
Distributed Real-Time Computing with
Harness?

Emanuele Di Saverio1, Marco Cesati1, Christian Di Biagio2, Guido Pennella2,
and Christian Engelmann3

1 Department of Computer Science, Systems, and Industrial Engineering,
University of Rome “Tor Vergata”, Rome, Italy

2 Applied Research & Technology Department, MBDA Italia SPA, Rome, Italy
3 Computer Science and Mathematics Division,

Oak Ridge National Laboratory, Oak Ridge, TN, USA
emanuele.disaverio@alice.it, cesati@uniroma2.it,

{christian.di-biagio,guido.pennella}@mbda.it, engelmannc@ornl.gov

Abstract. Modern parallel and distributed computing solutions are of-
ten built onto a “middleware” software layer providing a higher and com-
mon level of service between computational nodes. Harness is an adapt-
able, plugin-based middleware framework for parallel and distributed
computing. This paper reports recent research and development results
of using Harness for real-time distributed computing applications in the
context of an industrial environment with the needs to perform several
safety critical tasks. The presented work exploits the modular architec-
ture of Harness in conjunction with a lightweight threaded implemen-
tation to resolve several real-time issues by adding three new Harness
plug-ins to provide a prioritized lightweight execution environment, low
latency communication facilities, and local timestamped event logging.

Key words: Distributed Computing, Middleware, Real-Time, Harness,
Plugin

1 Introduction

Parallel and distributed computing solutions provide the means for computa-
tional performance for High-End Computing (HEC) applications beyond the
limits of single processor technology. The actual implementation of complex par-
allel and distributed software systems can be enormously eased by the adoption
of an intermediate software layer, a “middleware”. A middleware is defined as
“. . . a connectivity software that consists of a set of enabling services that allow
multiple processes running on one or more machines to interact across a net-
work.” [1]. A very specific topic of HEC applications is real-time computation.

? The research at Oak Ridge National Laboratory (ORNL) is sponsored by the Office
of Advanced Scientific Computing Research; U.S. Department of Energy. ORNL is
managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725.



The term real-time pertains to computer applications whose correctness de-
pends not only on results, but also on the time at which results are delivered.
A real-time system (RTS) is a computer system that is able to run real-time
applications and fulfill their requirements in a deterministic fashion. Thus, when
defining a real-time system, we actually define requirements about its response
time, meaning with this average value or the tail distribution of it. Distributed
real-time systems development requires a well suited real-time oriented middle-
ware as a supporting layer.

2 Previous Work

Traditional solutions in distributed real-time environments refer to Parallel Vir-
tual Machine (PVM) [2] and Message Passing Interface (MPI) [3] libraries. Al-
though PVM is a solid and simple solution, its process-based architecture is
a little outdated, and the service set does not fit well into an industrial con-
text. MPI is not well suited when compared to modern middlewares because it
provides just a communication abstraction. More recent and rich products in-
clude Real-Time Innovations Data Distribution Service [4] (RTI DDS, formerly
NDDS) and the Adaptive Communication Environment (ACE) Object Request
Broker (ORB) in conjunction with TAO [5]. RTI DDS provides a communica-
tion abstraction data-centric layer that realizes a publish-subscribe semantic. It
is a performing and well-featured product, which offers real-time oriented fea-
tures, like a fine tunable QoS performance level, and an efficient low-latency
implementation based on an open standard from OMG group [6]. However, it
is especially suited for dynamically changing network topologies and to cover
reliability issues. Moreover, it is a commercial (and thus closed) product, while
in the industrial context being able to lower costs and customize the product
at will is of key importance. The ACE ORB, on the other hand, is an open
source project that implements the Object Request Broker semantic. TAO is
a very complex and complete middleware, but it is designed around the ORB
specification and is meant to be used with the existing plethora of CORBA ser-
vices. This means that the internal architecture of TAO involves many different
components. Moreover, its service-oriented nature makes it not easily tailorable
for embedded applications. The approach described in this paper is more simple
and streamlined, it avoids the role of the broker node, and it integrates nicely
with the Harness framework.

3 Modern Middleware: Harness

Our effort focuses on an emerging technology in this field, the Harness project, a
joint development effort between the Oak Ridge National Laboratory (ORNL),
the University of Tennessee, and Emory University. Harness is a distributed, re-
configurable and heterogeneous computing environment that supports dynami-
cally adaptable parallel and distributed applications. The unique feature of Har-
ness relies on its almost total level of pluggability. The aim is to build a virtual



environment that can dynamically change (almost) anything at runtime. In this
highly adaptable framework, several parallel and distributed user applications
can reside, all executed on top of its distributed virtual machine (DVM) and
runtime environment (RTE) concepts, a PVM successor. Harness runs a RTE
on every computational unit as the “shell” in which it hosts the user applications
and the resource management routines that belong to the distributed environ-
ment. Every RTE is realized by a Harness kernel, the core of the unit, which is
capable of loading and unloading plugin modules and consists of a communica-
tion module, a module dedicated to process control, and a module dedicated to
resource management, plus possibly a number of other plugins.

Several Harness prototypes have been developed, in Java and C. The work
presented in this paper focuses on the C variant developed at ORNL [7], which
runs on GNU/Linux. Its design focuses on a lightweight and pluggable middle-
ware layer with a Harness kernel running as a Linux daemon process. The kernel
performs process management, thread pool management, and dynamic plugin
loading/unloading. The process management module can fork and execute a
user application, and provides means for passing arguments, sending input, and
retrieving output for these external processes. The thread pool is the heart of
the lightweight execution environment provided by Harness. It creates a set of
working threads that keep trying to empty a job queue data structure. It pro-
vides interfaces for adding a new job to the queue with proper arguments and
cleanup function in case of thread cancellation. The plugin loader builds on top of
the Linux dynamic library loader, and provides interfaces for loading/unloading
modules and publishing their functionalities to the whole runtime environment.
The communication facilities are effectively provided through RMIX (Remote
Method Interface eXtensible) [8]. RMIX is a dynamic, heterogeneous, reconfig-
urable communication framework that allows software components to communi-
cate using various RMI/RPC protocols by employing provider plugins in order
to support different protocol stacks. RMIX emulates the Java RMI structure,
allowing components to remotely call methods, retrieve the output, and export
locally available methods.

4 Existing Real-Time Issues

Within the middleware definition stated in Section 1, we can outline a set of
requirements expected from such a software. The first assumption we make is
that the services on top of which the middleware is built retain themselves real-
time capabilities. We cannot avoid this assumption because the aim is to work
on a middleware that is a relatively high-level software, thus built on top of a set
of services, and the performances of the resulting system are bound to those of
that services. Secondly, remote services have to be designed without concurrency
issues. In this context, the meaning of concurrency is twofold:

– Call concurrency: simultaneous access of the same service offered by the
same computational resource



– Service concurrency: simultaneous access of different services offered by
the same computational resource

A real-time middleware has to guarantee both kinds of concurrency support
in order to be seamlessly scalable with the growth of the execution flows. Finally,
services have to be locally executed without scheduling issues by providing a
proper priority-aware execution environment. The hosted application should be
able to run a number of real-time tasks that are expected to be scheduled in a
deterministic manner. In order to address all these issues, three Harness plugins
have been developed:

– A plugin to provide a prioritized lightweight execution environment
– A plugin for low latency communication facilities
– A plugin to support local timestamped event logging

5 Developed Plugins

The aim of our work is exploiting the pluggable nature of Harness in order to
implement a set of services enabling the development and execution of successful
real-time applications.

5.1 Real-Time Thread Pools

The lightweight execution environment provided by Harness is designed for great
efficiency, but lacks in direct support for operating system scheduler directives.
The thread pool solution is indeed a lightweight solution for job processing,
but lacks the ability to exploit the preemptability of the latest Linux kernels.
POSIX threads, like processes, can control their scheduling priority and con-
tention scope, which can be set to either process or system scope. By using the
latter it is possible to grant absolute schedule priority to the thread. Therefore,
the first developed plugin focuses on providing a greater level of control on thread
pools to user applications. It allows to define an arbitrary number of job classes,
and for each level to specify the scheduler policy and priority of the related
thread pool. Each pool tries to empty a different job queue. If not otherwise
specified, the plugin is configured by default to create three pools of threads,
in addition to the original one, it adds two pools entirely made of threads with
real-time scheduling properties.

The first additional thread pool adopts a round-robin scheduling algorithm
with priority p1. The second additional thread pool uses a first-in/first-out
scheduling algorithm with priority p2, where p1 < p2 and global contention
scope hold. This way we scaled the priority of the executing threads from one
to three levels, allowing the application executing on top of Harness to have
control over the scheduling of its tasks. The default configuration should provide
more than enough means for executing real-time applications without worries
for scheduling issues. If a more fine-grained solution is needed, it is still possible
to explicitly specify the pool parameters.



5.2 Real-Time Remote Procedure Calls

The second plugin faces a problem of the RMIX framework in its actual form.
The standard provider plugin builds on top of the TCP transport layer. This
solution, while providing a reliable and stream oriented communication, is not
well suited for distributed real-time applications. In order to address this issue,
an RMIX provider plugin was built to implement the RMIX primitives over
UDP, while keeping a real-time job (as explained in the previous subsection)
serving the incoming and outgoing communications. This way we bring into the
Harness middleware layer a more efficient implementation of the Remote Pro-
cedure Call communication scheme built onto a connectionless transport level.
While losing the reliability and the complex acknowledgment system of TCP,
we gain performance in response time metric, both in its absolute value and in
variance of its distribution. This solution exploits the pluggable nature of the
RMIX Framework, that itself is seen as a plugin by the Harness Framework. This
double-layered pluggability has the added benefit of not requiring modifications
to applications already using the RMIX Communication Framework.

5.3 Real-Time Event Logging

A common source of unpredictable latency is the access to file or screen I/O
devices, as a plain printf() function call is a very time consuming task. While
this effect can easily be ignored in standard distributed applications, it can-
not be tolerated in a distributed real-time system. The third developed plugin
implements a simple event logging system. Loading this module enables the ap-
plication to push the event to be logged in a temporary shared buffer, while
storing information about the source of the event, the timestamp, and the de-
scription of the event itself. This operation is a low overhead one, while the buffer
will be emptied by a regular Harness thread waiting on the event queue, and
optionally formatting the output in a simple XML or plain text file. This way an
application can effectively maintain logs of events with accurate timestamps in
a lightweight fashion, that is, without perturbating the execution environment
as seen by real-time threads.

6 Experimental Tests and Evaluation

The development process in industrial, high performance, and time-critical en-
vironments includes an extensive and thorough performance testing. It is im-
portant to build a test environment that resembles the operational environment
as closely as possible, both in hardware and software, and to perform tests in
adequately set up stress conditions.

6.1 Test Environment

The Operational Environment of an industrial time-critical application is mainly
composed by “Command and Control” (C2) applications. We model a C2 dis-
tributed application as constituted by components of one of three types [9]: a



sensor type component that receives the data from the environment, an elab-
orator component that computes the actions to be taken in response to data
received from sensor, and an actuator component that finally executes these ac-
tions in order to modify one or more entities of the environment to be controlled.
Following this scheme, a distributed application was developed in order to real-
istically mimic this behavior. The application testing utilizes a fictional remote
control of a vector in a 2D space along the two coordinates and speed. Such an
application is computationally very similar to real-world C2 applications used
in industrial, aerospace, and military contexts, because it involves geometric al-
gorithms on 2D polygons as well as trigonometric and floating-point operations.
Moreover, to perform stress tests, benchmark programs are used to synthetically
generate the load that simulates extreme operational conditions. Stress tests are
necessary for an industrial and mission-critical real-time system to check if the
software retains its performance level even in presence of high or spike load. The
Ubench and Hackbench benchmarks were used in order to study the behavior of
the application under varying load circumstances.

6.2 Test Results

The test were performed with unloaded systems, with Ubench load (CPU and
memory), and with different Hackbench load parameters. The goal was to deter-
mine how the performance of the distributed application as a whole was affected
in scenarios of high load. Figure 1 shows the round trip time (RTT) of the
distributed application in the Ubench-loaded configuration, i.e., the time that
occurs between the data capture from the sensor component and the action
taken by the actuator component. The total RTT of the application roughly
doubles under loaded conditions, due to the number of context switches needed
between the benchmark program and the application, but never exceeds the
value of 2.2 milliseconds, as reported in Table 1.

Fig. 1. Computational and Memory Load Sensitivity - Ubench



Average Standard Deviation Maximum

Unloaded 669.67µs 81.62µs 932µs

Loaded 1694.39µs 178.45µs 2182µs

Table 1. Round Trip Time Latency Comparison - Ubench

In the Hackbench tests we measured mean, maximum, and standard devia-
tion values of the application RTT while varying the coefficient of load (passed
as parameter to the benchmark). The results (see Figure 2) do not show a sig-
nificant relation between the rise of the load parameter and the RTT either in
its maximum value or in mean and variance. It is worth noting that both load
configurations were tested thoroughly with increasing loads until reaching insta-
bility of the host systems. Yet the performance of the distributed application
was predictable and reliable, and retained real-time class performance.

Fig. 2. Task Scheduling Load Sensitivity - Hackbench

7 Conclusions and Future Work

In this paper, we described recent research and development efforts in build-
ing an open source runtime and communication middleware layer for distributed
real-time applications. Within this context, Harness represents an optimal choice
of base line due to the extreme dynamic modularity its pluggable architecture of-
fers. We exploited this feature to build the desired set of real-time functionalities
in the form of plugins that realize communication and priority-aware execution
services with a real-time level of performance.

The performed tests show how a distributed real-time application (in this
case, a Command & Control application) can utilize the developed features. Our
work, however, makes the assumption that the underlying software layers can
provide an adequate level of performance. This is generally not true in the chosen
test environment.



Future work in this area will include porting the Harness middleware layer
onto a dedicated hard real-time operating system and network stack. Xenomai
seems to be the best candidate of the set of real-time OS’s, because it can
provide access to (hard) real-time features, while keeping an external POSIX
interface (Xenomai Skin Technology [10]). As an added bonus, Xenomai offers
a complete real-time networking stack with its integrated RTNET technology.
Another solution consists of adopting a completely different network technology
that offers an entire stack of real-time-oriented features, like Infiniband and its
related protocols. Ongoing research activities are conducted in this direction by
the Applied Research & Technology Department of MBDA Italia S.p.a.

References

1. Bray, M.: Middleware, Software Technology Review at Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA, USA. Available at
http://www.sei.cmu.edu/str/descriptions/middleware.html (1997)

2. Geist, G.A., Beguelin, A., Dongarra, J.J., Jiang, W., Manchek, R., Sunderam,
V.S.: PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, MA, USA (1994)

3. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. MIT Press, Cambridge, MA, USA (1996)

4. Real-Time Innovations, Inc, Santa Clara, CA, USA: Data Distribution Service.
Available at http://www.rti.com/products/data distribution/ (2007)

5. Washington University, St. Louis, MO, USA: Adaptive Communication Envi-
ronment (ACE) with TAO. Available at http://www.cs.wustl.edu/∼schmidt/
TAO.html (2007)

6. Object Management Group, Inc, Needham, MA, USA: Data Distribution Service
for Real-time Systems. Available at http://www.omg.org/technology/documents/
formal/data distribution.htm (2007)

7. Engelmann, C., Geist, G.A.: A lightweight kernel for the harness metacomput-
ing framework. In: Proceedings of the 14th Heterogeneous Computing Workshop
(HCW) 2005, in conjunction with the 19th International Parallel and Distributed
Processing Symposium (IPDPS) 2005, Denver, CO, USA (2005)

8. Engelmann, C., Geist, G.A.: RMIX: A dynamic, heterogeneous, reconfigurable
communication framework. In: Lecture Notes in Computer Science: Proceedings
of the International Conference on Computational Science (ICCS) 2006, Part II.
Volume 3992., Reading, UK (2006) 573–580

9. Ravindran, B.: Engineering dynamic real-time distributed systems: Architecture,
system description language, and middleware. IEEE Transactions on Software
Engineering 28 (2002) 30–57

10. Gerum, P.: Xenomai - Implementing a RTOS emulation framework on GNU/Linux.
Available at http://download.gna.org/rtai/documentation/vesuvio/html/xenomai
(2004)


