) : (Optional) An error message describing why the resource status
could not be determined.

e GetServiceStatus()

53

Purpose: Get the current status of the target service identified by serviceId or
serviceName in the parent system.

Request Data: dataName (Data Type) : Data description.

— serviceld (UUID) : (Optional) The UUID of the service.

— serviceName (String) : (Optional) The name of the service.
Reply Data: dataName (Data Type) : Data description.

— serviceStatus (String) : The current status of the service.

— errorMsg (String) : (Optional) An error message describing why the service status
could not be determined.

GetSubsystemStatus()

Purpose: Gather and aggregate the status of all services in the subsystem identified by
subsystemId or subsystemName.

Request Data: dataName (Data Type) : Data description.

— subsystemId (UUID) : (Optional) The UUID of the subsystem.

— subsystemName (String) : (Optional) The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.

— subsystemStatus (String) : The aggregate status of the subsystem.

— errorMsg (String) : (Optional) An error message describing why the subsystem
status could not be determined.

GetSystemStatus()
Purpose: Gather and aggregate the status of all services and subsystems in the parent system.
Reply Data: dataName (Data Type) : Data description.

— systemStatus (String) : The aggregate status of the subsystem.

— errorMsg (String) : (Optional) An error message describing why the aggregate
status could not be determined.

Interactions: Asynchronous Status

e SystemStatusChange

Purpose: Notification of changes to system status.
Event Data: dataName (Data Type) : Data description.
— systemId (UUID) : The UUID of the system.
— currentStatus (String) : The current system status.

— changeDescription (String) : A description of the last status change.

54

changeTime (Timestamp) : A timestamp for the last status change.
priorStatus (String) : (Optional) The prior system status.

subsystemId (UUID) : (Optional) The UUID of the subsystem, if applicable.
resourceld (UUID) : (Optional) The UUID of the resource, if applicable.
serviceld (UUID) : (Optional) The UUID of the service, if applicable.

55

3.2.3.3 Capability: Systems Registrar

Description: Provides system, subsystem, service, and resource registration and name-based lookup of
assigned UUIDs.

Related Capabilities: Requires
o UUID Generation
Interactions: Request-Reply
e RegisterSystem()

Purpose: Register a new system with given systemName, organizationName, and optional
facilityName. Successful registration will trigger generation of the
SystemRegistration event. Figure A-2 provides an example orchestration sequence
demonstrating the use of this method.

Request Data: dataName (Data Type) : Data description.

systemName (String) : The name of the system.
— organizationName (String) : The name of the organization that owns the system.

— facilityName (String) : (Optional) The name of the user facility or
sub-organization that manages operation of the system.

— systemSecret (Bytes) : (Optional) A system secret for use in verifying registrations
of system components.

— requestedId (UUID) : (Optional) The requested UUID for the system.
Reply Data: dataName (Data Type) : Data description.

— systemId (UUID) : The assigned UUID for the system, or an INVALID_UUID value
(e.g., all zeroes) if the registration failed.

— errorMsg (String) : (Optional) An error message describing why the system could
not be successfully registered.

e GetSystemUUID()

Purpose: Get the assigned UUID for the given systemName, organizationName, and
optional facilityName.

Request Data: dataName (Data Type) : Data description.
— systemName (String) : The name of the system.
— organizationName (String) : The name of the organization that owns the system.

— facilityName (String) : (Optional) The name of the user facility or
sub-organization that manages operation of the system.

Reply Data: dataName (Data Type) : Data description.

56

— systemId (UUID) : The assigned UUID for the system, or an INVALID_UUID value
(e.g., all zeroes) if the lookup failed.

— errorMsg (String) : (Optional) An error message describing why the system lookup
failed.

e RegisterSubsystem()

Purpose: Register a new subsystem of the given parent system. Successful registration will
trigger generation of the SubsystemRegistration event.

Request Data: dataName (Data Type) : Data description.

subsystemName (String) : The name of the subsystem.

systemId (UUID) : The UUID of the parent system.

systemSecret (Bytes) : (Optional) Secret key for the system for use in verifying
registrations of system components.

requestedId (UUID) : (Optional) The requested UUID for the subsystem.
Reply Data: dataName (Data Type) : Data description.

— subsystemId (UUID) : The assigned UUID for the subsystem, or an INVALTID_UUID
value (e.g., all zeroes) if the registration failed.

— errorMsg (String) : (Optional) An error message describing why the subsystem
could not be successfully registered.

e GetSubsystemUUID()
Purpose: Get the assigned UUID for the given subsystemName.
Request Data: dataName (Data Type) : Data description.
— systemId (UUID) : The UUID of the parent system.
— subsystemName (String) : The name of the subsystem.
Reply Data: dataName (Data Type) : Data description.

— subsystemId (UUID) : The assigned UUID for the subsystem, or an INVALID_UUID
value (e.g., all zeroes) if the lookup failed.

— errorMsg (String) : (Optional) An error message describing why the subsystem
lookup failed.

e RegisterSystemResource()

Purpose: Register a new resource within the given parent system. Successful registration will
trigger generation of the SystemResourceRegistration event. Figure A-3 provides an
example orchestration sequence demonstrating the use of this method.

Request Data: dataName (Data Type) : Data description.

— resourceName (String) : The name of the system resource.

57

— systemId (UUID) : The UUID of the parent system.

— systemSecret (Bytes) : (Optional) Secret key for the system for use in verifying
registrations of system components.

— requestedId (UUID) : (Optional) The requested UUID for the resource.
Reply Data: dataName (Data Type) : Data description.

— resourceld (UUID) : The assigned UUID for the system resource, or an
INVALID_UUID value (e.g., all zeroes) if the registration failed.

— errorMsg (String) : (Optional) An error message describing why the system
resource could not be successfully registered.

e GetSystemResourceUUID()
Purpose: Get the assigned UUID for the given resourceName,.
Request Data: dataName (Data Type) : Data description.
— systemId (UUID) : The UUID of the parent system.
— resourceName (String) : The name of the system resource.
Reply Data: dataName (Data Type) : Data description.

— resourceld (UUID) : The assigned UUID for the system resource, or an
INVALID_UUID value (e.g., all zeroes) if the lookup failed.

— errorMsg (String) : (Optional) An error message describing why the system
resource lookup failed.

e RegisterSystemService()

Purpose: Register a new service within the given parent system, with optional association to a
given subsystem. Successful registration will trigger generation of the
SystemServiceRegistration event. Figure A-4 provides an example orchestration
sequence demonstrating the use of this method.

Request Data: dataName (Data Type) : Data description.

serviceName (String) : The name of the system service (e.g., <hostname>.<pid>).

systemId (UUID) : The UUID of the parent system.

subsystemId (UUID) : (Optional) The UUID of the associated subsystem.

systemSecret (Bytes) : (Optional) Secret key for the system for use in verifying
registrations of system components.

requestedId (UUID) : (Optional) The requested UUID for the service.
Reply Data: dataName (Data Type) : Data description.

— servicelId (UUID) : The assigned UUID for the system service, or an INVALID_UUID
value (e.g., all zeroes) if the registration failed.

58

— errorMsg (String) : (Optional) An error message describing why the system service
could not be successfully registered.

e GetSystemServiceUUID()
Purpose: Get the assigned UUID for the given serviceName,.
Request Data: dataName (Data Type) : Data description.
— systemId (UUID) : The UUID of the parent system.
— subsystemId (UUID) : (Optional) The UUID of the associated subsystem.
— serviceName (String) : The name of the system service.
Reply Data: dataName (Data Type) : Data description.

— serviceld (UUID) : The assigned UUID for the system service, or an INVALID_UUID
value (e.g., all zeroes) if the lookup failed.

— errorMsg (String) :(Optional) An error message describing why the system service
lookup failed.

Interactions: Asynchronous Status
e SystemRegistration
Purpose: Notification of new system registrations.

Event Data: dataName (Data Type) : Data description.

systemId (UUID) : The assigned UUID for the system.

systemName (String) : The name of the system.

organizationName (String) : The name of the organization that owns the system.

facilityName (String) : (Optional) The name of the user facility or
sub-organization that manages operation of the system.

e SubsystemRegistration
Purpose: Notification of new subsystem registrations.
Event Data: dataName (Data Type) : Data description.
— systemId (UUID) : The parent system UUID.
— subsystemId (String) : The assigned UUID of the subsystem.
— subsystemName (String) : The name of the subsystem.
e SystemResourceRegistration
Purpose: Notification of new system resource registrations.
Event Data: dataName (Data Type) : Data description.
— systemId (UUID) : The parent system UUID.

59

— resourcelId (UUID) : The assigned system resource UUID.
— resourceName (String) : The name of the system resource.
e SystemServiceRegistration
Purpose: Notification of new system service registrations.

Event Data: dataName (Data Type) : Data description.

systemId (UUID) : The parent system UUID.

subsystemId (UUID) : The subsystem UUID, or an INVALID_UUID value (e.g., all
zeroes) if the service is not associated to a subsystem.

serviceld (UUID) : The assigned system service UUID.

serviceName (String) : The name of the system service.

3.2.4 INTERSECT Resource Adapters
3.24.1 Compute Adapters

Compute adapters broadly represent the ability to leverage local or remote computational resources to
process data or run applications. For the INTERSECT Open Architecture, four types of computational
resources are expected to be employed: (1) HPC systems, (2) cloud computing systems, (3) edge
computing systems, and (4) individual host computers. HPC systems provide large-scale computational
support for scientific modeling and simulation, high-throughput processing, and model training for Al
using high-performance compute, storage, and networking hardware. Cloud computing systems provide
general-purpose computational support using commodity server-based compute, storage, and networking
hardware. A given cloud computing system may exist within an organization (i.e., a private cloud) or be
publicly available on the Internet (i.e., a public cloud). Edge computing systems provide computational
support for low latency processsing of data produced by nearby sources (e.g., sensors or scientific
instruments) using a variety of hardware (e.g., high-performance, commodity, or embedded). For host
computing, the designated host may exist within an HPC, cloud, or edge computing system.

There are two computing abstractions commonly provided by compute resources: batch computing or
on-demand computing. Batch computing provides adapters to batch job systems (e.g., IBM Spectrum Load
Sharing Facility (LSF), Portable Batch System (PBS), and Simple Linux Utility for Resource Management
(SLURM)) to schedule, run, and monitor jobs across one or more job queues. Because batch computing
systems are shared amongst many concurrent users with varied resource requirements and scheduling
priorities, batch jobs have unpredictable completion latencies. Jobs may be queued for several hours or
even days before being allocated resources to run. In contrast, on-demand computing provides
instantaneous allocation when the requested resources are available, or the request will be immediately
rejected. On-demand computing is currently not widely supported by HPC systems, but is readily available
in cloud or edge environments.

60

3.2.4.2 Capability: Compute Allocation

Description: Interact with computing systems to allocate immediate access to a set of compute hosts for a
specified period of time. Figure A-6 shows an example orchestration seqence for on-demand
allocation of computing resources. Figure A-7 shows an example orchestration seqence for running
an application program within an allocation of computing resources.

Interactions: Command
e ReleaseAllocation()
Purpose: Release an existing compute system allocation.
Command Data: dataName (Data Type) : Data description.
— allocationlId (String) : The compute system allocation identifier.
e RunInAllocation()

Purpose: Run a program using the given run options and program arguments within an
existing compute system allocation.

Command Data: dataName (Data Type) : Data description.

runName (String) : The name for the run.

allocationId (String) : The compute system allocation identifier.

runOptions (List<String>) : The run options for the compute resource manager.
The format of the provided options is unspecified and may vary across compute
resource managers.

programArgs (List<String>) : The full program arguments. The first argument in
the list should be the local file path to the program executable.

Interactions: Request-Reply
e CreateAllocation()
Purpose: Create a compute system allocation.
Request Data: dataName (Data Type) : Data description.
— hostCount (Integer) : The number of compute hosts to allocate.
— wallTime (TimeDuration) : The requested walltime for the allocation.

— featureMatchCriteria (List< KeyVal<String> >): An optional list of
key-value parameters to use in selection of compute system hosts with desired
features.

Reply Data: dataName (Data Type) : Data description.

— allocationlId (String) : The compute system allocation identifier.

61

— errorMsg (String) : (Optional) An error message describing why the requested
allocation could not be granted.

e GetAllocationDetails()

Purpose: Request detailed allocation information as a list of key-value pairs for the given
allocation, such as the allocation start and end times and resources included within the
allocation. The format of the keys and values in the returned information is unspecified
and may vary across computing systems.

Request Data: dataName (Data Type) : Data description.
— allocationId (String) : The compute system allocation identifier.
Reply Data: dataName (Data Type) : Data description.

— allocationDetails (List< KeyVal<String> >): The detailed allocation
information for the given allocationId.

— errorMsg (String) : (Optional) An error message describing why the requested
compute system allocation information could not be returned for the given
allocationId.

e GetAllocationInfo()

Purpose: Request summary information for the given allocation, such as the set of allocated
compute hosts and their features. The format of the returned information is unspecified
and may vary across computing systems.

Request Data: dataName (Data Type) : Data description.
— allocationld (String) : The compute system allocation identifier.
Reply Data: dataName (Data Type) : Data description.

— allocationInfo (String) : The summary allocation information for the given
allocationId.

— errorMsg (String) : (Optional) An error message describing why the requested
compute system allocation information could not be returned for the given
allocationId.

e GetAllocationStatus()
Purpose: Request current status for the given allocation.
Request Data: dataName (Data Type) : Data description.
— allocationId (String) : The compute system allocation identifier.
Reply Data: dataName (Data Type) : Data description.

— allocationStatus (String) : The compute system allocation status information for
the given allocationId (e.g., "ALLOCATION_ACTIVE", or
"ALLOCATION_ENDED").

62

— errorMsg (String) : (Optional) An error message describing why the requested
compute system allocation status could not be returned for the given allocationId.

e GetRunDetails()

Purpose: Request detailed information as a list of key-value pairs for the run associated with
the given name. The format of the keys and values in the returned information is
unspecified and may vary across computing systems.

Request Data: dataName (Data Type) : Data description.
— runName (String) : The name of the run.
Reply Data: dataName (Data Type) : Data description.

— runDetails (List< KeyVal<String> >): The detailed run information for the
given runName.

— errorMsg (String) : (Optional) An error message describing why the requested
compute system run information could not be returned for the given runName.

e GetRunStatus()
Purpose: Request current status for the run associated with the given name.
Request Data: dataName (Data Type) : Data description.
— runName (String) : The name of the run.
Reply Data: dataName (Data Type) : Data description.

— runStatus (String) : The compute system alloruncation status information for the
given runName (e.g., "RUN_IN_PROGRESS", "RUN_FAILED", or
"RUN_COMPLETED").

— errorMsg (String) : (Optional) An error message describing why the requested
compute system run status could not be returned for the given runName.

Interactions: Asynchronous Status
e ComputeAllocationStatusChange
Purpose: Notification of compute system allocation status changes.
Event Data: dataName (Data Type) : Data description.
— allocationId (String) : The compute system allocation identifier.

— allocationStatus (String) : The compute system allocation status information for
the given allocationId (e.g., "ALLOCATION_ACTIVE",
"ALLOCATION_ENDED", or "TALLOCATION_EXPIRED").

— statusDetails (String) : (Optional) Additional information further detailing the
current status.

e ComputeRunStatusChange

63

Purpose: Notification of compute system allocation status changes.

Event Data: dataName (Data Type) : Data description.

allocationld (String) : The identifier of the compute system allocation containing
the run.

runName (String) : The name of the run.

runStatus (String) : The compute system run status information for the given
runName (e.g., "RUN_IN_PROGRESS", "RUN_FAILED", or
"RUN_COMPLETED").

statusDetails (String) : (Optional) Additional information further detailing the
current status.

64

3.2.4.3 Capability: Compute Queue

Description: Interact with batch job queueing systems to run compute jobs and monitor job and queue
status. Figure A-9 shows an example orchestration seqence for running an application program
within a batch computing job.

Related Capabilities: Extends

o Parameter Configuration
Interactions: Command

e Cancellob()

Purpose: Cancel a batch job. Only valid for jobs with jobStatus of "JOB_QUEUED" or
"JOB_RUNNING".

Command Data: dataName (Data Type) : Data description.
— jobId (String) : The job identifier for the batch job.
e HoldJob()

Purpose: Place a queue hold on a batch job. Only valid for jobs in the "JOB_QUEUED"
jobStatus.

Command Data: dataName (Data Type) : Data description.
— jobId (String) : The job identifier for the batch job.
e Releaselob()

Purpose: Release a queue hold on a batch job. Only valid for jobs in the "JOB_HELD"
jobStatus.

Command Data: dataName (Data Type) : Data description.
— jobId (String) : The job identifier for the batch job.
Interactions: Request-Reply
e GetJobInfo()

Purpose: Request detailed job information. The format of the returned information is
unspecified and may vary across batch job queueing systems.

Request Data: dataName (Data Type) : Data description.
— jobId (String) : The job identifier for the batch job.
Reply Data: dataName (Data Type) : Data description.
— jobInfo (String) : The detailed job information for the given jobId.

— errorMsg (String) : (Optional) An error message describing why the requested job
information could not be returned for the given jobId.

65

e GetJobStatus()
Purpose: Request the current job status.
Request Data: dataName (Data Type) : Data description.
— jobId (String) : The job identifier for the batch job.
Reply Data: dataName (Data Type) : Data description.

— jobStatus (String) : The job status information for the given jobId (e.g.,
"JOB_QUEUED", "JOB_HELD", "JOB_RUNNING", or "JOB_COMPLETED").

— errorMsg (String) : (Optional) An error message describing why the requested job
status could not be returned for the given jobId.

e GetQueueInfo()

Purpose: Request detailed queue information, such as job resource limits. The format of the
returned information is unspecified and may vary across batch job queueing systems.

Request Data: dataName (Data Type) : Data description.
— queueld (String) : The identifier for the batch queue.
Reply Data: dataName (Data Type) : Data description.
— queuelInfo (String) : The detailed queue information for the given queueId.

— errorMsg (String) : (Optional) An error message describing why the requested
queue information could not be returned for the given queueId.

e GetQueueStatus()
Purpose: Request the current queue status.
Request Data: dataName (Data Type) : Data description.
— queueld (String) : The identifier for the batch queue.
Reply Data: dataName (Data Type) : Data description.

— queueStatus (String) : The queue status information for the given queueld (e.g.,
"QUEUE_ENABLED", "QUEUE_DISABLED", or "QUEUE_PAUSED").

— errorMsg (String) : (Optional) An error message describing why the requested
queue status could not be returned for the given queueId.

e ListQueues()
Purpose: Request the list of batch queues.
Request Data: None
Reply Data: dataName (Data Type) : Data description.

— queueldList (StringList): A list of batch queue identifiers (i.e., queueld).

66

e SubmitJob()
Purpose: Submit a job script to a particular batch queue.
Request Data: dataName (Data Type) : Data description.
— queueld (String) : The identifier for the batch queue.
— jobScript (Filepath) : The file name of the job script.

— submitArgs (List< KeyVal<String> >): A list of key-value parameters for use as
arguments to the batch job queueing system submission command. The parameter
names may vary across batch job queueing systems, and may be queried via the
Parameter Configuration capability.

Reply Data: dataName (Data Type) : Data description.
— jobId (String) : The identifier for the submitted job.

— errorMsg (String) : (Optional) An error message describing why the job could not
be submitted to the given queueId.

Interactions: Asynchronous Status
e JobStatusChange
Purpose: Notification of job status changes.
Event Data: dataName (Data Type) : Data description.
— jobId (String) : The job identifier for the batch job.

— jobStatus (String) : The job status information for the given jobId (e.g.,
"JOB_QUEUED", "JOB_HELD", "JOB_RUNNING", or "JOB_COMPLETED").

e QueueStatusChange
Purpose: Notification of queue status changes.
Event Data: dataName (Data Type) : Data description.
— queueld (String) : The identifier for the batch queue.

— queueStatus (String) : The queue status information for the given queueld (e.g.,
"QUEUE_ENABLED", "QUEUE_DISABLED", or "QUEUE_PAUSED").

67

3.2.4.4 Capability: Compute Queue Reservation

Description: Interact with batch queueing systems to reserve dedicated compute system access, either at a
specified time or by some deadline.

Related Capabilities: Extends

o Compute Queue
Interactions: Command

e CancelReservation()

Purpose: Cancel a batch queue reservation. Only valid for reservations with
reservationStatus of "RESERVATION_GRANTED".

Command Data: dataName (Data Type) : Data description.
— reservationId (String) : The batch queue reservation identifier.
Interactions: Request-Reply
e CreateReservation()
Purpose: Create a batch queue reservation at a specific time.

Request Data: dataName (Data Type) : Data description.

queueld (String) : The identifier for the batch queue.

hostCount (Integer) : The number of compute hosts to reserve.

wallTime (TimeDuration) : The requested walltime for the reservation.

startTime (Timestamp) : The requested start time for the reservation.
Reply Data: dataName (Data Type) : Data description.
— reservationId (String) : The batch queue reservation identifier.

— errorMsg (String) : (Optional) An error message describing why the requested
batch queue reservation could not be granted.

e CreateDeadlineReservation()

Purpose: Create a batch queue reservation that should end no later than a specified time
deadline.

Request Data: dataName (Data Type) : Data description.
— queueld (String) : The identifier for the batch queue.
— hostCount (Integer) : The number of compute hosts to reserve.

— wallTime (TimeDuration) : The requested walltime for the reservation.

68

— deadlineTime (Timestamp) : The requested deadline time for the end of the
reservation.

Reply Data: dataName (Data Type) : Data description.
— reservationId (String) : The batch queue reservation identifier.

— errorMsg (String) : (Optional) An error message describing why the requested
batch queue reservation could not be granted.

GetReservationStatus()
Purpose: Request the current reservation status.
Request Data: dataName (Data Type) : Data description.
— reservationld (String) : The batch queue reservation identifier.
Reply Data: dataName (Data Type) : Data description.

— reservationStatus (String) : The batch queue reservation status information for
the given reservationId (e.g., "RESERVATION_GRANTED",
"RESERVATION_ACTIVE", or "RESERVATION_ENDED").

— errorMsg (String) : (Optional) An error message describing why the requested
batch queue reservation status could not be returned for the given reservationId.

SubmitJobToReservation()
Purpose: Submit a job script to a particular batch queue reservation.
Request Data: dataName (Data Type) : Data description.
— reservationId (String) : The batch queue reservation identifier.
— jobScript (Filepath) : The file name of the job script.

— submitArgs (List< KeyVal<String> >): A list of key-value parameters for use as
arguments to the batch job queueing system submission command. The parameter
names may vary across batch job queueing systems.

Reply Data: dataName (Data Type) : Data description.
— jobId (String) : The identifier for the submitted job.

— errorMsg (String) : (Optional) An error message describing why the job could not
be submitted to the given reservationId.

Interactions: Asynchronous Status

e ReservationStatusChange

Purpose: Notification of batch queue reservation status changes.
Event Data: dataName (Data Type) : Data description.

— reservationId (String) : The batch queue reservation identifier.

69

— reservationStatus (String) : The batch queue reservation status information for
the given reservationId (e.g., "RESERVATION_GRANTED",
"RESERVATION_ACTIVE", or "RESERVATION_ENDED").

70

3.2.4.5 Capability: Application Execution

Description: Executes a packaged application on a computing system. A packaged application is one that
has been previously deployed and configured for use on the target computing system. Packaged
applications should also integrate with INTERSECT Data and Information Management services to
store and publish any data products or streams.

Related Capabilities: Extends
o Parameter Configuration
Related Capabilities: Requires
o Compute Allocation OR Compute Queue
Interactions: Command
e RunApplication()
Purpose: Run the application using the given runParameters.
Command Data: dataName (Data Type) : Data description.
— runld (String) : The client’s identifier for the application run.

— runParameters (List< KeyVal<String> >): A list of key-value parameters to
control execution behavior. The parameter names may vary across applications and
may be queried via the Parameter Configuration capability.

Interactions: Request-Reply
e GetApplicationExecutionStatus()
Purpose: Request the current execution status for the given runId..
Request Data: dataName (Data Type) : Data description.
— runld (String) : The client’s identifier for the application run.
Reply Data: dataName (Data Type) : Data description.

— execStatus (String) : The execution status information for the given runId (e.g.,
"EXECUTION_PENDING", "EXECUTION_IN_PROGRESS",
"EXECUTION_COMPLETED", or "EXECUTION_FAILED").

— failurelMsg (String) : (Optional) When the application execution has failed, an
error message describing any available details of the failure.

— errorMsg (String) : (Optional) An error message describing why the requested
execution status could not be returned for the given runId.

e GetApplicationDescription()

71

Purpose: Request a textual description of the application. The description should include
information regarding the intended purpose of the application, how it was packaged (e.g.,
associated source code and versions), and how it was configured for the target system.

Reply Data: dataName (Data Type) : Data description.
— appDescription (String) : The application description text.
Interactions: Asynchronous Status
e ApplicationExecutionStatusChange
Purpose: Notification of application execution status changes.
Event Data: dataName (Data Type) : Data description.
— runld (String) : The client’s identifier for the application run.

— execStatus (String) : The execution status information for the given runId (e.g.,
"EXECUTION_PENDING", "EXECUTION_IN_PROGRESS",
"EXECUTION_COMPLETED", or "EXECUTION_FAILED").

72

3.2.4.6 Capability: Container Execution

Description: Executes a containerized application on a computing system.
Related Capabilities: Extends
o Parameter Configuration
Related Capabilities: Requires
e Compute Allocation OR Compute Queue
Interactions: Command
e BuildContainerImage()

Purpose: Build and store for later use a container image with given imageName using the
given image and build parameters. If the image is built successfully, will trigger the
ContainerImageAvailable event.

Command Data: dataName (Data Type) : Data description.
— imageName (String) : The name to use for the container image.

— imageSpec (String) : The build context for the container image (e.g., a local file
path or URL).

— imageFile (String) : (Optional) The file name relative to the build context that
contains the image build commands.

— buildParameters (List< KeyVal<String> >): (Optional) A list of key-value
parameters to control build behavior. The parameter names may vary across container
environments and may be queried via the Parameter Configuration capability.

e RemoveContainerImage()

Purpose: Remove a previously built container image with given imageName. If the image is
successfully removed, will trigger the ContainerImageRemoval event.

Command Data: dataName (Data Type) : Data description.
— imageName (String) : The name to use for the container image.
Interactions: Request-Reply
e RunContainer()

Purpose: Build and run the container application using the given image, build, and run
parameters. The image is not stored for later use. The reply should be delayed until a build
or run error is encountered, or until the container has been successfully launched.

Request Data: dataName (Data Type) : Data description.

— runld (String) : The client’s identifier for the container application’s execution.

73

— imageSpec (String) : The build context for the container image (e.g., a local file
path or URL).

— imageFile (String) : (Optional) The file name relative to the build context that
contains the image build commands.

— buildParameters (List< KeyVal<String> >): (Optional) A list of key-value
parameters to control build behavior. The parameter names may vary across container
environments and may be queried via the Parameter Configuration capability.

— runParameters (List< KeyVal<String> >): (Optional) A list of key-value
parameters to control container execution behavior. The parameter names may vary
across container environments and may be queried via the Parameter Configuration
capability.

Reply Data: dataName (Data Type) : Data description.

— buildErrorMsg (String) : (Optional) An error message describing why the
container image could not be built.

— runErrorlsg (String) : (Optional) An error message describing why the container
application could not be launched.

e RunContainerFromImage()
Purpose: Run the container application using the given imageName and run parameters.
Request Data: dataName (Data Type) : Data description.
— runld (String) : The client’s identifier for the container application’s execution.
— imageName (String) : The name of the container image to use.

— runParameters (List< KeyVal<String> >): (Optional) A list of key-value
parameters to control container execution behavior. The parameter names may vary
across container environments and may be queried via the Parameter Configuration
capability.

Reply Data: dataName (Data Type) : Data description.

— errorMsg (String) : (Optional) An error message describing why the container
application could not be launched.

e GetContainerExecutionStatus()
Purpose: Request the current execution status for the given runId.
Request Data: dataName (Data Type) : Data description.
— runld (String) : The client’s identifier for the container application’s execution.

Reply Data: dataName (Data Type) : Data description.

74

— execStatus (String) : The execution status information for the given runId (e.g.,
"EXECUTION_IN_PROGRESS", "EXECUTION_COMPLETED", or
"EXECUTION_FAILED").

— failurelMsg (String) : (Optional) When the container execution has failed, an error
message describing any available details of the failure.

— errorMsg (String) : (Optional) An error message describing why the requested
execution status could not be returned for the given runId.

Interactions: Asynchronous Status
e ContainerExecutionStatusChange
Purpose: Notification of container application execution status changes.
Event Data: dataName (Data Type) : Data description.
— runId (String) : The client’s identifier for the container application’s execution.

— execStatus (String) : The execution status information for the given runId (e.g.,
"EXECUTION_IN_PROGRESS", "EXECUTION_COMPLETED", or
"EXECUTION_FAILED").

e ContainerImageAvailable
Purpose: Notification of container image availability.
Event Data: dataName (Data Type) : Data description.
— imageName (String) : The name of the container build image.
e ContainerImageRemoval
Purpose: Notification of container image removal.
Event Data: dataName (Data Type) : Data description.

— imageName (String) : The name of the container build image.

75

3.2.4.7 Capability: Host Command Execution

Description: Executes an arbitrary host command on a computing system.
Related Capabilities: Requires

o Compute Allocation OR Compute Queue
Interactions: Request-Reply

e RunHostCommand ()

Purpose: Run a host system command with optional environment settings and return the exit
code. No command output is captured.

Request Data: dataName (Data Type) : Data description.
— command (String) : The full command to run.

— runEnvironment (List< KeyVal<String> >): (Optional) A list of key-value
environment settings to use during command execution.

Reply Data: dataName (Data Type) : Data description.
— exitCode (Integer) : The exit status of the command.

— errorMsg (String) : (Optional) An error message describing why the system
command could not be run.

e RunHostCommandWithOutputFiles()

Purpose: Run a host system command with optional environment settings and return the exit
code. Command output is captured in the given local file(s).

Request Data: dataName (Data Type) : Data description.

command (String) : The full command to run.

— stdoutFile (Filepath) : The absolute path to a local file that should be used to
capture the stdout of the command.

— stderrFile (Filepath) : The absolute path to a local file that should be used to
capture the stderr of the command. If both stdout and stderr should be combined in
one file, then stdoutFile and stderrFile should both refer to the same file.

— runEnvironment (List< KeyVal<String> >): (Optional) A list of key-value
environment settings to use during command execution.

Reply Data: dataName (Data Type) : Data description.
— exitCode (Integer) : The exit status of the command.

— errorMsg (String) : (Optional) An error message describing why the system
command could not be run.

76

3.3 EXPERIMENT-SPECIFIC MICROSERVICE CAPABILITIES

In this section, we classify INTERSECT experiment-specific microservices into three groups according to
their purpose: (1) Experiment Control, (2) Management of Experiment Data, and (3) Experiment Design.

3.3.1 Experiment Control Microservices

Services for experiment control enable the execution of planned tests using scientific resources. Typical
activities include validating test configurations, configuring the resource(s) to match the desired test
configurations, and initiating and monitoring the execution of tests.

3.3.1.1 Instrument Adapters

Instrument adapters provide command and control and state inspection functionality for scientific
instruments (e.g., electron microscopes, chemical reactors, neutron detectors, robots, etc.). These adapters
typically must integrate with instrument control software such as ROS [29] or EPICS [4]. The capabilities
provided by instrument adapters should abstract away the operational details of controlling instruments and
examining their state or data products. Instead, they should offer high-level functionality that in turn
orchestrates potentially complex sequences of instrument control software actions. Instrument adapters
should also integrate with INTERSECT Data and Information Management services to store and publish
any data products or streams.

77

3.3.1.2 Capability: Instrument Controller

Description: Interact with scientific instruments to initiate and control their actions and activities, and to
query their operational state or retrieve data products. Instrument actions are intended to correspond
to idempotent command or control operations such as moving a physical object to a specific location,
and are not expected to generate data products. The completion status for actions should be reported
via events where applicable. Instrument activities are intended to correspond to sequences of
instrument control software actions that may result in data products.

Related Capabilities: Extends

o Parameter Configuration
Interactions: Command

e PerformAction()

Purpose: Perform an instrument action. When the action completes, triggers the
InstrumentActionCompletion event.

Command Data: dataName (Data Type) : Data description.
— actionName (String) : The name of the action to perform.

— actionOptions (List< KeyVal<String> >): (Optional) A list of key-value
options associated with the action. The option names may be queried via the
Parameter Configuration capability.

e CancelActivity(Q)

Purpose: Cancel an ongoing activity. On successful completion, triggers the
InstrumentActivityStatusChange event with "ACTIVITY_CANCELED" as the
status.

Command Data: dataName (Data Type) : Data description.
— activityId (String) : The activity identifier.
— reason (String) : A description of the reason for canceling the activity.
Interactions: Request-Reply
e GetActionDescription()

Purpose: Request a textual description of the action. The description should include
information regarding the intended purpose of the action.

Request Data: dataName (Data Type) : Data description.
— actionName (String) : The name of the instrument action.
Reply Data: dataName (Data Type) : Data description.

— actionDescription (String) : The action description text.

78

e GetActivityDescription()

Purpose: Request a textual description of the activity. The description should include
information regarding the intended purpose of the activity and a summary of any data
products.

Request Data: dataName (Data Type) : Data description.
— activityName (String) : The name of the instrument activity.
Reply Data: dataName (Data Type) : Data description.
— activityDescription (String) : The activity description text.
e GetActivityData()
Purpose: Request a list of the data products generated by the given activityId.
Request Data: dataName (Data Type) : Data description.
— activityId (String) : The unique activity identifier.
Reply Data: dataName (Data Type) : Data description.

— products (List<UUID>) : A list of UUIDs for the data products generated by the
activity.

— errorMsg (String) : (Optional) An error message describing why the requested data
product list could not be returned for the given activityId.

e GetActivityStatus()
Purpose: Request the current status for the given activityId..
Request Data: dataName (Data Type) : Data description.
— activityId (String) : The unique activity identifier.
Reply Data: dataName (Data Type) : Data description.

— activityStatus (String) : The status information for the given activityId (e.g.,
"ACTIVITY_PENDING", "ACTIVITY_IN_PROGRESS",
"ACTIVITY_CANCELED", "ACTIVITY_COMPLETED", or
"ACTIVITY_FAILED").

— statusMsg (String) : (Optional) When the activity has been canceled or failed, a
message describing any available details.

— errorMsg (String) : (Optional) An error message describing why the requested
activity status could not be returned for the given activityId.

e ListActions()
Purpose: Request a list of the valid action names.

Reply Data: dataName (Data Type) : Data description.

79

— actionNames (List<String>) : The list of valid action names.

— errorMsg (String) : (Optional) An error message describing why the action list
could not be returned.

e ListActivities()
Purpose: Request a list of the valid activity names.
Reply Data: dataName (Data Type) : Data description.
— actionNames (List<String>) : The list of valid activity names.

— errorMsg (String) : (Optional) An error message describing why the activity list
could not be returned.

e StartActivity()

Purpose: Initiate an instrument activity and return a unique identifier. Changes in the activity’s
status should trigger the InstrumentActivityStatusChange event.

Request Data: dataName (Data Type) : Data description.
— activityName (String) : The name of the activity to perform.

— activityOptions (List< KeyVal<String> >): (Optional) A list of key-value
options associated with the activity. The option names may be queried via the
Parameter Configuration capability.

— activityDeadline (Timestamp) : (Optional) A deadline timestamp for completion
of the activity. If the activity has not completed by the given deadline, the activity
should be canceled and any intermediate data products should be deleted.

Reply Data: dataName (Data Type) : Data description.
— activityId (String) : The unique identifier for the activity.

— errorMsg (String) : (Optional) An error message describing why the requested
activity could not be started.

Interactions: Asynchronous Status
e InstrumentActionCompletion
Purpose: Notification of instrument action completion.

Event Data: dataName (Data Type) : Data description.

actionName (String) : The instrument action name.
— actionTimeBegin (Timestamp) : The timestamp when the action was initiated.
— actionTimeEnd (Timestamp) : The timestamp when the action was completed.

— actionStatus (String) : The instrument action status information (e.g.,
"ACTION_SUCCESSFUL", or "ACTION_FAILED").

80

— failurelMsg (String) : (Optional) When the action has failed, a message describing
any available details.

e InstrumentActivityStatusChange
Purpose: Notification of instrument activity status changes.

Event Data: dataName (Data Type) : Data description.

activityId (String) : The unique activity identifier.
— activityName (String) : The activity name.

— activityStatus (String) : The instrument activity status information for the given
activityId (e.g., "ACTIVITY_PENDING", "ACTIVITY_IN_PROGRESS",
"ACTIVITY_CANCELED", "ACTIVITY_COMPLETED", or
"ACTIVITY_FAILED").

— statusMsg (String) : (Optional) When the activity has been canceled or failed, a
message describing any available details.

3.3.2 Experiment Data Microservices

Experiment Data services are focused on acquisition of raw test data from scientific resources, initial
analysis and validation of that data, and making experiment results available for use by further activities in
a campaign workflow.

3.3.3 Experiment Design Microservices

Services for Experiment Design support development and refinement of experiment plans that are used by
Experiment Control services to execute experiments on scientific resources. Typical activities include
creating and validating experiment plans, and refinement of existing plans based on objective-based
analysis of prior experimental results or design space exploration criteria.

The Experiment Steering science use case design pattern is a form of experiment plan refinement that is
limited to updating the test parameters of an existing plan. In contrast, the Design of Experiments science
use case design pattern involves generating new experiment plans that may involve changes to test
parameters, test sequencing, or the component tests of the plan.

81

4 ORCHESTRATION AND DEPLOYMENT OF INTERSECT MICROSERVICES

This section introduces microservices architecture design patterns for orchestration and deployment.

4.1 MICROSERVICE ORCHESTRATION DESIGN PATTERNS

Orchestration design patterns are concerned with how microservices work together to accomplish the goals
of a specific application use case.

4.1.1 Asynchronous Messaging vs. RESTful Services

As previously introduced in Section 2.1, there are two common communication architectures used for
microservices: client-server and asynchronous messaging. Here we describe the relative merits of each
communication architecture, followed by example approaches for implementing the common interaction
patterns introduced in Section 2.3 using each architecture.

The predominant approach to client-server communication architecture involves RESTful microservices
that provide a synchronous request-response model based on representational state transfer over HTTP.
Such a 1:1 pattern is suitable for many forms of requests, including control commands and simple
information queries. However, the use of synchronous request-response is not advisable for 1:N
interactions where one request is sent to many services, due to the serialization of the requests at the client
and the resulting impact to completion latency. Furthermore, the use of RESTful services for use cases
involving many microservices often leads to tight coupling that reduces reuse and service independence.

Asynchronous messaging supports both 1:1 and 1:N communication patterns using a message broker that
delivers messages associated with a specific topic to any interested parties. When the messages represent
events, this communication architecture is often referred to as an event-based architecture. Additional
benefits of asynchronous messaging include the ability to independently scale clients and servers, support
for concurrent providers of the same service, support for transient services, and simplified communication
context management due to the use of a central message broker.

Figure 4-1 shows a typical implementation strategy for the Command Interaction Pattern using both
client-server communication and asynchronous messaging. With client-server communication, sending the
Command message involves use of an HTTP POST operation, and the message receipt status
acknowledgement maps directly to the HTTP response status. With asynchronous messaging, it is assumed
the target microservice has previously subscribed to the topic used for receiving commands, and the client
uses a PUBLISH operation to issue the Command. The receipt status acknowledgement would typically
come from a message broker to indicate whether the Command has been successfully queued for later
delivery, rather than from the target microservice.

Figure 4-2 shows a typical implementation strategy for the Request-Reply Interaction Pattern using both
client-server communication and asynchronous messaging. With client-server communication, sending the
Request message takes the form of an HTTP GET operation, and the Reply uses the message body of the
HTTP response to return the requested information. With asynchronous messaging, it is assumed the target
microservice has previously subscribed to the topic used for receiving requests, and the client uses a
PUBLISH operation to that topic to issue the Request. The Reply in asynchronous messaging
corresponds to a PUBLISH operation performed by the microservice. The topic used for the reply is often

82

Microservice

POST-response

SUBSCRIBE-response

PubSub Message Microservice
Client Broker
— SUBSCRIBE Command-Topic -
! <

PUBLISH Command-Topic Command—Dama;r—
<

PUBLISH-response

--------------------------------------- 1 Command-Topic : Command-Data

-1

Figure 4-1. Command Interaction Pattern for Client-Server and Asynchronous Messaging

included within the Request message contents, or is otherwise made known to the microservice prior to
the Request.

As shown in Figure 4-3, the Asynchronous Status or Event Interaction Pattern is easily implemented using
a PUBLISH operation with asynchronous messaging, where interested clients are assumed to have
subscribed to the topic to which the Status or Event is sent. For Status messages, the topic should be
configured to provide message durability to ensure delivery to at least one subscriber. With client-server
communication, however, this pattern is more difficult to support and requires clients to first use a HTTP
POST message to register their interest in events with the microservice. Then, when the microservice needs
to send an Event or Status, it iterates to send an HTTP POST message to all interested clients.

4.1.2 Conductor vs. Choreography

Some application use cases involve a sequence of dependent requests to several microservices. The
dependencies may be a simple linear sequence where the response from one request is used to make the
next request, or more complex such as when multiple responses are combined to form a subsequent
request, or when some subset of the requests are actually independent and can be issued concurrently.

Rather than encode the (potentially complex) logic to manage these dependent requests in the client, a
common pattern is to offload this logic to another service which provides a simple request-response API to
the client. This pattern is known as the Conductor (or Orchestrator) pattern, as the service manages the
complexity of many microservices similar to an orchestra conductor managing the performance of many

83

REST

- Microservice
Client
' '
1 1
. GET Request-URI Request-Data .
! GET-response Response-Data !
1 1
PubSub Message Microservice
Client Broker
| . |
1 ' 1
! — SUBSCRIBE Request-Topic
' <
5 N
1
™) — SUBSCRIBE-response ;
SUBSCRIBE Response-Topic N '
» 1
Gy R '
.
SUBSCRIBE-response T '
: '
PUBLISH Request-Topic Request-Data ‘; :
» 1
SRR L EEEEEEEEE Request-Topic : Request-Data "
PUBLISH-response d
i
— PUBLISH Response-Topic Response-Data
P Response-Topic : Response-Data [[-===--=--=--=-----------mommommoommommomn >
< PUBLISH-response

Figure 4-2. Request-Reply Interaction Pattern for Client-Server and Asynchronous Messaging

instrumental sections. For RESTful microservices, the Conductor pattern is appropriate for managing
dependent requests. However, in asynchronous messaging architectures the Conductor pattern introduces
unnecessary synchronization and latency as responses must be delivered to the conductor, who must then
trigger any dependent requests.

For asynchronous messaging, the Choreography pattern is an alternative that translates request
dependencies into asynchronous events. Any dependent requests can commence upon receipt of the
completion event message for the prior request. The benefits of Choreography for completion latency
should be weighed against the need for additional coupling between microservices.

4.2 MICROSERVICE DEPLOYMENT DESIGN PATTERNS

Deployment design patterns focus on approaches that avoid common problems encoutered during software
development, operations, and maintenance of microservices.

Software development design patterns for microservices architecture exist to aid in decomposition and
composition. For decomposition, the patterns are useful for understanding how to properly abstract

84

REST . .
- Microservice
Client
: POST Svc-Event-URI Client-Data T
Ll
[< --]
POST-response T
' POST EventClient-URI Event-Data ! 4. for each client
[)
POST-response T
PubSub Message . .
’ Microservice
Client Broker

PUBLISH-response

[]4 Svc-Event-Topic : Event-Data = | |[-=-==--=--=--=-------c---c--mo-mo-ooomo-moos

Figure 4-3. Asynchronous Status or Event Interaction Pattern for Client-Server and Asynchronous
Messaging

functionality that is common to many microservices, such as the need for logging and monitoring, while
still retaining the benefits of service independence and reuse. Composition patterns are useful for
addressing problems related to how microservices coordinate within an application use case that involves
many services.

4.2.1 Sidecar Pattern

Pattern Name: Sidecar
Pattern Type(s): Software Development, Service Deployment

Problem: Microservices often require common functionality (e.g., configuration management, logging,
and monitoring). Developing such functionality within each microservice increases effort, leads to
code duplication, and makes both software maintenance and operational deployment more difficult.

Solution: A sidecar service provides common functionality that is independently developed and
maintained. The sidecar service is paired with another service known as the primary service. The
primary service uses the API of the sidecar to access it capabilities. The sidecar has the same
lifecycle as its primary service (i.e., the sidecar is created and destroyed with the primary service).

Related Patterns: Ambassador Proxy Pattern, Service Mesh Pattern

85

~

Primary Service API Sidecar Service

Common Service Functionality

Service Core Logic) . . -
(configuration, logging, monitoring)

/

Host / Container

Figure 4-4. Sidecar Pattern

4.2.2 Ambassador Proxy Pattern
Pattern Name: Ambassador Proxy
Pattern Type(s): Software Development, Service Deployment

Problem: Management of communication contexts for remote microservices can be challenging to
implement on a per-service basis. Common challenges include service discovery, management of
secure communication channels, routing of requests, and communication resiliency.

Solution: An ambassador proxy service encapsulates common features for managing remote connections
and requests. The ambassador service is a type of sidecar service that manages remote
communication contexts (e.g., service discovery and establishing secure communications) for its
primary service. The ambassador service may provide request routing (i.e., selecting a destination
service for the request) or communication resilience mechanisms (e.g., timeout and retry).

Related Patterns: Sidecar Pattern, Service Mesh Pattern

4.2.3 Service Mesh Pattern
Pattern Name: Service Mesh
Pattern Type(s): Software Development, Service Deployment, Service Operations

Problem: Distributed applications constructed from many microservices can be difficult to configure and
operate.

Solution: A service mesh is an integrated platform that uses the sidecar and ambassador proxy patterns to
ease management, improve observability, and decouple core application logic from common
microservice functionality for service discovery and communication, logging, request tracing,
monitoring, and security. In a service mesh, each service has an associated proxy sidecar through
which all communication happens. The proxy manages and captures telemetry for all
communication to or from its primary service. Because every service uses a proxy, full observability
and tracing of requests is possible.

Related Patterns: Ambassador Proxy Pattern, Sidecar Pattern

86

Ambassador
Proxy Service

Primary
Service

Service Core Logic

request

<o i
response

—

Communication Context
Management

Secure Communication

Communication Resiliency

Request Routing

Host / Container

C

Remote Service

N

J

~

Remote Service

J

Uk

Remote Service

J

~

Jal

Remote Service

N

J

Figure 4-5. Ambassador Proxy Pattern

87

[Service Kproxy> A~ [Service KProxy> N [Service KProxy>
) ! {

[Service KProxy> [Service KProxy> [Service KProxy>
b b b

[Service KProxy> [Service KProxy> [Service KProxy>
D b b

b

~ 3

Service Mesh Configuration, Discovery, and Security

N /,

Figure 4-6. Service Mesh Pattern

88

Bibliography

[1] Semantic Versioning 2.0.0 | Semantic Versioning, 2023. URL https://semver.org/spec/v2.0.0.html.

[2] W. Allcock. GridFTP: Protocol Extensions to FTP for the Grid, 2003. URL
http://www.ogf.org/documents/GFD.20.pdf.

[3] SQLite Consortium. SQLite Home Page, 2023. URL https://www.sqlite.org/.

[4] EPICS Controls. EPICS - Experimental Physics and Industrial Control System, 2023. URL
https://epics-controls.org/.

[5S] Dormando. memcached - a distributed memory object caching system, 2023. URL
https://memcached.org/.

[6] Internet Engineering Task Force. JSON Schema: A Media Type for Describing JSON Documents,
2022. URL https://json-schema.org/draft/2020-12/json-schema-core.html.

[7] The Apache Software Foundation. Apache Avro 1.11.0 Documentation, 2021. URL
https://avro.apache.org/docs/current/.

[8] The Apache Software Foundation. Apache Cassandra | Apache Cassandra Documentation, 2023.
URL https://cassandra.apache.org/.

[9] The Apache Software Foundation. Apache Kafka, 2023. URL https://kafka.apache.org.

[10] Google. Cloud Bigtable: HBase-compatible, NoSQL database | Google Cloud, 2023. URL
https://cloud.google.com/bigtable.

[11] Google. Cloud Storage | Google Cloud, 2023. URL https://cloud.google.com/storage.

[12] Google. Personal Cloud Storage & File Sharing Platform - Google, 2023. URL
https://www.google.com/drive/.

[13] The PostgreSQL Global Development Group. PostgreSQL: The world’s most advanced open source
database, 2023. URL https://www.postgresql.org.

[14] Amazon Web Services Inc. Fast NoSQL Key-Value Database - Amazon DynamoDB - Amazon Web
Services, 2023. URL https://aws.amazon.com/dynamodby.

[15] Amazon Web Services Inc. Amazon Kinesis - Process & Analyze Streaming Data - Amazon Web
Services, 2023. URL https://aws.amazon.com/Kinesis/.

&9

https://semver.org/spec/v2.0.0.html
http://www.ogf.org/documents/GFD.20.pdf
https://www.sqlite.org/
https://epics-controls.org/
https://memcached.org/
https://json-schema.org/draft/2020-12/json-schema-core.html
https://avro.apache.org/docs/current/
https://cassandra.apache.org/
https://kafka.apache.org
https://cloud.google.com/bigtable
https://cloud.google.com/storage
https://www.google.com/drive/
https://www.postgresql.org
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/kinesis/

[16] Amazon Web Services Inc. Fully Managed Graph Database - Amazon Neptune - Amazon Web
Services, 2023. URL https://aws.amazon.com/neptune/.

[17] Amazon Web Services Inc. Cloud Object Storage - Amazon S3 - Amazon Web Services, 2023. URL
https://aws.amazon.com/s3/.

[18] DropBox Inc. Dropbox.com, 2023. URL https://www.dropbox.com.
[19] MinlO Inc. MinlO | High Performance, Kubernetes Native Object Storage, 2023. URL https://min.io/.

[20] MongoDB Inc. MongoDB: The Developer Data Platform | MongoDB, 2023. URL
https://www.mongodb.com.

[21] Neod4j Inc. Neo4j Graph Data Platform | Graph Database Management System, 2023. URL
https://neo4j.com.

[22] Argonne National Laboratory. DOE national laboratories’ computational facilities — Research
workshop report. Technical Report ANL/MCS-TM-388, Argonne National Laboratory, Lemont, IL,
USA, February 2020. URL https://publications.anl.gov/anlpubs/2020/02/158604.pdf.

[23] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Namespace,
2005. URL https://www.rfc-editor.org/rfc/rfc4122.html.

[24] Redis Ltd. Redis | The Real-time Data Platform, 2023. URL https://redis.com/.

[25] Microsoft. Azure Blob Storage | Microsoft Azure, 2023. URL
https://azure.microsoft.com/en-us/products/storage/blobs;/.

[26] Microsoft. Microsoft OneDrive Cloud Storage and File Sharing | Microsoft 365, 2023. URL
https://www.microsoft.com/en-us/microsoft-365/onedrive/onedrive-for-business.

[27] Oracle. MySQL, 2023. URL https://www.mysql.com.

[28] AsyncAPI Project. AsyncAPI Specification - Version 2.3.0, 2022. URL
https://www.asyncapi.com/docs/specifications/v2.3.0.

[29] Open Robotics. ROS: Home, 2021. URL https://www.ros.org/.

[30] SmartBear Software. OpenAPI specification - version 3.0.3, 2021. URL
https://swagger.io/specification/.

[31] Rick Stevens, Valerie Taylor, Jeff Nichols, Arthur Barney Maccabe, Katherine Yelick, and David
Brown. Al for science report, March 2020. URL https://www.anl.gov/ai-for-science-report.

[32] University of Chicago and Argonne National Laboratory. Research data management simplified -
globus, 2023. URL https://www.globus.org/.

[33] World Wide Web Consortium (W3C). W3C XML Schema Definition Language (XSD) 1.1 Part 1:
Structures, 2012. URL https://www.w3.org/TR/xmlschemall-1/.

90

https://aws.amazon.com/neptune/
https://aws.amazon.com/s3/
https://www.dropbox.com
https://min.io/
https://www.mongodb.com
https://neo4j.com
https://publications.anl.gov/anlpubs/2020/02/158604.pdf
https://www.rfc-editor.org/rfc/rfc4122.html
https://redis.com/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://www.microsoft.com/en-us/microsoft-365/onedrive/onedrive-for-business
https://www.mysql.com
https://www.asyncapi.com/docs/specifications/v2.3.0
https://www.ros.org/
https://swagger.io/specification/
https://www.anl.gov/ai-for-science-report
https://www.globus.org/
https://www.w3.org/TR/xmlschema11-1/

APPENDICES

A INTERSECT INFRASTRUCTURE MICROSERVICE INTERACTION SEQUENCES

In this appendix, we provide example microservice interaction sequence diagrams to document the
expected flow of interactions for common scenarios. Figure A-1 shows an example sequence diagram. As
shown in the figure, boxes are used to denote INTERSECT systems and services, and individual entity
lifelines are shown for each microservice capability within a service. Example messages between services
and asynchronous events are shown for each of the three common microservice interaction patterns
introduced in Section 2.3.

A-1 Registration of INTERSECT Systems, Services, and Resources

Dynamic registration of INTERSECT systems, resources, and services are crucial activities in the
deployment of interconnected scientific ecosystems. Below we provide example orchestration sequences
for each of these three registration activities.

Registration of an INTERSECT system is shown in Figure A-2. It is assumed that every INTERSECT
system will have an associated management service the coordinates all aspects related to system
information management, control of services and subsystems, and status monitoring of associated
resources, services, and subsystems. In the figure, this service is called the "System-X Management"
service. It provides two key microservice capabilities, the System Information Catalog (see 3.2.3.1) and the
System Manager (see 3.2.3.2). The management service is responsible for registering its parent system
with the registrar. The INTERSECT architecture permits a hierarchy of coordinating services providing the
Systems Registrar capability (see 3.2.3.3). In this figure, we assume each distinct INTERSECT operational
domain (e.g., an organization or facility) provides a registrar. The registrar provides a domain-scoped
UUID to the system through use of the namespace UUID generation method of the UUID Generation
capability (see 3.2.1.4).

Registration of resources associated with an INTERSECT system is shown in Figure A-3. The
management service is again responsible for registering the resources with the domain registrar to obtain
system-scoped UUIDs for each resource. It also needs to update the system information catalog to
associated each resource with the parent system and its assigned resource UUID.

Registration of services associated with an INTERSECT system is shown in Figure A-4. The newly
deployed instrument adapater service in this figure makes a request to register with the management
service, which in turn registers the service with the domain registrar to obtain a system-scoped UUID for
the service. The interaction with the the UUID Generation capability is elided, but follows the same pattern
as that used for assigning system-scoped resource UUIDs in Figure A-3. The managment service then
updates the system information catalog to record the capabilities and resources associated with the new
service and its assigned service UUID.

91

Category::Activity::Sequence - Brief Sequence Title

System: Name
System: Name
Service: Service:
Name Name
Microservice Microsarvice Microsarvice
Capability Capability Capability
| | |
Praconditionfs): A description of any praconditions that are assumed
o hold before execution of this sequaenca.
- I I
A Request-Reply microservice interaction sequence i :
REQ:RequestMathod | |
[request-parameter,) | |
Lt | |
(ReguestMethod()) |
|
REPLY: |
request-status, reply-data, ...

R H-- :
|
|
|
|
.

External Message

External Message

interaction(s) in the sequence.

Assumption: An assumed condition for the follawing IT

A Command microservice interaction segquence)

CMD:CommandMethod
{command-paramaeter, ...)

-
|
1 CommandMe thod () '

STATUS:CommandStatusEvent
{status-data, ...}

)

A Sub-sequence Reference (e.g., Category::Activity::Sequence) to denote
that flow continues as shown in the referenced sequence, or a description of
logic that spans multiple services.

An Asynchrenous Event microservice interaction)

< EVENT:MicroserviceEvent {event-data, ...)} >

4
|
|
|

s

A note describing some intemal
service logic or action, such as
observation of an event.

T
I
|
I
|
I
|
I

Figure A-1. Example interaction sequence showing common components.

92

Systems::Registration::System - Registration of an INTERSECT System

System: X
System: Infrastructure Management

Service: System-X Management

: Service: Domain Registrar
System Q Q Q

Information System Systems uuID
Catalog Manager Registrar Generation
|

REQ:GetUUID() |
X »r—

(GetUUID()

|

|

|

|

|

L1 || Ll REPLY{SUCCESS, DomainUUID}
=
Precondition: Have Domain Registrar Coordinates ﬁ

REQ:RegisterSystem
(Name="X", Org="ORNL", ...} -
| 1

(RegisterSystem())

REQ:GetNamespaceUUID
(DomainUUID, "X")

-

(GetNamespacelUUI

EVENT: SystemRegistration
{"X", SystemUUID}

<« REPLY:{SUCCESS, SystemUUID

]__________________________

B

System Manager registers System-X's resources
via Systems::Registration::Resource

[[I [[&

System Manager registers itself
via Systems::Registration::Service

Figure A-2. Sequence for registering an INTERSECT system.

93

Systems::Registration::Resource - Registration of INTERSECT System Resources

System: X

System
Information

Service: System-X Management

System
Manager

]

Precondition: SystemUUID has been obtained
via Systems::Registration::System

I

System: Infrastructure Management

Systemns
Registrar
|

Service: Domain Registrar

uuID
Generation

loop

[for each System Resource]

4

CMD:CreateSystemResource
(ResourceMame, ResourcelUUID, ...)

REQ:RegisterSystemResource

m CreateSystemResource() u

EVENT: CatalogEntityCreation
{ResourceUUID, ResourceName,

Type="Resource"}

EVENT:CatalogRelationCreation
{"HAS_RESOURCE", Source=SystemUUID,

Target=ResourceUUID}

(ResourceMName, SystemUUID, ...) |

m RegisterSystemResource() u

[
_
[
_
_
[
f
_
_
_
[
_
_
[

REQ:GetNamespaceUUID
(SystemUUID, ResourceName)

L

m GetNamespaceUUID() u

REPLY:{SUCCESS, ResourceUUID}

EVENT: SystemResourceRegistration
{ResourceMame, SystemUUID,

ResourceUUID}

|1
I
|
|

Figure A-3. Sequence for registering INTERSECT system resources.

94

Systems::Registration::Service - Registration of a System Service

System:
System: X Infrastructure
Management
Service: Service:
Instrument Service: System-X Management Domain
Adapter : Registrar
Q System Q Q
Instrument Information System Systems
Controller Catalog Manager Registrar
I | |
| | |
Preconditions:
1. System-X SystemUUID has been provided 1o adapter service or obtained from domain registrar.
2. System-X resource(s) used by the adapter service have been regi via Sy g
and assigned UUIDs have been obtained from information catalog.
| | |
REQ:RegisterService | | |
("InstrumentAdapter", CapabilityList, ResourceList, ...) o |
T N o | |
] [RegisterServi |
I |
I gisterSystemService |
| {Name="InstrumentAdapter", SystemUUID, ...} - |
] | ol
I (RegisterSystemService())
I =
: EVENT:SystemServiceRegistration
| {"InstrumentAdapter”, SystemUUID, ServiceJUID}
: » REPLY:{SUCCESS, ServiceUUID}
< REPLY:{SUCCE$S, SeqviceUUID}
! CMD:CreateSystemService
I ("InstrumentAdapter”, ServiceUUID,
| _ CapabiityList, ResourceLlst, ...
%

(CreateSystemService())

EVENT:CatalogEntityCreation
{ServiceUUID, Name="InstrumentAdapter’, Type="Service™}

EVENT:CatalogRelationCreation
{"HAS_SERVICE", Source=SystemUUID, Target=ServiceUUID}

loop) [for each Capability in CapabilityList]

EVENT:CatalogRelationCreation
{"PROVIDES_CAPABILITY", Source=ServiceUUID, Target=Capability}

loop) [for each ResourceUUID in ResourceList]
P

EVENT:CatalogRelationCreation
{"USES_RESOURCE", Source=ServiceUUID, Target=ResourceUUID}

Figure A-4. Sequence for registering an INTERSECT system service.

95

A-2 Running Applications using On-Demand or Batch Computing Resources

A common scenario for use of computing resources is to deploy an application preconfigured for use in a
particular computing environment. The application program and any dependent libraries are built for the
target environment and packaged for use in a microservice providing the Application Execution capability
(see 3.2.4.5). This application deployment microservice provides default settings for the application’s run
configuration and program arguments. Since the Application Execution capability extends the Parameter
Configuration capability (see 3.2.1.3), the application microservice can also expose any configuration or
parameter settings as client tunables.

The ability to run the application via an on-demand allocation or a job script is provided by another
microservice that serves as the interface to the target environment’s compute resource manager. The
compute resource manager microservice provides the Compute Allocation capability (see 3.2.4.2), the
Compute Queue capability (see 3.2.4.3), or both depending on the usage model of the environment.

Figure A-5 shows an example orchestration sequence for running such an application within an on-demand
allocation of computing resources. Figure A-6 shows the sub-sequence relating to on-demand allocation of
computing resources, while Figure A-7 shows the sub-sequence for running the application program within
the allocation.

Figure A-8 shows an example orchestration sequence for running such an application using a batch
computing job. Figure A-9 shows the sub-sequence capturing the batch job submission. Figure A-10 shows
the sub-sequence to discover available batch computing queues.

96

Compute::Application::OnDemand - On-demand Application Execution

System: Orchestration

Service:
Campaign
Orchestrator

@,

Workflow Orchestration
1

System: Compute

ASSUMPTION: runParams includes the
data product IDs for any inputs/outputs
and any compute resource reguirements
that vary across runs

CMD: RunApplication(runld, runParams{])

Service:
Application
Deployment

O

Application Execution

v

¢

RunApplication()

)

Application deployment service makes sure input data
products are available locally within the compute system.

Service:
Resource
Manager

O

Compute Allocation

STATUS:ApplicationExecutionStatusChange >_

\ {runld, "EXECUTION_PENDING"}

Allocate compute resources via
Compute::Resource::Allocation

N

STATUS:ApplicationExecutionStatusChange

{runld, "EXECUTION_IN_PROGRESS"}

Run application within allocation via
Compute::Resource::Run

| N

IT

I 1

Application deployment service publishes any output data products. H

{runid, "EXECUTION_COMPLETED"}

STATUS:ApplicationExecutionStatusChange >_‘_‘
|
|
|

:

Figure A-5. Sequence for running an application within an on-demand allocation of computing
resources.

97

Compute::Resource::Allocation - Allocation of Compute Resources

System: Compute

Service: Service:
Application Resource
Deployment Manager
Application Execution Compute Allocation
o I
|
REQ:CreateAllocationhostCount, wallTime, featureLigt) |
(Createfllocation())
< REPLY:{SUCCESS, allocld}
STATUS:ComputeAllocationStatusChange
{allocld, "ALLOCATION_ACTIVE"}
REQ:GetAllocationinfo(allocld) >
(GetAllocationInfol))
< REPLY:{SUCCESS, allocinfo}
Run one or more programs within allocation
via Compute::Resource::Run
CMD:ReleaseAllocation{allocld) >
(ReleaseAllocation())
STATUS:ComputeAllocationStatusChange
{allocld, "ALLOCATION_EMNDED"}
L L
I |
I I
1 1

Figure A-6. Sequence for allocating and releasing computing resources.

98

Compute::Resource::Run - Run a Program within a Compute Allocation

System: Compute
Service:
Application Service:
Deployment Resource Manager
Application Execution Compute Allocation
Precondition: Compute resource allocation (allocld)
has been obtained via Compute::Resource::Allocation
ClLD:RunInAHo:aﬁon{runName, allocld, runOptions, programArgE) >
(RunInAllocation()]
Resource manager begins monitoring run. %—
1
STATUS:ComputeRunStatusChange
{allocld, runName, "RUN_IN_PROGRESS"}
— Application deployment service observes run status change. 5
REQ:GetRunStatus(allocld, runMName) >
GetRun5tatus()]
< REPLY:{SUCCESS, "RUN_IN_PROGRESS"}
Resource manager observes run completion. B]—
1
STATUS:ComputeRunStatusChange
{allocld, runName, "RUN_COMPLETED"}
- Application deployment service observes run status change. 5
REQ:GetRunDetfails(allocld, runMame) >
(GetRunDetails()
REPLY:{SUCCESS, runDetails}
e e B e e LR T ----
| |
I |

Figure A-7. Sequence for running and monitoring a program within allocated computing resources.

99

Compute::Application::BatchJob - Application Execution via Compute Batch Job

System: Orchestration

Service:
Campaign
Orchestrator

O

Workflow Orchestration
1

System: Compute

ASSUMPTION: runParams includes the
data product IDs for any inputs/outputs
and any compute resource requirements
that vary across runs

CMD: RunApplication(runid, runParams])

Service:
Application
Deployment

O

Service:
Resource
Manager

Q)

Application Execution Compute Queue

L
|
|
1

| !

(RunApplication())

Application deployment service makes sure input data
products are available locally within the compute system.

Application deployment service generates
batch job script for current configuration.

{runid, "EXECUTION_PENDING"}

STATUS: ApplicationExecutionStatusChange >

T

STATUS: ApplicationExecutionStatusChange

{runid, "EXECUTION_IN_PROGRESS"}

Application publishes any output data products. I}]

T

STATUS: ApplicationExecutionStatusChange

{runld, "EXECUTION_COMPLETED"}

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
Run application batch job via 3
Compute::Resource::Job
I
|
|
|
|
I
1

Figure A-8. Sequence for running an application within a batch computing job.

100

Compute::Resource::Job - Submit a Job to a Compute Queue

System: Compute

Service:
Application
Deployment

O

Application Execution

Service:
Resource
Manager

Q)

Compute Queue

-

Precondition: Target queue (queueld) has been
obtained via Compute::Resource::Queue

REQ: SubmitJob(queueld, jobScript, submitArgs)

|

Submitlob()

REPLY:{SUCCESS, jobld}

Resource manager begins monitoring job. Iﬁ—

STATUS:ComputeJobStatusChange >

{jobld, "JOB_RUNNING"}

REQ:GetJobStatusijobld)

P

- - - -

(: GetJobStatus()

REPLY:{SUCCESS, "JOB_RUNMING"}

Resource manager observes job completion. ET

STATUS:ComputeJobStatusChange >_

{jobld, "JOB_COMPLETED"}

Application deployment service observes job status change.

AN

REQ:GetJobInfo(jobld)

CLEE
I
I

»

GetJobInfo()

REPLY:{SUCCESS, jobinfo}

1]

Figure A-9. Sequence for running and monitoring a batch compute job.

101

Compute::Resource::Queue - Discovery of Batch Computing Queues

System: Compute

Service: Service:
Application Resource
Deployment Manager
Application Execution Compute Queue
L I

I

I
>]
(ListQueues())

REQ:ListQueues()

REPLY:{SUCCESS, queuelist}

M - - - e -
loop [for each queueld in queueList]
REQ:GetQueuelnfo(gueueld) >
(GetQueueInfol) j
< REPLY:{SUCCESS, queuelnfo}

Application service chooses target queue
based on configuration or resource needs.

REQ:GetQueueStatus{queueld) >
(GetQueueStatus() J
REPLY:{SUCCESS, "QUEUE_ENABLED"] JTl

Figure A-10. Sequence for discovery of batch computing queues.

102

A-3 Data Management for Application Data Products

Explicit management of data products is key to enabling campaign workflow orchestration within
INTERSECT ecosystems. Currently, the microservice capabilities for data management include storage
(see Data Storage 3.2.2.77), publishing (see Data Catalog 3.2.2.6), and transfer (see Data Transfer 3.2.2.9
and Data Transfer Endpoint 3.2.2.10).

An application or service that produces data to be consumed by other applications or services must first
store the data item or collection within its system’s data management service. Figure A-11 shows an
example orchestration sequence for an application to manage its data namespaces. Figure A-12 shows an
example orchestration sequence for an application to manage a data collection within its namespace.
Figure A-13 shows an example orchestration sequence for an application to manage data items within its
namespace.

Once stored, the data product can be published to a data catalog service to alert orchestrators or consumers
that the data is available. Figure A-14 shows an example orchestration sequence for a workflow to allocate
application data product UUIDs for use by an application to publish its data products to a campaign data
catalog.

When the workflow requires the data product(s) to be made available on remote systems, the orchestrator
can arrange for the data to be transferred to the data management service of the consumer’s system, as
shown in Figures A-15, A-16, and A-17.

103

Data::Storage::Namespace - Create or Remove a Data Namespace

System: X
Service: Service:
Data Application
Management Deployment
Data Storage Application Execution

|
Precondition: Application has Data Management Service coordinates B—:

[

I

[

I

I

[CMD:CreateDataNames
(Name="MyAppData®)

(CreateDataNamespace(} j

|
STATUS:DataNamespaceCreation {Details=(Name="MyAppData", ...J} >

Application uses namespace via Data::Storage::ltem
or Data::Storage::Collection.

opt J

Application removes the namespace and all of its
contents if the data is no longer needed.

7-t-1 7

CMD:RemoveDataNamespace
(Name="MyAppData")

1___

(RemoveDataNamespace(})
|
STATUS:DataNamespaceRemoval {Details=(Name="MyAppData",...)} >

Figure A-11. Sequence for an application to manage a data namespace.

Data::Storage::Collection - Create or Remove a Data Collection

System: X
Service: Service:
Data Application
Management Deployment
Data Storage Application Execution

Precondifion: Application has created a Data Namespace
via Data::Storage::Namespace

! CMD:CreateDataCollection

| (Name="MyCollection", Namespace="MyAppData")

(CreateDataCollection())

STATUS:DataCollectionCreation {Details=(Name="MyCollection", ...)} >

Application updates the collection via Data::Storage::ltem.

Application removes the collection and all of its items
if the data is no longer needed.

V___—_V_-I

!
| CMD:RemoveDataCollection
| (Name="MyCollection", Namespace="MyAppData")

(RemoveDataCollection())

STATUS:DataCollectionRemoval {Details=(Mame="MyCollection",...}} >

Figure A-12. Sequence for an application to manage a data collection.

Data::Storage::ltem - Management of Data Iltems

System: X
Service: Service:
Data Application
Management Deployment
Data Storage Application Execution
1
Precondition: Application has created a Data Namespace
via Data::Storage::Namespace
| CMD:CreateDataltemFromBytes
| (Name="TempData", Content=<Bytes>,
| Namespace="MyAppData", [Collection="..."])
I - |

(CreateDataltemFromBytes())

CMD: CreateDataltemFromLocalFile
(Mame="ResultData", FilePath="/app/data/result",
Mamespace="MyAppData', [Collection="..."])

LK STATUS: DataltemCreation {Details=(Name="TempData", ...)} >
|
|
|

Assumption: Both services have the same local file system view.

(CreateDataltemFromLocalFile())

opt

1
LK STATUS: DataltemCreation {Details=(Name="ResultData", ...)} /
l

Application updates an existing item to inform the
data management service of underlying file changes.

| CMD:UpdateDataltem
| (Mame="ResultData", Namespace="MyAppData",
| [Collection="..."],[Properties=(...)]}

dateDataltem())
I

STATUS: DataltemUpdate {Details=(Name="ResultData", ...)} >

opt

Application removes any data items that are no longer needed.

' CMD:RemoveDataltem
I (Name="TempData", Namespace="MyAppData",
| [Collection="..."]}

ry

1

emoveDataltem())

1
LJ—< STATUS: DataltemRemoval {Details=(Name="TempData",...)} >
|
|
]

L
|
|
1

Figure A-13. Sequence for an application to manage its data items.

Data::Catalog::Product - Management of Data Products

System: Orchestration System: X
Service: Service: Service:
Campaign Campaign Application
Orchestrator Data Catalog Deployment
Workflow Orchestration Data Catalog Application Execution
I |
loop [for each expected application data product]]| :
REQ:CreateDataProductUUID{) .| |
| |
(CreateDataProductUUID(} j :
REPLY:{SUCCESS, productid
e == |
. []
Orchestrator delivers data product UUIDs to application as run parameters
via Compute::Application::OnDemand or Compute::Application::BatchJob.
I | L
| | Application creates a Data ltem or Collection
| I for each product via Data::Storage::ltem
1 | or Data::Storage::Collection.
| loop J [for each application data product]
| |
| | CMD:PublishDataProduct
1 | (Description="...", ID=productld
1 | Service=<SystemX.DataStorageService.UUID=,
| Namespace="MyAppData", [Collection="..."], [Item="..."])
I
1 (PublishDataProduct()]
| 1
: STATUS: DataCatalogProductAvailable
| {ID=productld, ...}}
| f
| L
Application data products are used
by workflow consumers.
I l [
i |
loop { [for each application data product that should not persist] |
|
1

CMD: RemoveDataProduct(|D=productld)

| o i |

(RemoveDataProduct())

{ID=productid)}

(

STATUS: DataCatalogProductRemoval

)

Figure A-14. Sequence for an application to publish data products.

Data Transfer
Source

System: X

Data:: Transfer::Negotiate - Negotiation of Data Transfers

=<initiates>>

Service:
Data
Management

O

Data Transfer

System: Orchestration

Service:
Campaign
Orchestrator

Q)

Q

Service:
Data
Management

O

Workflow Data Transfer Data Transfer
Endpoint Orchestration Orchestration Endpoint
| - | |
| REQ:NegotiateDataTransfer I |
| (Catalog = dataCatalogSveUUID, I |
Source = XdataMgmtSveUUID,	
Destination = YdataMgmtSvcUUID,	
[transferOptions]) -	
_	_
h NegotiateDataTransfer() u	
REQ:GgfSupp dTransferMethods() Tmnunmum:hnn%nﬂm:mam\!mgah	

[T

mm_..._.ﬁt_.._,oﬁmmm , transferMethods=[...J}

‘II

Orchestrator chooses a common supported transferMethod
and compatible fransferOptions.

]

|
|
|
|
|
|
-l

DataTransferSource REQ:CreateDataTransferDestination
BvEUUID, transferld, (YdataMgmtSvcUUID, transferld,
nod, transferOptions) transferMethod, transferOptions)

d

(

STATUS:DataTr:

{transferld, ...)}

System: Y

<<initiates==

{SUCCESS endpointinio=".."y > |- -||REPLY{SUCCESS, endpointinio="..)
A STATUS:DataTr
{transferld, ...}
. REPLY{SUCCESS, vansierid) _ |
STATUS:DataTransferChann:

{transferld, ...)}

elCreation V

Data Transfer
Destination

Figure A-15. Sequence for negotiating data transfers between INTERSECT systems.

*SWIISAS LOASAALNI UddM)aq 3onpouad ejep e SuLLdjsuR) 10J dudInbag *91-y dIn3ig

T
|
I
t

BN0OE UMOUS 20uanbas ased ,Way S| 1anpoud, aleuis)e o) buipioooe paus|suB) aJe UORD2|00 Ul §

w3yl [enpiapul

[uopaeiiog uj wey yoea soy] (¢ dooj

i Bez0 D]

| m ()swaireleqgisti u
|

BT

uogga|on ‘aoedsawey’

kanuadoldjonpoid = soedsawen)
| Swiajele@si7-034

[.uonaeyiog s1janpoud, aseal

1
|
'

WalIe1egaALaday u

(Jwaireleqpuas u

—_———— e ————

Lla el |
i [jdjonpoud = uoioa|o0) ([uonasjioo sauadpid 1onpold = uonos|joD] -
| ‘a0e ‘Jonpoud = aoedsawep ‘asedsaweursaiuados1gnpoid B soedsawep |
| poud = way| ‘pusisuen) ‘suweurlonppid = W ‘pusjsues) |
| fajjejeganiaaa :aiND L puas:and |
| | | ey 5119npoId, 85E3] [e
T [[> T T
I [T [ownonpoid ‘ss300ns}kA143Y [I
m (JuoLlBWIOLUTIONPOI4EIEgIRY u	
=1	
I (ainmonpoud)	
I	HOREWLIOJURINPOIEIEQISD: DY _
“ “ m ()32NpoOJdEIRQIILSUBI] u “ “	
“ _ _ - ([spuooas = Jnoauwit] _ "	
I	"WAdOD. = 3POW
‘ainmienpoid ‘plisjsuesn)	
“ _ _ JONPOIJEIEQIajSUELL:AND _	
"SANOE BJE SJUI0dpUS UDHEUNSSP PUE 30IN0S pue ajepoban;:iajsuelL:ieleq "	
eiA pajenobau usaq Sey puaJSUBE 1S)jUSP] LM [SUUEBYD JBJSUBI) BIEQ WONIPLI028d [
I	[
wiodpug Boreren eleQ UONBASAYIO uonensaynQ iodpug abriols BlEQ
I9jsuel] Bleq O lajsuel] BleQ MOIPHOM lajsuel] eleg O
” Gojejes ejeq ” O ”
Juawabeuepy ubedwen J0JBNS2Y2I0 Juawabeuepy
eleqg E-LILVETS ubjedwen eeqg
FERTTVETY HELTIVERS HELTIVERS
A ‘wajshs uopENSAYQ (wasAs X ‘wajshs

slajsuel] Jonpoid eleq - 1onpoid::iajsuel] ejeq

Data::Transfer::ltem - Send and Receive Data ltem over a Transfer Channel

System: X
Service:
Data
Management
D Data Transfer
Data Storage Endpoint

O

Data Transfer
Source

"

O

Data

Transfer

Destination

o

System: Y

O

Data Transfer
Endpoint

Precondition: Source and Destination Data Transfer Endpoints have received the
product information for the data item to be transferred (see Data::Transfer::Product).

SendDataltem()

(ltem=product.name,
Namespace=product.properties.namespace,

|
|
|
|
|
|
|
|
| REQ:GetDataltemAsLocalFile
|
_ _, [Collection=product. properties.collection])

C TR

m GetDa

t

altemAsLocalFile() u

REPLY:{SUCCESS, File="/local/tem/path"}

mocamm:auo_::mmnw
local file contents.

1 1

Service:
Data
Management

ReceiveDataltem()

Data Transfer Logic Example - Details not specified by INTERSECT \

Send Item (<contents=)

Send Completed

Recv Item (product.properties.size)

Transfer Channel (ID=transferld)

Channel Data

Channel Data

Channel Data

YVvy

Received ltem (<contents=)

|_|
I
|
|
|
|
|
|
1

|_|
I
|
|
|
|
|
|
|

O

Data Storage

Destination endpoint creates
local instance of data item
via Data::Storage::ltem

Figure A-17. Sequence for transferring a data item between INTERSECT systems.

	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS AND ABBREVIATIONS
	INTERSECT TERMINOLOGY
	ACKNOWLEDGEMENTS
	ABSTRACT
	REVISION RECORD
	Introduction
	INTERSECT Microservice Architecture
	Introduction to Microservices Architecture
	Microservices Architecture in INTERSECT
	Commonalities of INTERSECT Microservices

	Classification of INTERSECT Microservices
	INTERSECT Microservice Capability Definition Format
	INTERSECT Infrastructure Microservice Capabilities
	General Utility
	Capability: Availability Status
	Capability: Controller Status
	Capability: Parameter Configuration
	Capability: UUID Generation

	INTERSECT Data and Information Management
	Data Storage Services
	Data Transfer Services
	Database and Information Management Services
	A Data Model for INTERSECT Microservices
	Capability: Entity-Relationship Catalog
	Capability: Data Catalog
	Capability: Data Storage
	Capability: Data Stream
	Capability: Data Transfer Orchestration
	Capability: Data Transfer Endpoint

	INTERSECT System Management
	Capability: System Information Catalog
	Capability: System Manager
	Capability: Systems Registrar

	INTERSECT Resource Adapters
	Compute Adapters
	Capability: Compute Allocation
	Capability: Compute Queue
	Capability: Compute Queue Reservation
	Capability: Application Execution
	Capability: Container Execution
	Capability: Host Command Execution

	Experiment-specific Microservice Capabilities
	Experiment Control Microservices
	Instrument Adapters
	Capability: Instrument Controller

	Experiment Data Microservices
	Experiment Design Microservices

	Orchestration and Deployment of INTERSECT Microservices
	Microservice Orchestration Design Patterns
	Asynchronous Messaging vs. RESTful Services
	Conductor vs. Choreography

	Microservice Deployment Design Patterns
	Sidecar Pattern
	Ambassador Proxy Pattern
	Service Mesh Pattern

	REFERENCES
	APPENDICES
	INTERSECT Infrastructure Microservice Interaction Sequences
	Registration of INTERSECT Systems, Services, and Resources
	Running Applications using On-Demand or Batch Computing Resources
	Data Management for Application Data Products

