A Hardware/Software Performance/Resilience/Power Co-Design Tool for Extreme-scale Computing

Christian Engelmann and Thomas Naughton
Oak Ridge National Laboratory

Workshop on Modeling & Simulation of Exascale Systems & Applications (ModSim) 2013

Seattle, WA, September 18-19, 2013
HPC Hardware/Software Co-Design

- Aims at closing the gap between the peak capabilities of the hardware and the performance realized by applications (application-architecture performance gap, system efficiency)
- Relies on hardware prototypes of future HPC architectures at small scale for performance profiling (typically node level)
- Utilizes simulation of future HPC architectures at small and large scale for performance profiling
- Simulation approaches investigate the impact of different architectural parameters on parallel application performance
- Parallel discrete event simulation (PDES) is often used with cycle accuracy at small scale and less accuracy at large scale
xSim: The Extreme-Scale Simulator

• Execution of real applications, algorithms or their models atop a simulated HPC environment for:
 – Performance evaluation, including identification of resource contention and underutilization issues
 – Investigation at extreme scale, beyond the capabilities of existing simulation efforts

• xSim: A highly scalable solution that trades off accuracy

Technical Approach

- Combining highly oversubscribed execution, a virtual MPI, & a time-accurate PDES
- PDES uses the native MPI and simulates virtual procs.
- The virtual procs. expose a virtual MPI to applications
- Applications run within the context of virtual processors:
 - Global and local virtual time
 - Execution on native processor
 - Processor and network model

Implementation

• The simulator is a library
• Utilizes PMPI to intercept MPI calls and to hide the PDES
• Implemented in C with 2 threads per native process
• Support for C/Fortran MPI
• Easy to use:
 – Compile with xSim header
 – Link with the xSim library
 – Execute: mpirun -np <np> <application> -xsim-np <vp>
Processor and Network Models

- Scaling processor model
 - Relative to native execution

- Configurable network model
 - Link latency & bandwidth
 - NIC contention and routing
 - Star, ring, mesh, torus, twisted torus, and tree
 - Hierarchical combinations, e.g., on-chip, on-node, & off-node
 - Simulated rendezvous protocol

- Example: NAS MG in a dual-core 3D mesh or twisted torus
Scaling up by Oversubscribing

- Running on a 960-core Linux cluster with 2.5TB RAM
- Executing $134,217,728 (2^{27})$ simulated MPI ranks
 - 1TB total user-space stack
 - 0.5TB total data segment
 - 8kB user-space stack per rank
 - 4kB data segment per rank
- Running MPI hello world
 - Native vs. simulated time
 - Native time using as few or as many nodes as possible

Scaling a Monte Carlo Solver to 2^{24} Ranks

Simulating OS Noise at Extreme Scale

- OS noise injection into a simulated HPC system
 - Part of the processor model
 - Synchronized OS noise
 - Random OS noise
 - Experiment: 128x128x128 3-D torus with 1 μs latency and 32 GB/s bandwidth

Random OS Noise with Changing Noise Period

1MB MPI_Reduce()
1GB MPI_Bcast()

Figure 2. Generated noise injected into the simulation

100 Hz, 10 μs, Rand. 100 Hz, 50 μs, Rand. 100 Hz, 100 μs, Rand.
10 Hz, 500 μs, Rand. 100 Hz, 50 μs, Rand. 1 kHz, 5 μs, Rand.

Noise Amplification
Noise Absorption

Investigating Performance Under Fault

- Parameterized MPI process failure injection/detection
- Parameterized MPI job failure injection/detection and restart
- First performance toolkit supporting checkpoint/restart:

Table 1: Varying the checkpoint interval and system MTTF

<table>
<thead>
<tr>
<th>(MTTF_S)</th>
<th>(C)</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(F)</th>
<th>(MTTF_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>1,000</td>
<td>5,248 s</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>6,000 s</td>
<td>500</td>
<td>5,258 s</td>
<td>7,957 s</td>
<td>1</td>
<td>3,978 s</td>
</tr>
<tr>
<td>6,000 s</td>
<td>250</td>
<td>6,377 s</td>
<td>7,074 s</td>
<td>1</td>
<td>3,537 s</td>
</tr>
<tr>
<td>6,000 s</td>
<td>125</td>
<td>6,601 s</td>
<td>6,750 s</td>
<td>1</td>
<td>3,375 s</td>
</tr>
<tr>
<td>3,000 s</td>
<td>500</td>
<td>5,258 s</td>
<td>10,584 s</td>
<td>2</td>
<td>3,528 s</td>
</tr>
<tr>
<td>3,000 s</td>
<td>250</td>
<td>6,377 s</td>
<td>8,618 s</td>
<td>2</td>
<td>2,872 s</td>
</tr>
<tr>
<td>3,000 s</td>
<td>125</td>
<td>6,601 s</td>
<td>7,948 s</td>
<td>2</td>
<td>2,649 s</td>
</tr>
</tbody>
</table>

- Identified different application failure modes, including the creation of incomplete or corrupted checkpoints

Investigating Performance Under Fault

- **User-Level Failure Mitigation**
- MPI standard enhancements proposed by the MPI-FTWG
- Permits handling of MPI process faults by applications
 - MPI_ERR_PROC_FAILED and MPI_ERR_PENDING
 - MPI_Comm_failure_ack()
 - MPI_Comm_failure_get_acked()
 - MPI_Comm_revoke()
 - MPI_Comm_shrink()
 - MPI_Comm_agree()
- First toolkit supporting ULFM

Future Work

• Add soft error injection (almost done, memory tracking exists)
 • Investigate performance under failure with applications resilient to process failures and soft errors (Small RX-Solvers component)

• Add storage models (almost done, POSIX file I/O API exists)
 • Investigate the impact of different storage architectures on checkpointing

• More targeted features
 • File system fault injection, fault prediction, and full/partial redundancy
 • Tool interface (for tracing, etc.) and generated benchmarks (ScalaBenchGen + xSim)

• Add reliability models (incl. developing a fault model)
 • Investigate fault probability, propagation, and handling efficiency
 • Investigate system and application correctness

• Add power models (potentially using external tools)
 • Study the performance/resilience/power trade-off
Conclusion

• The Extreme-scale Simulator (xSim) is a performance investigation toolkit that utilizes a PDES and oversubscription.

• It supports a basic processor model and an advanced network model to simulate a future-generation HPC system.

• It is the first performance toolkit supporting checkpoint/restart and the proposed MPI FT enhancements.

• Future work targets enhancing features and adding reliability and power models.

• The ultimate goal is to study the performance/resilience/power trade-off.

Sponsored by ORNL LDRD and by DOE ASCR under the IAA program.

Questions