Diskless Checkpointing on
Super-scale Architectures

Applied to the Fast Fourier Transform

Christian Engelmann, Al Geist

Network and Cluster Computing Group
Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, USA

Overview

Super-scale architectures.
ORNL/IBM collaboration.

Diskless checkpointing.
Super-scale diskless checkpointing.
Applied to the FFT.

Conclusions.

Super-scale Architectures

* The current HPC tera-scale computers have up
to 10,000 processors.

* The next generation peta-scale systems will
have 50,000-100,000 processors.

* They will be deployed in the next 5 years.

* |n the next decade, such machines may easily
scale up to 1,000,000 processors.

* In 2002 IBM announced the Blue Gene/L.

IBM Blue Gene/L

* 65,536 processors.
* 2506MB RAM/proc.
* 360 tera FLOPS.

e 3-D torus network.
* Tree network.

* Barrier network.

* Gigabit Ethernet.
* Operational: 2005.

ORNL/IBM Collaboration

* Development of biology and material science
applications for Blue Gene/L.

* Theory of super-scalar algorithms.
 Natural fault-tolerance.
e Scale invariance.

* Focus on test and demonstration tool.

e Get scientists to think about fault-tolerance in
super-scale systems.

Java Cellular Architecture
Simulator - JCAS

* Runs as distributed application.
* Simulates up to 1,000,000 threads.

e Standard network configurations:
e Multi-dimensional mesh.
* Multi-dimensional torus.
* Experimental network configurations:
* Grid positions, nearest/random neighbors.
 Random positions, nearest/random neighbors.

 Simulation is not in real-time.

Java Cellular Architecture
Simulator - JCAS

Earth
Simulator

Cheetah at ORNL

Each dot is a full
processor/0OS

768 IBM Power 4
5 Tera FLOPS

Super-scale Fault-tolerance

* Does it makes sense to restart all 65,535
processors because one failed?

* The mean time between failures is likely to be
just a few minutes.

* Traditional centralized checkpointing is limited
by bandwidth (bottleneck).

* The failure rate is going to outrun the recovery
and the checkpointing rate.

Diskless Checkpointing

* Coordinated backup to the memory of dedicated
checkpoint processors.

* Reduces overhead and latency.
* Allows more frequent checkpoints.
* Shorter application running time.

* In case of a failure:
* Rollback to local memory backup.
e Restart from remote memory backup.

Diskless Checkpointing

* A checkpoint processor may become a
replacement processor during recovery.

* New checkpoint processors can be dynamically
added during runtime.

* Encoding semantics (RAID) trade off storage
size vs. degree of fault tolerance.

* Infrequent checkpointing to stable storage
(disk/tape) of backup.

Diskless Checkpointing on
Super-scale Architectures

* Decentralized peer-to-peer checkpointing.
* Processors hold backups of neighbors.
* Local checkpoint and restart algorithm.
* Coordination of local checkpoints.

Choosing Neighbors

* Physically near neighbors:

* Low latency, fast backup and recovery.
* Physically far neighbors:

 Recoverable multiprocessor node failures.
* Random neighbors:

* Medium latency and bandwidth.

* Acceptable backup and recovery time.

* Optimum: pseudorandom based on system
communication infrastructure.

Backup Coordination

All checkpoints need to be consistent with the
global application state.

Local state and in-flight messages.

No coordination for checkpoints with no
communication since last or since start.
Coordination techniques:

* Global synchronization.
* Local synchronization.

Global Synchronization

* Global application snapshot.

* Synchronous backup of all local states.
* Global barrier at stable application state.
* Synchronizes complete application.

* Easy to implement.

 Preferred method for communication intensive
applications.

Local Synchronization

* Asynchronous individual backup of local state
and in-flight messages.

* Acknowledgements for messages to keep
accurate records of in-flight messages.

* Additional local group communication.

* Different methods to retrieve missed messages
from neighbors.

* More complicated to implement.

e Preferred method for less communication
intensive applications.

Application to the FFT

* Distributed and transposed FFT:
* Not naturally fault-tolerant.
* Not scale invariant.
e Mixture of local and global communication.
* |deal test scenario for diskless checkpointing.

* Other Fourier transform algorithms may be
naturally fault-tolerant or scale better.

* They are not considered here to test the super-
scale diskless checkpointing.

How to checkpoint FFT?

. e S S e e s Tamwose bl s e
X[0] o > 0] ., b P r~—— 10,0l
X[1] ;‘ %v! A, i[l] ji.i vv! A, 'vv? A, ¥[1,0]

W\ SINXX /o Ny > o , ‘ oo

X[3] 2 D > Y[3] 10,
\\\VV'III?XQ;O;QV oy _"_;(-1.,_01 e — .")‘ R ——rr
WX/ /2 XX N\ < . X A N\ <
51 YWY 7% S > 1o TS ASH VAVAD @ i
- x[e] \3#%’#’#’!!’“;‘"‘, P YI6] ! X1, 2] - ‘ﬁ Y ¥ (1]
K[7] v‘#‘#‘#’#%%" ‘.._.__’ 7] %1, 3] A,‘A‘) 'A;‘A, Y[3,1]
A%’éé#’éé: R Y[g_,]_ - _XEL_OJ__ _.._.._..._.._.._.._.._‘. ?‘6‘ ________E[EE]
X[9] l“#’#’#’#“‘»‘\ % <—H D v[9] 12,1 <D = > “y‘,,"-» Y[1,2]
S RS SSE—— RRE MIRSE
X ll’““‘@#‘#{,’ Y[11 X[2,3] ," v[3,2]
IIIA\\?A%%AA —— Y[l_,z_] - _XE3_01_ G ' ,‘ e S
ll‘\‘;"‘ A“;\ N ..—‘-..., X3, 1] [Ar N I" Y[L,3]
X[13] <K v[13] N N N N
- X[14] 5/ ‘A‘A’ ~——> (14 s, A"" ~__ ‘A"“ ~__—v ‘23
X 15]/ g/ Y[15 X[3,3] P P ¥v[3,3]
e ——. R y R ——— Y — _.._.._.._.._.__..__._.._.._R y ..%._._.._.._.__\i_.._.._.._..},_ —_
Possible Possible ossible Possible Possible
Coordinated Individual Iac-vidual Coordinated Individual
Checkpoints Checkpoints Checkpoints Chackpoint Checkpoints

Observations

e Simulation on up to 100,000 threads.

* Global synchronization proved to be easier to
implement and performs better for the
communication intensive FFT.

* Local synchronization was complicated to
realize, and may perform better for other
algorithms with less communication.

* Timing, latency and bandwidth data impossible
to obtain from this simulation.

Conclusions

Diskless peer-to-peer checkpointing on super-
scale architectures is possible.

Tests showed strengths and weaknesses of
different synchronization methods.

Currently only tested on JCAS simulator.

Real-time tests with different applications are
needed for further discussion.

-world implementation requires super-

Final rea
scalable

-MPI or PVM.

A lot of work still needs to be done.

Diskless Checkpointing on
Super-scale Architectures

Applied to the Fast Fourier Transform

Christian Engelmann, Al Geist

Network and Cluster Computing Group
Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, USA

