Configurable Virtualized System Environments for High Performance Computing

Christian Engelmann1,2, Stephen L. Scott1, Hong Ong1, Geoffroy Vallée1, and Thomas Naughton1,2

1 Oak Ridge National Laboratory, Oak Ridge, USA
2 The University of Reading, Reading, UK
Talk Outline

- Targeted Systems:
 - Use Case, Performance, and Architecture
- Motivation:
 - Portability, Configurability, and Testbeds
- Background:
 - Harness Workbench Virtualized Environments – Accomplishments and Limitations
- Virtualized System Environments:
 - Architecture, Life Cycle, Configuration, and Use Cases
- Related Work
- Current Status And Future Work
Scientific High-End Computing (HEC)

- Large-scale HPC systems.
 - Tens-to-hundreds of thousands of processors.
 - Current systems: IBM Blue Gene/L and Cray XT4.
 - Next-generation: petascale IBM Blue Gene and Cray XT.

- Computationally and data intensive applications.
 - 100 TFLOP – 10PFLOP with 100 TB – 10 PB of data.
 - Climate change, nuclear astrophysics, fusion energy, materials sciences, biology, nanotechnology, ...

- Capability vs. capacity computing.
 - Single jobs occupy large-scale high-performance computing systems for weeks and months at a time.
Projected Performance Development

Scientific High-End Computing

1 PFlop/s ~2008

IBM Blue Gene/L
Target HPC Architectures

- Large-scale HPC clusters and MPPs.
 - 10,000 – 1,000,000 processor cores.

- Various OSs in HPC.
 - Linux (stripped down to the necessary features).
 - Cray/Sandia Catamount (lightweight non-POSIX OS).
 - IBM Blue Gene CNK (lightweight compute node kernel).

- Various high speed/low latency networks in HPC.
 - Infiniband, iWARP, 10GE, Myrinet, Cray Seastar, ….

- Scalability and performance are a must, functionality is a feature (orthogonal to the Grid approach).
Motivation: Portability (1/2)

- HPC system **hardware upgrades** or new HPC system installations have become annual or even semi-annual events for many HPC centers.
- Similarly, HPC system **software upgrades** have become monthly or even semi-monthly events.
- There is a constant need to port the same set of scientific applications to new or upgraded systems.
- Annual or semi-annual HPC system upgrades or new installations incur the highest porting overhead.
Porting existing or newly developed scientific applications is still a complex task requiring HPC system and HPC center specific knowledge:

- What compiler and which compiler flags to use?
- Which system libraries to link and where to find them?
- How to find and use dependent software packages?
- Which system-specific workarounds to use?
- What needs to be in the batch job script?

Porting scientific applications must be simplified!
Motivation: Configurability

- There is no one-size-fits-all HPC OS solution.
- Some HPC applications just need a scalable lightweight OS solution, like Catamount, and MPI.
- Other HPC applications need the advanced features provided by a heavyweight OS, such as Linux.
- Vendors and the HPC OS community offer hybrid solutions with limited Linux functionality at scale.
 > On-demand OS deployment on HPC systems is needed to fit to scientific application needs.
Motivation: Testbeds

- New or enhanced system software solutions need to be tested at scale without corrupting the existing system software deployed on a HPC system.
- New or enhanced scientific applications need to be tested at scale without the need of performing a full-scale production-type run.

> Large-scale testbeds are needed for HPC system software and scientific application development.
Solution: Virtualized System Environments

- Hypervisors can provide a configurable ‘sandbox’ environment for system software and scientific application development and deployment.

- System-level virtualization on development systems (desktops and small HPC systems) and production-type systems (large HPC systems) can provide:
 - Simplified application porting through virtualization.
 - On-demand OS deployment on virtualized HPC systems.
 - On-demand deployment of virtual testbeds isolated from the real systems and from each other via a hypervisor.
Background: Harness Workbench Virtualized Environments

- Ongoing research in the Harness Workbench project by ORNL, UT, and Emory University.
- Focuses on simplifying scientific application development and deployment.
- Targets application-level virtualization at the runtime environment and software tools level.
- Recent prototype focuses on the chroot approach utilizing a hierarchical XML description scheme for virtualized environments.
Harness Workbench –
Virtualized Environments Workflow

3. Develop application on local platform
 Harness Workbench –
 Virtualized Environments Workflow

1. Platform
 Program

2. Platform
 Environment Description
 Environment Configure

3. vct -env install "description file"

4. vct -env start "description file" "application"
Harness Workbench – Virtualized Environments Design

1. XML Description
2. XSLT Engine
3. Config File
4. Application
5. Shell
6. File Structure
7. Env. Variables
8. Starts

Diagram:
- vct-env install conf creates
- vct-env start conf app
- 7 edit
- 6 start new shell
- 5
- 4 creates
- 3
- 2
- 1
Harness Virtualized Environments: Accomplishments and Limitations

- Application-level solution that covers file system and shell environment variables (if any) only.
- Limited to the `chroot` mechanism with certain system security implications.
- Extensible hierarchical virtualized environment description scheme in XML.
- Utilization of various methods for file system modifications: link, copy, and UnionFS.
Next Logical Step: Virtualized System Environments

- Extending the idea of configurable virtualized environments to system-level virtualization.
- Extensible hierarchical virtualized system environment description scheme in XML that contains the application requirements for:
 - OS and other system software, i.e., OS services
 - Runtime environment(s), i.e., libraries and services
 - Access policies for external resources, e.g., to the local file system or to the parallel file system of a HPC center.
Virtualized System Environments: System Architecture

- Hypervisor on development and compute nodes.
- Virtual machines run the customized virtualized environment.
- Customization is based on:
 - Application needs,
 - System capabilities, and
 - Resource allocation.
Virtualized System Environments: Life Cycle

- System management tools allow for virtual system environment configuration:
 - Description,
 - Creation,
 - Deployment,
 - Cleanup, and
 - Destruction

- Adaptation of existing VM management tools to system resource management and software development tools.
Virtualized System Environments: Configuration Management

- Hierarchical configuration scheme enables users to:
 - Override,
 - Remove, or
 - Add configuration options.

- Vendor and/or system operator configuration descriptions can be used as base configuration.
Virtualized System Environments: Use Case Scenarios

- Application and system software developers can deploy virtualized system environments based on their actual needs to:
 - Desktops
 - Small-scale HPC systems, and
 - Large-scale HPC systems
 for software development and deployment activities.

Note that a developer can work on his local desktop instead of logging into a remote HPC system development environment server.
Related Work

- System-level Virtualization.
 - **Xen**, VMware, L4.
 - HPC needs:
 - Lightweight type-I virtualization for performance.

- VM Configuration and Virtual System Management.
 - **OSCAR-V**, Virtual Workspaces, Virtuoso, COD.
 - HPC needs:
 - Scalable virtual system management.
 - Support for large-scale diskless systems.
 - VM conf. based on system capabilities and application needs.
Current Status And Future Work

- Well, we have a realistic concept for VSEs now.
- Integration of VM management with system management tools is progressing (OSCAR-V).
- HPC hypervisor is also a work in progress.
- Next steps for configurable VSEs:
 - Design XML configuration scheme for creation, deployment, and reconfiguration VM/OS instances that are part of a VSE instance.
 - Develop configuration tools for creation, deployment, and reconfiguration VM/OS instances that are part of a VSE instance.
Configurable Virtualized System Environments for High Performance Computing: Questions?

Christian Engelmann1,2, Stephen L. Scott1, Hong Ong1, Geoffroy Vallée1, and Thomas Naughton1,2

1 Oak Ridge National Laboratory, Oak Ridge, USA
2 The University of Reading, Reading, UK