
SUPPORTING THE DEVELOPMENT OF SOFT-ERROR RESILIENT
MESSAGE PASSING APPLICATIONS USING SIMULATION∗

Christian Engelmann and Thomas Naughton
Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, TN, USA
email: engelmannc@ornl.gov and naughtont@ornl.gov

ABSTRACT
Radiation-induced bit flip faults are of particular concern in
extreme-scale high-performance computing systems. This
paper presents a simulation-based tool that enables the de-
velopment of soft-error resilient message passing applica-
tions by permitting the investigation of their correctness
and performance under various fault conditions. The doc-
umented extensions to the Extreme-scale Simulator (xSim)
enable the injection of bit flip faults at specific of injection
location(s) and fault activation time(s), while supporting a
significant degree of configurability of the fault type. Ex-
periments show that the simulation overhead with the new
feature is ∼2,325% for serial execution and ∼1,730% at
128 MPI processes, both with very fine-grain fault injec-
tion. Fault injection experiments demonstrate the useful-
ness of the new feature by injecting bit flips in the input and
output matrices of a matrix-matrix multiply application, re-
vealing vulnerability of data structures, masking and error
propagation. xSim is the very first simulation-based MPI
performance tool that supports both, the injection of pro-
cess failures and bit flip faults.

KEY WORDS
high-performance computing, fault tolerance, parallel dis-
crete event simulation, fault injection

1 Introduction
Today’s fastest high-performance computing (HPC) sys-
tems are capable of performing more than 10 PFlop/s (1
PFlop/s = 1015 floating-point operations per second) using
the LINPACK benchmark [14]. These supercomputers typ-
ically consist of tens-of-thousands of compute nodes, con-
taining hundreds-of-thousands of compute cores and up to
1 PB of main memory. Supercomputer vendors undertake
great efforts in making sure that these systems run reliably

*This work was sponsored by the U.S. Department of Energy’s Office
of Advanced Scientific Computing Research. This manuscript has been
authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, ac-
knowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accor-
dance with the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan).

within the given cost constraints. On the path to exascale
computing [16], with systems operating at and above 1,000
PFlop/s by 2024, resilience against faults is becoming a
major challenge due to increasing system sizes and shrink-
ing process technology [6].

Understanding the impact of faults at runtime is an
important part of designing HPC system architectures, sys-
tem software and applications. Soft errors caused by
radiation-induced bit flip faults [1] that escape hardware
protection schemes, such as single-error correction double-
error detection (SECDED) error correcting code (ECC), are
of particular concern to HPC applications. These errors
may result in software hangs, software crashes, or silent
data corruption (SDC) [3].

Recent efforts in developing resilient solvers aim at
improving the soft error detection and correction or mask-
ing capabilities of HPC applications without the need for
full-scale dual or triple modular redundancy. The ap-
proaches in these efforts include using resilient data repre-
sentation [11], algorithm-based fault tolerance (ABFT) [10,
4], and resilient iterative solvers [9]. Evaluating the re-
silience of these HPC applications requires the injection of
bit flip faults and the observation of HPC application be-
havior, both at runtime, where resilience is measured in cor-
rectness and performance under various fault conditions.

1.1 Supporting the Development of Message Passing
Applications using Simulation

The difference between the computational peak perfor-
mance of HPC architectures and the computational perfor-
mance achieved by different HPC applications can be as
high as 50% [14]. Reducing this application-architecture
performance gap, i.e., improving architecture efficiency
and application productivity, requires an understanding of
the runtime performance of applications on today’s and to-
morrow’s HPC architectures.

HPC applications utilize the Message Passing Inter-
face (MPI) for communication between compute nodes.
MPI profiling tools aid in evaluating and improving appli-
cation performance. Simulation-based MPI performance
tools permit running a HPC application on a simulated
HPC architecture without the need for the actual hardware.
Since the runtime overhead of software simulation highly
depends on simulation accuracy, a combination of small-
scale system simulation with high accuracy and large-scale

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan


system simulation with lower accuracy is used.
Similar to simulating future HPC architectures that

don’t exist yet, simulation-based MPI performance tools
can also simulate faulty hardware in a controlled fashion
without the need for faulty hardware. This allows observ-
ing HPC application correctness and performance under
various fault conditions with simulated HPC architectures.

1.2 The Extreme-scale Simulator

The Extreme-scale Simulator (xSim) [5] is such a
simulation-based MPI performance tool. It simulates a
HPC architecture at scale with lower accuracy using a par-
allel discrete event simulation (PDES) engine. xSim sup-
ports oversubscribed execution, i.e., the simulated HPC
system can have significantly more simulated processor
cores than the native HPC system xSim runs on. The PDES
engine uses processor and network models to account for
the simulated time of each simulated MPI process. Experi-
ments using xSim scaled up to 134,217,728 (227) simulated
MPI processes using a 960-core Linux cluster.

xSim uses the MPI performance tool interface, PMPI,
to seamlessly intercept MPI calls made by the HPC appli-
cation. It also intercepts certain POSIX calls, such as for
system time and file input/output (I/O). xSim essentially
virtualizes the MPI library and certain parts of the POSIX
system call interface to simulate the performance proper-
ties of a HPC system. It supports C, C++, and Fortran,
including 92 MPI functions. Running an MPI application
in the simulator requires the following steps:

• Add the xSim header file to the application source code:
– Add “#include xsim-c.h” for C applications
– Add “#include xsim-cxx.h” for C++ applications
– Add “#include xsim-f.h” for Fortran applications

• Recompile the application and link it with the xSim sim-
ulator library and the respective xSim programming lan-
guage interface library:
– Link with “-lxsim -lxsim-c” for C applications
– Link with “-lxsim -lxsim-cxx” for C++ applications
– Link with “-lxsim -lxsim-f” for Fortran applications

• Run the application with:
– “mpirun -np <physical process cout> <application>

-xsim-np <simulated process count> <simulation
parameters> <application parameters>”

xSim already supports the injection of MPI process
failures during the simulation [15], including proper sim-
ulation of MPI process failure detection, notification, and
recovery using the user-level failure mitigation (ULFM) ex-
tensions [2] proposed by the MPI Fault Tolerance Working
Group. It is capable of investigating performance under
MPI process failure for resilient solvers using ABFT. xSim
is the very first simulation-based MPI performance tool that
supports ULFM and ABFT.

1.3 Contribution

While xSim supports the injection of MPI process failures,
it does not yet support the injection of bit flip faults and the

observation of an application’s behavior, both at runtime.
This paper details extensions to xSim to offer this capabil-
ity and to permit the measurement of correctness and per-
formance under various fault conditions for supporting the
development of soft-error resilient MPI applications.

The newly added bit flip fault injection feature is
novel in several ways: (1) it permits the specification of
injection location(s), (2) it allows the specification of fault
activation time(s), and (3) it supports a significant degree
of configurability to study different fault scenarios in de-
tail. The improved xSim is the very first simulation-based
MPI performance tool that supports both, the injection of
MPI process failures and the injection of bit flip faults.

2 Technical Approach
The core concept of the new bit flip fault injection feature
for xSim relies on separating potential fault location sites
from fault activation time and from fault features. Addi-
tionally, the use of a simulator offers several features that
can be advantageous when developing resilience investiga-
tion tools for large scale systems.

2.1 Core Fault Injection Concepts

When evaluating the resilience of an application, fault site
selection is an important factor to enable a clear under-
standing of error detection, correction and masking fea-
tures. While randomly injecting bit flip faults into the pro-
cess image of an MPI application at runtime can provide
some insights, injecting bit flip faults into specific, known
data structures yields significantly better insights as the re-
silience of individual data structures in the context of an
application’s algorithm is evaluated.

Similar to location selection (fault sites), fault activa-
tion time is an important factor as well. While injecting bit
flip faults into the input data of an MPI application or into
MPI messages at runtime can offer some knowledge, in-
jecting bit flip faults into specific, known data structures
across the life time of a HPC application yields signifi-
cantly better knowledge about the masking of faults in the
context of an application’s algorithm.

When injecting bit flip faults for measuring the cor-
rectness and performance of applications, the fault features
play a crucial role as well. While injecting single bit flip
faults can provide some view of the resilience of an appli-
cation, real-world faults are rarely single bit flips. These
faults typically happen when they escape hardware protec-
tion schemes, such as SECDED ECC, which catch single
bit flip faults. In fact, the failure mode of SECDED ECC is
a triple bit flip within an 8-byte word.

2.2 Resilience Investigation Features

xSim is responsible for managing the parallel application,
which uses the virtualized MPI and POSIX interfaces. The
simulator offers the ability to control elements associated
with the system, e.g., processor and network configuration,



and process memory management. This affords users of
xSim the ability to combine studies focused on applica-
tion scale-up (performance) with inquiries into application
behavior under error (resilience). This underlying control
layer (simulator) also provides a useful basis for develop-
ing resilience investigation tools.

There are two competing properties that must be man-
aged during fault injection experiments in order to maintain
a coherent interaction between the system under test (SUT)
(e.g., MPI application) and experiment controller (e.g.,
xSim). The level of integration with the target must be
sufficiently close to provide appropriate context, i.e., ap-
plication context, variables, and algorithmic phases. Also,
the degree of isolation is crucial for providing protections
to avoid corruption between the SUT and the controller.

As such, the simulation based approach to develop-
ing resilience investigation tools strikes a good balance
between isolation and integration. There is excellent in-
tegration with the SUT because the simulator is directly
linked into the parallel application and oversees applica-
tion resource allocations (e.g., memory) during execution.
The degree of isolation between the SUT and simulator is
moderate, and therefore care is taken when introducing the
faults into the target. In xSim, the isolation property is
maintained by closely tracking the memory allocations and
restricting the data corruptions to application specific re-
gions. Also, the types of faults that can be introduced are
closely controlled to ensure coherence of the PDES.

3 Implementation
xSim maintains a stack for each simulated MPI process and
performs user-space context switches. The simulator also
maintains a global heap for each simulated MPI process,
which is saved/restored during a context switch. xSim also
tracks the dynamically allocated memory for each simu-
lated MPI process separately. Using these three features,
xSim has full access to each simulated MPI process stack,
global heap, and dynamically allocated heap.

A potential fault location site is specified either on
the command line or registered/deregistered dynamically
with the simulator at runtime. A site can be the entire
stack, the entire global heap, the entire dynamically allo-
cated heap, or a global variable (symbol). Dynamically
registered/deregistered sites additionally include raw ad-
dresses that can point to a location in the stack, global heap
or dynamically allocated heap. Global variables or raw ad-
dresses used as sites are bound by specified sizes. If the
global variable or raw address is a pointer to a dynamically
allocated heap segment that should be used as a site, the
site’s size is specified as 0 and looked up at runtime using
xSim’s dynamic memory allocation tracking feature.

Bit flip faults are injected by creating a schedule for
injections using simulated MPI rank and simulated MPI
process time pairs. Upon the time of a scheduled injec-
tion, xSim randomly choses an address within the specified
injection sites. xSim does not have fine-grain control over
the simulated MPI processes, i.e., employs cooperative pro-

cess scheduling. As such, a simulated MPI process needs
to yield to xSim, e.g., via a simulated MPI or POSIX call,
to allow for injection. The injection schedule is checked
for any bit flip faults that need to be activated prior to xSim
relinquishing control back to the application. To permit
fine-grain injections, a check() function has been added
to xSim to temporarily hand over control to the simulator
to check the injection schedule.

The type of bit flip fault to be injected is specified
on the command line by two values. The first value is the
number of bits to flip, while the second value is the number
of consecutive bytes to consider for randomly flipping the
bits in. The randomly chosen address within the specified
injection sites is aligned with the number of consecutive
bytes. For example, randomly flipping 3 bits in 8 consecu-
tive bytes will simulate faults that escape SECDED.

4 Experimental Evaluation
The simulator performance overhead and simulation accu-
racy of the newly added bit flip fault injection feature has
been evaluated and bit flip fault injection experiments were
performed to demonstrate the usefulness of the new feature.

4.1 Evaluation Setup

The experiments were performed on a 128-core Linux clus-
ter computer with 16 compute nodes, two 2.4 GHz AMD
Opteron 2378 processors per node, 4 cores per processor,
8 GB RAM per node, and a non-blocking 1 Gbps Ethernet
interconnect. The system is running Ubuntu 14.04 LTS,
Open MPI 1.10.1, and GCC 4.8.

The simulator performance evaluation, simulation ac-
curacy evaluation and fault injection experiments utilize a
basic parallel matrix-matrix multiply application. This ap-
plication was chosen as it is deterministic even when bit
flip faults are injected at runtime into the input/output ma-
trices, unlike iterative solvers that can observe a change in
convergence rate. The main purpose of the experiments
is to demonstrate the usefulness of the new fault injection
feature, which can be easier done with a deterministic ap-
plication. The basic parallel matrix-matrix multiply appli-
cation simply reads in the input matrices A and B from
files on MPI process 0 and distributes the necessary chunks
of matrix A to the other MPI processes. The matrix B
is broadcast to the other MPI processes. Each MPI pro-
cess performs its portion of the matrix-matrix multiplica-
tion C = A × B, i.e., Cp = Ap × B, and then sends its
partial result matrix Cp back to MPI process 0. The in-
dividual partial result matrices C1−n are received by MPI
process 0 and the final result matrix C is saved to a file.
The check() function is optionally called before every
multiplication of a matrix element to permit fault injection
right at that point in time.

xSim was configured to simulate the processor and
network performance of the 128-core Linux cluster. A scal-
ing processor model was configured with a scaling factor of
1.0 to match simulated and native execution time. The net-
work model was configured with a shared memory model



(a) Comparison of execution times in seconds

(b) Simulator execution overheads in percent

Figure 1. Performance evaluation of the matrix-matrix
multiply application vs. running it atop the old xSim vs.
running it atop the new xSim, all without file I/O

for the 8 on-node processor cores and a Gigabit Ethernet
model for the network interconnect. It was also config-
ured with contention modeling for on- and off-node traffic.
The file system model of xSim is a new and untested fea-
ture and was switched off, i.e., file I/O calls do not incur
any simulated time. Every POSIX file I/O call, however, is
intercepted by xSim. To permit POSIX-compliant file sys-
tem simulation, the current implementation globally syn-
chronizes the PDES engine on every POSIX file I/O call to
serialize all POSIX file I/O calls in simulated time. This
can lead to excessive runtime overheads. Since the matrix-
matrix multiply application reads in and writes out each
matrix element with a fscanf() or fprintf() call,
fault injection can be performed when xSim relinquishes
control back to the application after each call.

4.2 Simulator Performance Evaluation

To assess the overhead of the newly added bit flip fault in-
jection feature, the basic parallel matrix-matrix multiply
application was executed using 512 × 512 matrices con-
taining double-precision values, (1) natively, (2) atop the
previous version of xSim and (3) atop the new version of
xSim. The conducted experiments scale from 1 to 128 MPI
processes on the 128-core Linux cluster, where each sim-
ulated MPI process resides in a physical MPI process. No
oversubscription was employed, where multiple simulated
MPI processes reside in a physical MPI process, to offer a

(a) Comparison of execution times in seconds

(b) Simulator execution overheads in percent

Figure 2. Performance evaluation of the matrix-matrix
multiply application vs. running it atop the old xSim vs.
running it atop the new xSim, all with file I/O

fair comparison. Each data point in the experiments is an
average that was obtained from 10 different runs.

Figure 1 shows the wall-clock execution time in sec-
onds and corresponding simulator overheads in percent of
the native application (MxM), the previous version of xSim
(Old xSim), the new version of xSim without calling the
check() function before every matrix element multipli-
cation (New xSim), and the new version of xSim with call-
ing the check() function (New xSim w/ Check), all with-
out reading in the input files and writing out the output file.
The native application execution (MxM) drops to only 53%
of its serial execution time with 128 MPI processes, as the
amount of parallelized computation time is mostly offset
by the amount of communication. The previous version
of xSim (Old xSim) and the new version of xSim with-
out calling the check() function exhibit the same simu-
lator overheads (∼60% for serial execution and ∼300% at
128 MPI processes). The new version of xSim with call-
ing the check() function (New xSim w/ Check) shows
a significant simulator overhead increase that scales with
the amount of computation time (∼1,900% for serial ex-
ecution and ∼515% at 128 MPI processes). The perfor-
mance impact of the 512 × 512 × 512 = 134, 217, 728
(O(n3)) check() calls evenly distributed over the MPI
processes is clearly visible. As the check() calls are get-
ting distributed over more MPI processes, the overhead cor-
respondingly decreases.



(a) Comparison of native vs. simulated execution times in seconds

(b) Simulation accuracy in percent

Figure 3. Simulation accuracy evaluation of the the old
xSim vs. the new xSim with the matrix-matrix multiply
application without file I/O

Figure 2 illustrates the wall-clock execution time and
corresponding simulator overheads with reading in the in-
put files and writing out the output file. The native appli-
cation execution (MxM) drops to only 64% of its serial
execution time with 128 MPI processes, as the additional
amount of time needed for file I/O is not parallelized. The
previous version of xSim (Old xSim) and the new version
of xSim without calling the check() function exhibit the
same simulator overheads (∼910% for serial execution and
∼1,600% at 128 MPI processes). The increase in over-
head in comparison to Figure 1 is entirely due to the file
system model. Each of the 2 × 512 × 512 = 524, 288
(O(n2)) fscanf() and 512 × 512 = 262, 144 (O(n2))
fprintf() calls stops and synchronizes the simulation.
Each call also checks for a fault injection upon returing to
the application. The new version of xSim with calling the
check() function (New xSim w/ Check) shows again a
significant simulator overhead increase that scales with the
amount of computation time (∼2,325% for serial execution
and ∼1,730% at 128 MPI processes). This execution has a
total of 135,004,160 potential injection points just from the
file I/O and check() function calls.

4.3 Simulation Accuracy Evaluation

The simulator performance evaluation experiments were
also used to evaluate the simulation accuracy. A simula-
tion is considered accurate if the simulated execution time

(a) Comparison of native vs. simulated execution times in seconds

(b) Simulation accuracy in percent

Figure 4. Simulation accuracy evaluation of the the old
xSim vs. the new xSim with the matrix-matrix multiply
application with file I/O

matches 100% of the native execution time.
Figure 3 shows the simulation accuracy of the previ-

ous version of xSim and the new version of xSim in com-
parison to the native execution of the application, all with-
out reading in the input files and writing out the output
file. The previous version of xSim and the new version of
xSim without calling the check() function exhibit simi-
lar simulation accuracy (100% for serial execution for both,
∼94% at 128 MPI processes for the previous version of
xSim, and ∼102% for the new version). The new version
of xSim with calling the check() function shows a sig-
nificant simulation accuracy decrease that scales with the
amount of computation time (∼261% for serial execution
and ∼106% at 128 MPI processes). This is expected as
the check() function is called before every multiplica-
tion, reducing processor cache efficiency. This increases
the runtime of the application in simulated time. Such fine-
grain instrumentation for fault injection always interferes
with the system under test.

Figure 4 illustrates the simulation accuracy of the pre-
vious and the new version of xSim in comparison to the ap-
plication with reading in the input files and writing out the
output file. The impact of the disabled file system model is
clearly visible. The previous and the new version of xSim
without calling the check() function exhibit similar sim-
ulation accuracy (83% for serial execution for both, ∼86%
at 128 MPI processes for the previous version of xSim, and



(a) Matrix A injections

(b) Matrix C injections

Figure 5. The number of output matrices C corrupted by
fault injection with calling the check() function

∼74% for the new version). Due to the disabled file system
model, the application executes faster in simulated time as
the time needed for file I/O is not simulated. The new ver-
sion of xSim with calling the check() function shows
again a significant simulation accuracy decrease that scales
with the amount of computation time (∼224% for serial
execution and ∼77% at 128 MPI processes). The faster ex-
ecution in simulated time due to the disabled file system
model is partially offset by the slower execution in simu-
lated time due to the check() function.

4.4 Fault Injection Campaign

To demonstrate the usefulness of the new feature, bit flip
fault injection experiments were performed using the new
version of xSim with POSIX file I/O, with and without call-
ing the check() function for 512×512 matrices contain-
ing double-precision values. A random single SECDED
ECC protection failure is injected in the form of a triple-bit
flip in an 8-byte word. The injection is performed in the
input matrix A or the output matrix C at a random loca-
tion, a random point in time and at a random MPI process
during the execution. The experiment is conducted from 1
to 128 MPI processes with 100 runs at each scale. As the
injection is random, its impact depends on the time frame
of vulnerability of the particular injection location. With a
large enough number of runs with different injection times
and locations within the same data structure on different
MPI processes, the overall vulnerability of that particular

(a) Matrix A injections

(b) Matrix C injections

Figure 6. The number of output matrices C corrupted by
fault injection without calling the check() function

data structure is revealed. As the impact also depends on
the data itself, input matrices containing 1%, 50% and 99%
zero values are used to demonstrate algorithmic masking.
A total of 9,600 runs were executed.

Figure 5 shows the number of output matrices C cor-
rupted by a single triple-bit 8-byte flip fault injection in the
input matrix A or C with calling the check() function.
For all cases (1%, 50% and 99% zero values), the number
of output matrices C corrupted by matrix A fault injections
initially decreases and then increases with the number of
MPI processes (Figure 5(a)). The minimum is at 2 MPI
processes for inputs containing 1% zero values, at 4 MPI
processes with 50% zeros, and at 2 with 99% zeros. At 1
and 2 MPI processes, inputs containing 99% zero values
produce the least amount of corrupt outputs, while inputs
containing 50% zeros produce the least amount of corrupt
outputs at higher scales. At 1 and 2 MPI processes, inputs
containing 50% zeros produce the most number of corrupt
outputs, while inputs containing 1% zeros produce the most
number at higher scales. For input matrices containing 1%
and 50% zeros, the number of output matrices C corrupted
by matrix C fault injections initially decreases, then in-
creases, and then decreases again with the number of MPI
processes (Figure 5(b)). The amount of corrupt outputs is
close between both cases at each scale. For inputs contain-
ing 99% zeros, at most 1 corrupt output was produced.

Figure 6 illustrates the number of output matrices C
corrupted by a single triple-bit 8-byte flip fault injection in



the input matrix A or C without calling the check() func-
tion. In comparison to Figure 5, the impact of not calling
the check() function is clearly visible. The initial high
vulnerability of matrix A at lower scales when calling the
check() function is not present without calling it. The
initial trend of decreasing vulnerability of matrix A is not
visible either. Only the overall trend of higher vulnerabil-
ity of matrix A when scaling up is similar, as well as the
differences between inputs containing 1%, 50% and 99%
zeros. While inputs containing 1% and 99% zeros pro-
duce a somewhat similar amount of corrupt outputs with
injected faults, inputs containing 50% zeros produce less.
Also, the initial lower vulnerability of matrix C at lower
scales when calling the check() function is not present
without it. The increase in vulnerability of matrix C at 4,
6 and 16 MPI processes is also not displayed. The differ-
ences between inputs containing 1%, 50% and 99% zeros
are similar, as inputs with 1% and 50% zeros produce about
the same number of corrupt outputs and inputs with 99%
zeros create at most 1. This result clearly shows the need
for the check() function to get more insights about the
vulnerability of data structures at runtime.

Figure 7 shows the maximum number of output val-
ues in matrix C corrupted by fault injection in matrix A
in a single run, with and without the check() function.
There is no impact for calling the check() function. Less
corrupt output values are being created at 1 and 2 MPI pro-
cesses. Inputs with 1% zeros produce the most corrupt out-
put values, while inputs containing 50% zeros create about
half, and inputs with 99% zeros only 10 or less.

5 Related Work

There have been several recent works that have used fault
injection to study the resilience in HPC. We briefly high-
light a few that are directly relevant to the current work,
namely: MPI, interposition libraries, and soft error studies.

In the FAIL-FCI/FAIL-MPI [7, 8] work, a language
was developed for users to describe fault injection exper-
iments along with supporting infrastructure for managing
the distributed execution of fault injection campaigns. The
distinction between the FCI and MPI variants had to do
with management of task launching/attaching in distributed
environments. The FAIL description language supported
different error activation methods, these “fault triggers”
were onload, onexit and onerror [7]. In contrast to the cur-
rent work, xSim’s fault injection method integrates with the
simulator and therefore is focused on a “time based” trig-
ger. The FAIL works used a debugger style mechanism to
inject faults, i.e., debugger process launch/attach.

The library level fault injection (LFI) [13] work pro-
vided a general tool that used the LD PRELOAD mecha-
nism to interpose on application execution when calls are
made to shared libraries. This is similar to the mechanism
used by xSim for interposing on application routines and
tracking variable usage (symbols), where no direct source

(a) With calling the check() function

(b) Without calling the check() function

Figure 7. The maximum number of output values in matrix
C corrupted by fault injection in matrix A

code modifications1 are necessary to enable/disable injec-
tion sites at runtime. However, the xSim fault injection
mechanism is fully aware of the discrete event simulation
and ensures proper causality for resilience experiments.

The work by Li et al. [12] used binary instrumenta-
tion to introduce errors via the BIFIT tool to study soft
errors in HPC applications. They gathered memory pro-
files to identify target locations for injections and then dy-
namically instrumented the binaries to inject bit flips into
globals, heap and stack data. They observed that the time
and location of the injection is significant for each applica-
tion and that for all three applications (Nek50000, S3D, and
GTC), global data was significant to influence the applica-
tion’s output and execution state. The fault injection mech-
anisms in xSim allow for very fine-grained control over the
time and location of the injections. The memory profiling
could also be employed with the current xSim mechanisms
to tailor site selection.

6 Conclusion
This paper presented recent improvements to the Extreme-
scale Simulator (xSim). A newly added bit flip fault in-
jection feature allows an MPI application developer to ob-
serve application correctness and performance under vari-

1Note, the previously discussed xSim check() function can be added
to the application’s source code to reduce fault injection latency.



ous fault conditions with simulated HPC architectures. The
novel bit flip fault injection feature permits the specification
of injection location(s), allows the specification of fault ac-
tivation time(s), and supports a significant degree of con-
figurability to study different fault scenarios in detail. With
this new feature, xSim is the very first simulation-based
MPI performance tool that supports both, the injection of
MPI process failures and the injection of bit flip faults.

The evaluation showed that the simulation overhead
of the new feature is ∼2,325% for serial execution and
∼1,730% at 128 MPI processes for very fine-grain fault in-
jection capability. The fault injection experiments demon-
strated the usefulness of the new feature by injecting
SECDED ECC protection failures in the input matrix A
and the output matrix C of a basic parallel matrix-matrix
multiply application. The results revealed the error vulner-
ability of these data structures, certain algorithmic masking
effects and specific algorithmic error propagation effects.

Future work will focus on an efficient and accurate
file I/O simulation implementation. Further planned work
includes different fault injection features that mimic the be-
havior of faulty logic, such as of a faulty processor.

References
[1] R. C. Baumann. Radiation-induced soft errors in ad-

vanced semiconductor technologies. IEEE Transac-
tions on Device and Materials Reliability (TDMR),
5(3):305–316, 2005.

[2] W. Bland, A. Bouteiller, T. Herault, J. Hursey,
G. Bosilca, and J. J. Dongarra. An evaluation of
user-level failure mitigation support in MPI. In Pro-
ceedings of the 19th European conference on Re-
cent Advances in the Message Passing Interface, Eu-
roMPI’12, pages 193–203, Berlin, Heidelberg, 2012.
Springer-Verlag.

[3] G. Bronevetsky and B. R. de Supinski. Soft error
vulnerability of iterative linear algebra methods. In
Proceedings of the 21st ACM International Confer-
ence on Supercomputing (ICS) 2008, Island of Kos,
Greece, June 7-12, 2007. ACM Press, New York, NY,
USA.

[4] Z. Chen and J. Dongarra. Algorithm-based
checkpoint-free fault tolerance for parallel matrix
computations on volatile resources. In Proceed-
ings of the 20st IEEE International Parallel and
Distributed Processing Symposium (IPDPS) 2006,
page 10, Rhodes Island, Greece, Apr. 25-29, 2006.
IEEE Computer Society.

[5] C. Engelmann. Scaling to a million cores and beyond:
Using light-weight simulation to understand the chal-
lenges ahead on the road to exascale. Future Gener-
ation Computer Systems (FGCS), 30(0):59–65, Jan.
2014.

[6] J. D. et al. Inter-agency workshop on HPC resilience
at extreme scale, Feb. 21-24, 2012.

[7] W. Hoarau, P. Lemarinier, T. Herault, E. Rodriguez,
S. Tixeuil, and F. Cappello. FAIL-MPI: How Fault-

Tolerant Is Fault-Tolerant MPI? In Proceedings of
the International Conference on Cluster Computing.
IEEE, Sept. 2006.

[8] W. Hoarau, S. Tixeuil, and F. Vauchelles. FAIL-FCI:
Versatile fault injection. Future Generation Computer
Systems, 23(7):913 – 919, 2007.

[9] M. Hoemmen and M. A. Heroux. Fault-tolerant it-
erative methods via selective reliability. Technical
report, Sandia National Laboratories, Albuquerque,
MN, USA, 2012.

[10] K.-H. Huang and J. A. Abraham. Algorithm-based
fault tolerance for matrix operations. IEEE Transac-
tions on Computers (TC), C-33(6):518–528, 1984.

[11] M. M. Latif, R. Ramaseshan, and F. Mueller. Soft er-
ror protection via fault-resilient data representations.
In Proceedings of the 3rd Workshop on Silicon Errors
in Logic - System Effects (SELSE) 2007, Apr. 2007.

[12] D. Li, J. S. Vetter, and W. Yu. Classifying soft er-
ror vulnerabilities in extreme-scale scientific applica-
tions using a binary instrumentation tool. In Proceed-
ings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analy-
sis, SC ’12, pages 57:1–57:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[13] P. D. Marinescu and G. Candea. LFI: A Practical
and General Library-Level Fault Injector. In Pro-
ceedings of the 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN’09). IEEE, June 29 - July 2, 2009.

[14] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon.
Top 500 List of Supercomputer Sites, 2012. http://
www.top500.org.

[15] T. Naughton, C. Engelmann, G. Vallée, and S. Böhm.
Supporting the development of resilient message
passing applications using simulation. In Proceed-
ings of the 22nd Euromicro International Conference
on Parallel, Distributed, and network-based Process-
ing (PDP) 2014, pages 271–278, Turin, Italy, Feb. 12-
14, 2014. IEEE Computer Society, Los Alamitos, CA,
USA. Acceptance rate 32.6% (73/224).

[16] US Department of Energy. DOE Exas-
cale Strategy - Report to Congress. http:
//assets.fiercemarkets.net/public/sites/govit/
perera fgit foia doe exascale%20report.pdf, June
2013.

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://www.top500.org
http://www.top500.org
http://www.pdp2014.org
http://www.pdp2014.org
http://www.pdp2014.org
http://www.computer.org
http://www.computer.org
http://assets.fiercemarkets.net/public/sites/govit/perera_fgit_foia_doe_exascale%20report.pdf
http://assets.fiercemarkets.net/public/sites/govit/perera_fgit_foia_doe_exascale%20report.pdf
http://assets.fiercemarkets.net/public/sites/govit/perera_fgit_foia_doe_exascale%20report.pdf

	Introduction
	Supporting the Development of Message Passing Applications using Simulation
	The Extreme-scale Simulator
	Contribution

	Technical Approach
	Core Fault Injection Concepts
	Resilience Investigation Features

	Implementation
	Experimental Evaluation
	Evaluation Setup
	Simulator Performance Evaluation
	Simulation Accuracy Evaluation
	Fault Injection Campaign

	Related Work
	Conclusion

