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Super-scale Architectures

* The current HPC tera-scale computers have up
to 10,000 processors.

* The next generation peta-scale systems will
have 50,000-100,000 processors.

* They will be deployed in the next 5 years.

* |n the next decade, such machines may easily
scale up to 1,000,000 processors.

* In 2002 IBM announced the Blue Gene/L.



IBM Blue Gene/L

* 65,536 processors.
* 2506MB RAM/proc.
* 360 tera FLOPS.

e 3-D torus network.
* Tree network.

* Barrier network.

* Gigabit Ethernet.
* Operational: 2005.




ORNL/IBM Collaboration

* Development of biology and material science
applications for Blue Gene/L.

* Theory of super-scalar algorithms.
 Natural fault-tolerance.
e Scale invariance.

* Focus on test and demonstration tool.

e Get scientists to think about fault-tolerance in
super-scale systems.



Java Cellular Architecture
Simulator - JCAS

* Runs as distributed application.
* Simulates up to 1,000,000 threads.

e Standard network configurations:
e Multi-dimensional mesh.
* Multi-dimensional torus.
* Experimental network configurations:
* Grid positions, nearest/random neighbors.
 Random positions, nearest/random neighbors.

 Simulation is not in real-time.
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Super-scale Fault-tolerance

* Does it makes sense to restart all 65,535
processors because one failed?

* The mean time between failures is likely to be
just a few minutes.

* Traditional centralized checkpointing is limited
by bandwidth (bottleneck).

* The failure rate is going to outrun the recovery
and the checkpointing rate.



Diskless Checkpointing

* Coordinated backup to the memory of dedicated
checkpoint processors.

* Reduces overhead and latency.
* Allows more frequent checkpoints.
* Shorter application running time.

* In case of a failure:
* Rollback to local memory backup.
e Restart from remote memory backup.



Diskless Checkpointing

* A checkpoint processor may become a
replacement processor during recovery.

* New checkpoint processors can be dynamically
added during runtime.

* Encoding semantics (RAID) trade off storage
size vs. degree of fault tolerance.

* Infrequent checkpointing to stable storage
(disk/tape) of backup.



Diskless Checkpointing on
Super-scale Architectures

* Decentralized peer-to-peer checkpointing.
* Processors hold backups of neighbors.
* Local checkpoint and restart algorithm.
* Coordination of local checkpoints.




Choosing Neighbors

* Physically near neighbors:

* Low latency, fast backup and recovery.
* Physically far neighbors:

 Recoverable multiprocessor node failures.
* Random neighbors:

* Medium latency and bandwidth.

* Acceptable backup and recovery time.

* Optimum: pseudorandom based on system
communication infrastructure.



Backup Coordination

All checkpoints need to be consistent with the
global application state.

Local state and in-flight messages.

No coordination for checkpoints with no
communication since last or since start.
Coordination techniques:

* Global synchronization.
* Local synchronization.



Global Synchronization

* Global application snapshot.

* Synchronous backup of all local states.
* Global barrier at stable application state.
* Synchronizes complete application.

* Easy to implement.

 Preferred method for communication intensive
applications.




Local Synchronization

* Asynchronous individual backup of local state
and in-flight messages.

* Acknowledgements for messages to keep
accurate records of in-flight messages.

* Additional local group communication.

* Different methods to retrieve missed messages
from neighbors.

* More complicated to implement.

e Preferred method for less communication
intensive applications.



Application to the FFT

* Distributed and transposed FFT:
* Not naturally fault-tolerant.
* Not scale invariant.
e Mixture of local and global communication.
* |deal test scenario for diskless checkpointing.

* Other Fourier transform algorithms may be
naturally fault-tolerant or scale better.

* They are not considered here to test the super-
scale diskless checkpointing.




How to checkpoint FFT?
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Observations

e Simulation on up to 100,000 threads.

* Global synchronization proved to be easier to
implement and performs better for the
communication intensive FFT.

* Local synchronization was complicated to
realize, and may perform better for other
algorithms with less communication.

* Timing, latency and bandwidth data impossible
to obtain from this simulation.



Conclusions

Diskless peer-to-peer checkpointing on super-
scale architectures is possible.

Tests showed strengths and weaknesses of
different synchronization methods.

Currently only tested on JCAS simulator.

Real-time tests with different applications are
needed for further discussion.

-world implementation requires super-

Final rea
scalable

-MPI or PVM.

A lot of work still needs to be done.
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