
Diskless Checkpointing on
Super-scale Architectures

Christian Engelmann, Al Geist

Network and Cluster Computing Group

Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, USA

Applied to the Fast Fourier Transform

Overview

� Super-scale architectures.
� ORNL/IBM collaboration.
� Diskless checkpointing.
� Super-scale diskless checkpointing.
� Applied to the FFT.
� Conclusions.

Super-scale Architectures

� The current HPC tera-scale computers have up
to 10,000 processors.

� The next generation peta-scale systems will
have 50,000-100,000 processors.

� They will be deployed in the next 5 years.
� In the next decade, such machines may easily

scale up to 1,000,000 processors.

� In 2002 IBM announced the Blue Gene/L.

IBM Blue Gene/L

� 65,536 processors.
� 256MB RAM/proc.
� 360 tera FLOPS.
� 3-D torus network.

� Tree network.

� Barrier network.
� Gigabit Ethernet.
� Operational: 2005.

ORNL/IBM Collaboration

� Development of biology and material science
applications for Blue Gene/L.

� Theory of super-scalar algorithms.
� Natural fault-tolerance.
� Scale invariance.

� Focus on test and demonstration tool.
� Get scientists to think about fault-tolerance in

super-scale systems.

Java Cellular Architecture
Simulator - JCAS

� Runs as distributed application.
� Simulates up to 1,000,000 threads.
� Standard network configurations:

� Multi-dimensional mesh.
� Multi-dimensional torus.

� Experimental network configurations:
� Grid positions, nearest/random neighbors.
� Random positions, nearest/random neighbors.

� Simulation is not in real-time.

Java Cellular Architecture

Simulator - JCAS

Cheetah at ORNL

Each dot is a full
processor/OS

768 IBM Power 4
5 Tera FLOPS

Earth

Simulator

Super-scale Fault-tolerance

� Does it makes sense to restart all 65,535
processors because one failed?

� The mean time between failures is likely to be
just a few minutes.

� Traditional centralized checkpointing is limited
by bandwidth (bottleneck).

� The failure rate is going to outrun the recovery
and the checkpointing rate.

Diskless Checkpointing

� Coordinated backup to the memory of dedicated
checkpoint processors.

� Reduces overhead and latency.
� Allows more frequent checkpoints.
� Shorter application running time.
� In case of a failure:

� Rollback to local memory backup.
� Restart from remote memory backup.

Diskless Checkpointing

� A checkpoint processor may become a
replacement processor during recovery.

� New checkpoint processors can be dynamically
added during runtime.

� Encoding semantics (RAID) trade off storage
size vs. degree of fault tolerance.

� Infrequent checkpointing to stable storage
(disk/tape) of backup.

Diskless Checkpointing on
Super-scale Architectures

� Decentralized peer-to-peer checkpointing.
� Processors hold backups of neighbors.
� Local checkpoint and restart algorithm.
� Coordination of local checkpoints.

Neighbors Backup

Local Backup

Program Data

Program

Choosing Neighbors

� Physically near neighbors:
� Low latency, fast backup and recovery.

� Physically far neighbors:
� Recoverable multiprocessor node failures.

� Random neighbors:
� Medium latency and bandwidth.
� Acceptable backup and recovery time.

� Optimum: pseudorandom based on system
communication infrastructure.

Backup Coordination

� All checkpoints need to be consistent with the
global application state.

� Local state and in-flight messages.
� No coordination for checkpoints with no

communication since last or since start.
� Coordination techniques:

� Global synchronization.
� Local synchronization.

Global Synchronization

� Global application snapshot.
� Synchronous backup of all local states.
� Global barrier at stable application state.
� Synchronizes complete application.

� Easy to implement.

� Preferred method for communication intensive
applications.

Local Synchronization

� Asynchronous individual backup of local state
and in-flight messages.

� Acknowledgements for messages to keep
accurate records of in-flight messages.

� Additional local group communication.
� Different methods to retrieve missed messages

from neighbors.
� More complicated to implement.
� Preferred method for less communication

intensive applications.

Application to the FFT

� Distributed and transposed FFT:
� Not naturally fault-tolerant.
� Not scale invariant.
� Mixture of local and global communication.
� Ideal test scenario for diskless checkpointing.

� Other Fourier transform algorithms may be
naturally fault-tolerant or scale better.

� They are not considered here to test the super-
scale diskless checkpointing.

How to checkpoint FFT?

Observations

� Simulation on up to 100,000 threads.
� Global synchronization proved to be easier to

implement and performs better for the
communication intensive FFT.

� Local synchronization was complicated to
realize, and may perform better for other
algorithms with less communication.

� Timing, latency and bandwidth data impossible
to obtain from this simulation.

Conclusions

� Diskless peer-to-peer checkpointing on super-
scale architectures is possible.

� Tests showed strengths and weaknesses of
different synchronization methods.

� Currently only tested on JCAS simulator.
� Real-time tests with different applications are

needed for further discussion.
� Final real-world implementation requires super-

scalable FT-MPI or PVM.
� A lot of work still needs to be done.

Diskless Checkpointing on
Super-scale Architectures

Christian Engelmann, Al Geist

Network and Cluster Computing Group

Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, USA

Applied to the Fast Fourier Transform

