
April 12, 2007 On Programming Models for Service-Level High Availability 1/30

On Programming Models for
Service-Level High Availability

Christian Engelmann1,2, Stephen L. Scott1,
Chokchai (Box) Leangsuksun3, Xubin (Ben) He4

1 Oak Ridge National Laboratory, Oak Ridge, USA
2 The University of Reading, Reading, UK
3 Louisiana Tech University, Ruston, USA
4 Tennessee Tech University, Cookeville, USA

April 12, 2007 On Programming Models for Service-Level High Availability 2/30

Talk Outline

 Scientific high-end computing (HEC)
 Availability deficiencies of today’s HEC systems
 Projects and accomplishments overviews
 High availability (HA) models for services
 Developed prototypes overview
 Existing limitations and most pressing issues
 Generalization of HA programming models
 Generic HA framework infrastructure

April 12, 2007 On Programming Models for Service-Level High Availability 3/30

Scientific High-End Computing (HEC)

 Large-scale HPC systems.
 Tens-to-hundreds of thousands of processors.
 Current systems: IBM Blue Gene/L and Cray XT4
 Next-generation: petascale IBM Blue Gene and Cray XT

 Computationally and data intensive applications.
 10 TFLOP – 1PFLOP with 10 TB – 1 PB of data.
 Climate change, nuclear astrophysics, fusion energy,

materials sciences, biology, nanotechnology, …
 Capability vs. capacity computing

 Single jobs occupy large-scale high-performance computing
systems for weeks and months at a time.

April 12, 2007 On Programming Models for Service-Level High Availability 4/30

1 PFlop/s
~2008

IBM Blue
Gene/L

Scientific High-End Computing

April 12, 2007 On Programming Models for Service-Level High Availability 5/30

National Center for Computational Sciences

 40,000 ft2 (3700 m2) computer center:
 36-in (~1m) raised floor, 18 ft (5.5 m) deck-to-deck
 12 MW of power with 4,800 t of redundant cooling
 High-ceiling area for visualization lab:

35 MPixel PowerWall, Access Grid, etc.

 2 systems in the Top 500 List of Supercomputer Sites:
 Jaguar: 10? Cray XT3, MPP with 12500 dual-core Processors 119 TFlop.
 Phoenix: 32? Cray X1E, Vector with 1014 Processors  18 TFlop.

April 12, 2007 On Programming Models for Service-Level High Availability 6/30

At Forefront in Scientific Computing
and Simulation

 Leading partnership in developing the National
Leadership Computing Facility
 Leadership-class scientific computing capability
 100 TFlop/s in 2007 (recently installed)
 250 TFlop/s in 2007/8 (commitment made)
 1 PFlop/s in 2008/9 (proposed)

 Attacking key computational challenges
 Climate change
 Nuclear astrophysics
 Fusion energy
 Materials sciences
 Biology

 Providing access to computational resources through
high-speed networking (10Gbps)

April 12, 2007 On Programming Models for Service-Level High Availability 7/30

Availability Measured by the Nines
see <http://info.nccs.gov/resources> for current status of HPC systems at Oak Ridge National Laboratory

 Enterprise-class hardware + Stable Linux kernel = 5+
 Substandard hardware + Good high availability package = 2-3
 Today’s supercomputers = 1-2
 My desktop = 1-2

9’s Availability Downtime/Year Examples
1 90.0% 36 days, 12 hours Personal Computers
2 99.0% 87 hours, 36 min Entry Level Business
3 99.9% 8 hours, 45.6 min ISPs, Mainstream Business
4 99.99% 52 min, 33.6 sec Data Centers
5 99.999% 5 min, 15.4 sec Banking, Medical
6 99.9999% 31.5 seconds Military Defense

April 12, 2007 On Programming Models for Service-Level High Availability 8/30

Typical HEC System Architecture

Image source: Moreira et al., “Designing a Highly-Scalable Operating System: The Blue Gene/L Story”
 Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Nov. 11-17, Tampa, FL, USA.

Typical failure causes:
• Overheating !!!
• Memory errors
• Network errors
• Other hardware issues
• Software bugs

Different scale requires
different solutions:
• Compute nodes (10,000+)
• Front-end, service, and
I/O nodes (50+)

April 12, 2007 On Programming Models for Service-Level High Availability 9/30

Single Head/Service Node Problem

 Single point of failure.
 Compute nodes sit idle while

head node is down.
 A = MTTF / (MTTF + MTTR)
 MTTF depends on head node

hardware/software quality.
 MTTR depends on the time it

takes to repair/replace node.
 MTTR = 0  A = 1.00 (100%)

continuous availability.

April 12, 2007 On Programming Models for Service-Level High Availability 10/30

Projects Overview

 Initial HA-OSCAR research in active/standby
technology for the batch job management system

 Ongoing MOLAR research in active/standby,
asymmetric and symmetric active/active technology

 Recent RAS LDRD research in symmetric
active/active technology

 3-4 years of research and development in high
availability for high-performance computing system
services

April 12, 2007 On Programming Models for Service-Level High Availability 11/30

Accomplishments Overview

 Investigated the overall background of HA
technologies in the context of HPC
 Detailed problem description
 Conceptual models
 Review of existing solutions

 Developed different replication strategies for
providing high availability for HPC system services
 Active/standby
 Asymmetric active/active
 Symmetric active/active

 Implemented several proof-of-concept prototypes

April 12, 2007 On Programming Models for Service-Level High Availability 12/30

Active/Standby with Shared Storage

 Single active head node
 Backup to shared storage
 Simple checkpoint/restart
 Fail-over to standby node
 Possible corruption of backup

state when failing during
backup

 Introduction of a new single
point of failure

 Correctness and availability
are NOT ALWAYS guaranteed

 SLURM, meta data servers of
PVFS and Lustre

April 12, 2007 On Programming Models for Service-Level High Availability 13/30

Active/Standby Redundancy

 Single active head node
 Backup to standby node
 Simple checkpoint/restart
 Fail-over to standby node
 Idle standby head node
 Rollback to backup
 Service interruption for fail-

over and restore-over
 Torque on Cray XT
 HA-OSCAR prototype

April 12, 2007 On Programming Models for Service-Level High Availability 14/30

Asymmetric Active/Active
Redundancy

 Many active head nodes
 Work load distribution
 Optional fail-over to standby

head node(s) (n+1 or n+m)
 No coordination between active

head nodes
 Service interruption for fail-over

and restore-over
 Loss of state w/o standby
 Limited use cases, such as

high-throughput computing
 Prototype based on HA-OSCAR

April 12, 2007 On Programming Models for Service-Level High Availability 15/30

Symmetric Active/Active Redundancy

 Many active head nodes
 Work load distribution
 Symmetric replication between

head nodes
 Continuous service
 Always up-to-date
 No fail-over necessary
 No restore-over necessary
 Virtual synchrony model
 Complex algorithms
 JOSHUA prototype for Torque

April 12, 2007 On Programming Models for Service-Level High Availability 16/30

Developed Prototypes Overview (1/2)

 Active/Standby HA-OSCAR
 High availability for Open PBS/TORQUE
 Integration with compute node checkpoint/restart

 Asymmetric active/active HA-OSCAR
 High availability for Open PBS & SGE
 High throughput computing solution

 Symmetric active/active JOSHUA
 High availability for PBS TORQUE
 Fully transparent replication

April 12, 2007 On Programming Models for Service-Level High Availability 17/30

Existing Limitations

 The active/standby and asymmetric active/active technology
interrupts the service during fail-over

 Generic n+1 or n+m asymmetric active/active configurations
have not been developed yet

 The 2+1 asymmetric active/active configuration uses two
different service implementations

 The developed symmetric active/active technology has certain
stability and performance issues

 All developed prototypes use a customized high availability
environment

 Missing interaction with compute node fault tolerance
mechanisms (except for HA-OSCAR for head node fail-over)

April 12, 2007 On Programming Models for Service-Level High Availability 18/30

Most Pressing Issues

 For production-type deployment
 Stability – guaranteed quality of service
 Performance – low replication overhead
 Interaction with compute node fault tolerance mechanisms

– e.g. procedure for failing PBS mom
Testing, enhancements, and staged deployment

 For extending the developed technologies
 Portability – ability to apply technology to different services
 Ease-of-use – simplified service HA management (RAS)
Generic HA framework needed

April 12, 2007 On Programming Models for Service-Level High Availability 19/30

Next Step: Generic HA Framework

 Generalization of HA programming models
 Active/Standby
 Asymmetric active/active
 Symmetric active/active

 Enhancing the transparency of the HA infrastructure
 Minimum adaptation to the actual service protocol
 Virtualized communication layer for abstraction

Portability
Ease-of-use

April 12, 2007 On Programming Models for Service-Level High Availability 20/30

Failure Model

 Fail-stop
 The service, its node, or its communication links, fail by

simply stopping.
 Failure detection mechanisms may be deployed to assure

fail-stop behavior in certain cases, such as for incomplete
or garbled messages.

 Permanent failures
 Non-transient behavior assured by detection mechanisms

via node fencing.
 Recovery requires external intervention, such as repair or

replacement of the failed component.
 Both assumptions match real-world properties.

April 12, 2007 On Programming Models for Service-Level High Availability 21/30

Communicating Process Generalization

• Most, if not all, HPC system services are deterministic
• Non-determinism introduced by random number generators or unsynchronized timers:

• Removal of the use of random number generators in HPC system services
• Synchronization of timers (clocks) between replicas is trivial:

•Closely coupled local area networks with low and constant latency
•Clock skew tolerable within certain boundaries (not real-time, not fully synchronous)

April 12, 2007 On Programming Models for Service-Level High Availability 22/30

Active/Standby Generalization

• Warm-Standby:
• Regular state updates from Active Service to Standby Service (push or pull)

• Hot-Standby
• On-change state updates from Active Service to Standby Service (push)

• Group communication style consistency required for state updates to multiple Standby Services
• Note: ARES Paper on extended Hot/Passive Replication semantics

April 12, 2007 On Programming Models for Service-Level High Availability 23/30

Asymmetric Active/Active Generalization

• Replication of service capability via multiple Active Services
• No replication of state among Active Services
• Mechanisms and semantics for optional Standby Services are the same as for Active/Standby

April 12, 2007 On Programming Models for Service-Level High Availability 24/30

Symmetric Active/Active Generalization

• Replication of service capability via multiple Active Services
• Replication of state among Active Services
• Virtual synchrony (active replication) model

April 12, 2007 On Programming Models for Service-Level High Availability 25/30

Comparison of Replication Methods

April 12, 2007 On Programming Models for Service-Level High Availability 26/30

Modular HA Framework

 Pluggable component framework.
 Communication drivers.
 Group communication.
 Virtual synchrony.
 Applications.

 Interchangeable components.
 Adaptation to application needs,

such as level of consistency.
 Adaptation to system properties,

such as network and system scale.

April 12, 2007 On Programming Models for Service-Level High Availability 27/30

Current Prototype

 Unique, flexible, dynamic, C-based component
framework: Adaptive Runtime Environment (ARTE)

 Dynamic component loading/unloading on demand
 XML as interface description language (IDL)
 “Everything” is a component:

 Communication driver modules
 Group communication layer modules
 Virtual synchrony layer modules

April 12, 2007 On Programming Models for Service-Level High Availability 28/30

Future Work

 Continued implementation of framework components
 Implementation of HA programming model components

 Integration with existing prototypes
 For example, replacing Transis with the framework

 Availability and reliability modeling
 Testing and benchmarking
 What about communication security/integrity?

 For client-server connections across administrative domains
 For distributed computing scenarios

April 12, 2007 On Programming Models for Service-Level High Availability 29/30

MOLAR: Adaptive Runtime Support for High-end
Computing Operating and Runtime Systems

 Addresses the challenges for operating and runtime systems to
run large applications efficiently on future ultra-scale high-end
computers.

 Part of the Forum to Address Scalable Technology for Runtime
and Operating Systems (FAST-OS).

 MOLAR is a collaborative research effort (www.fastos.org/molar):

April 12, 2007 On Programming Models for Service-Level High Availability 30/30

On Programming Models for
Service-Level High Availability

Christian Engelmann1,2, Stephen L. Scott1,
Chokchai (Box) Leangsuksun3, Xubin (Ben) He4

1 Oak Ridge National Laboratory, Oak Ridge, USA
2 The University of Reading, Reading, UK
3 Louisiana Tech University, Ruston, USA
4 Tennessee Tech University, Cookeville, USA

