
ORNL is managed by UT-Battelle
for the US Department of Energy
ORNL is managed by UT-Battelle
for the US Department of Energy

Pattern-based Modeling
of Fail-stop and
Soft-error
Resilience for
Iterative Linear
Solvers

Rizwan A. Ashraf, Saurabh Hukerikar, and
Christian Engelmann
Computer Science Research Group,
Computer Science and Mathematics Division,
Oak Ridge National Laboratory (ORNL), USA.

18th SIAM Conference on Parallel Processing for
Scientific Computing (PP), Tokyo, Japan, March 7-10, 2018

Resilience, Why?

• Resiliency in high performance computing (HPC)
applications: the ability to gracefully handle errors and
recover from failures.

• Errors and failures are common place in HPC systems
today.
– Large-scale systems with a number of complex & diverse software

and hardware components,
– Technology scaling trends in hardware components,
– Complex compute, memory, interconnect and storage architectures,
– Cost (design, area, power, engineering) of achieving error-free large

scale systems is too high.

• The situation is only expected to get worse, as we move
towards the goal of achieving more computational power,
i.e., Exascale systems.

2

Multiresilience in HPC Applications

• HPC Applications are affected by multiple types of events
which hinders with their ability to make forward progress and
their correctness.
– Soft Errors: Silent data corruptions (SDC),
– Hard Errors: process failures (Crash),
– Broad categorization which covers the affects of various types of

faults excluding performance faults.

• Most works provide resilience to only a single type of error
mechanism.

• Need to systematically integrate multiple techniques to
detect and handle multiple error events, without sacrificing
performance.

3

Design Patterns for Resilience

• Patterns provide a generalizable solution to a recurring
problem.

• The solution is formalized with a set of activation and
response interfaces, and a behavior specification.

• Patterns do not provide concrete solutions, instead focus on
a reproducible strategy which may be used many times,
implemented in different manners.

• State Patterns, provide encapsulation of application’s state:
– Static/Persistent State, Dynamic State, and Environment State.

• Behavioral Patterns, provide detection, containment and
mitigation techniques:
– Strategy, Architecture, and Structural patterns.

4

Resilience Patterns Catalog

• See “Resilience Design Patterns: A Structured Approach to Resilience at
Extreme Scale,” ORNL Technical Report v1.2, December 2017.

R
ej

uv
en

at
io

n

Fault	Treatment Recovery Compensation

Design Diversity

R
ec

ov
er

y
bl

oc
k

n-
ve

rs
io

n
de

si
gn

n-
m
od

ul
ar
	

Re
du

nd
an
cy

Stateful

St
at

el
es

s

Fault	Diagnosis

R
ol

l f
or

w
ar

d
Checkpoint	Recovery

R
ol

lb
ac

k

Pe
rs

is
te

nt

En
vi

ro
nm

en
t

D
yn

am
ic

M
on

ito
rin

g

Pr
ed

ic
tio

n

St
ra

te
gy

St
ru

ct
ur

al

State

Reconfiguration

R
ei

ni
tia

liz
at

io
n

R
es

tru
ct

ur
e

Ar
ch

ite
ct

ur
al

Redundancy

Fo
rw

ar
d	
Er
ro
r	

Co
rr
ec
tio

n	
Co

de

Behavioral

5

Pattern-based Modeling of Multiresilience

• Multiple patterns are instantiated across layers of the system
stack, interlinked using a building blocks approach.

• Coordination among multiple patterns designed to provide
optimal end-to-end application performance.
– Interfaces are standardized,
– Systematic software and hardware layer coordination.

• Navigate the performance resilience tradeoff space by
evaluating multiple solutions.
– Each pattern has significantly different performance and

implementation characteristics.

• Naïve stacking can lead to overprotection resulting in
degradation of application performance.

6

FT-GMRES Solver

Use Case: Linear Solver

• GMRES minimal residual method for
solving non-symmetric linear systems.
– Solve: Ax = b
– Iterative algorithm

7

• Resilience patterns
provide detection,
containment, and
mitigation for soft
and fail-stop errors.

Patterns for Soft Error Resilience

8

• SDCs can cause unbounded numerical errors, which propagate across
parallel processes, resulting in slow convergence of the solver.

• State patterns: segregation enables exploration of detection and
recovery patterns, reduces overheads in most cases.

– Static state: Matrix A and Right-hand vector b,
– Dynamic state: Solution vector x,
– Environment state: Data-structure indices, pointers, loop counters, etc.

• Detection patterns: utilize properties/characteristics of the
algorithm/application/state patterns to detect presence of SDCs.

– Monitoring pattern: checks progress by keeping track of the quality metric. Depending
on the application, the overhead of calculating the quality metric can vary widely.

– Application specific instantiation of the monitoring pattern: bounded-compute pattern,
verifies outputs produced during critical computations against a-priori known bounds.

• Mitigation patterns: ensures forward progress of the algorithm and
application.

– Compensation strategy pattern: modular redundancy, results in high overheads.
– Rollback recovery pattern: preserve dynamic state in local memory (checkpoints).

Patterns for Hard Error Resilience

9

• Process failures make a parallel application to stall indefinitely or result
in fatal crash, within the distributed memory model, losing all work done.

• State patterns: encapsulate the application state to facilitate recovery of
lost state after process failure.

– Environment state: Objects in parallel runtime environment,
– Static & Dynamic state: Distributed across parallel processes.

• Detection patterns: instantiated in the environment state pattern, for
robust detection and identification of failed processes.

– Consensus structural pattern: proactive or reactive approach to failure detection.
– Proactive strategy: Collective operations (all process communication) can be

strategically placed to enable runtime environment to detect failures regularly.

• Mitigation patterns: recover lost static and dynamic state, and mitigate
environment state for forward progress of parallel application.

– Reconfiguration pattern: rejuvenate parallel runtime environment by removing failed
processes and refreshing parallel runtime objects for future communications.

– Compensation strategy pattern: maintain a pool of spare processes for replacement.
– Checkpoint restart pattern: remote in-memory checkpoints of static and dynamic state.

Pattern-based Modeling
Fault Model Pattern

Class
Choices Selection

Soft Error

State Dynamic, static,
environment

Need scoping of dynamic and static state
only, since environment corruption results
in process failure.

Detection Monotonicity,
bounded compute,
checksums

Bounded compute results in 14x lower
overhead compared to monotonicity
monitoring pattern.

Recovery Checkpoint,
checksums

Local in-memory checkpoints due to less
computational overhead.

Hard Error

State Dynamic, static,
environment

All, since process failures are fatal for
application.

Detection Proactive, reactive Proactive, since collectives present in
every iteration, prevent propagation.

Recovery

Environment: warm
spares, rejuvenate

Spares to avoid re-allocation of state.

Checkpoint-restart,
diskless checkpoints,
linear interpolation

In-memory checkpoint-restart because of
least overhead and no effect on
convergence of solver.

10

Multiresilience - Pattern coordination

11

Experimental Setup

12

• FT-GMRES implemented using Trilinos 12.6.4 framework,
https://trilinos.org/.
– Tpetra package for parallel linear algebra using MPI.

• Parallel Environment: ULFM release 1.1, based on Open MPI
1.7.1 http://fault-tolerance.org/. ULFM provides:
– Process failure detection,
– Parallel environment reconfiguration capabilities (remove failed process)

• Test problem: Discretization of 3D mesh. Sparse Matrix with about
7 million rows and 186 Million non-zeros.

• 40-node Linux cluster with AMD Opteron processors.
– Cores/node: 24 (Total: 960 cores),
– Memory/node: 64 GB,
– Point-to-point bandwidth: 215 MB/s.

Goals of Experiments

• Goal # 1: Evaluate the resiliency and performance
characteristics of individual patterns.
– Design reproducible error injection experiments, e.g., coefficient of

variation for all experiments ranges between 0.01 and 0.05.

• Goal # 2: Quantify the performance interactions between
soft error and process failure resilience patterns in a
multiresilience solution.
– Identify constraints of combining patterns.

13

• Soft Error injected after every 30 (less frequent), 20 and 10 (more frequent)
Sparse Matrix Vector Multiplication (SpMVM) operations.

• In all cases, the solver converged to a correct solution in allotted time.

Results – Soft Error Resilience

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512

Ti
m

e-
So

ln
 (N

o
Pr

ot
ec

tio
n)

 /
Ti

m
e-

So
ln

 (w
ith

 P
ro

te
ct

io
n)

Number of Processes

Fault-Free and No-Protection 30 SpMVM 20 SpMVM 10 SpMVM

Processes

Detect + Recovery
Overheads

Num. of Additional
Iterations

30 SpMVM 10 SpMVM 30 SpMVM 10 SpMVM

32 2.1% 8.9% 30 [75] 36 [150]

64 6.5% 4.8% 27 [50] 34 [75]

128 8.1% 8.8% 25 [25] 33 [125]

256 1.1% 1.9% 32 [50] 36 [125]

512 0.7% 0.7% 28 [50] 35 [100]

Higher is better (less overheads)

Overheads: Detection, recovery, additional iterations.
Tradeoff: High detection overhead, less additional iterations.

• Processes terminated based on exponential distribution with constant failure rate
of time to complete 75 iterations. Up to four independent process failures.

• Pre-selected processes for termination gives results with low standard deviation.

Results – Process Failure Resilience

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512

Ti
m

e-
So

ln
 (N

o
Pr

ot
ec

tio
n)

 /
Ti

m
e-

So
ln

 (w
ith

 P
ro

te
ct

io
n)

Number of Processes

Fault-Free and No-Protection Fault-Free with Checkpoints Checkpoint Restart Recovery

Processes

Reconfig Recover
State

Checkpoint
Static +
Dynamic
[%dynamic]

Re-
compute
Overhead

32 0.02% 17.1% 28.1%
[25.6%] 10.9%

64 0.03% 9.4% 18.5%
[22.9%] 13.4%

128 0.04% 5.4% 12.9%
[14.7%] 12.9%

256 0.02% 1.9% 7.5%
[16.7%] 13.5%

512 0.05% 1.2% 5.1%
[12.2%] 16.2%

Higher is better (less overheads)

Overheads: [No fail:] Checkpoint of static (once) and
dynamic states; [Failures:] No fail + state recovery,

recompute, checkpoint (static, dynamic) state spares.

• Multiresilience to soft errors injected after every 10 SpMVMs (multiple times in a
checkpoint interval) and up to four process failures.

• More overhead of dynamic state checkpoints due to increase in convergence
time as compared to stand-alone process failure experiments.

– On average, additional time is less than expected failure time, otherwise difference will be
significant since checkpoint of static state is expensive.

• Overhead of wasted soft error detections is negligible in our experiments.

Results – Multiresilience

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64 128 256 512

Ti
m

e-
So

ln
 (N

o
Pr

ot
ec

tio
n)

 /
Ti

m
e-

So
ln

 (w
ith

 P
ro

te
ct

io
n)

Number of Processes

Multiresilience (actual) PF + SDC (estimated from stand-alone experiments)

15

20

25

30

35

40

45

32 64 128 256 512

Ch
ec

kp
oi

nt
 T

im
es

 (s
ec

s)

Number of Processes

Stand-alone PF resilience
Multiresilience

Less overhead estimated
by combining results from
stand-alone experiments Higher average and

standard deviation of
checkpoint times for
multiresilience expts

Conclusions

17

• A pattern-oriented design and implementation approach
for gracefully handling multiple error modes.

• Iterative refinement of pattern relationships to optimize
end-to-end application performance.

• A generalizable approach to architect resilience or
multiresilience solutions by composing patterns from
multiple layers of system stack.

• Experimental evaluation for an iterative linear solver
application exploiting algorithmic patterns.

• Highlighted the importance of considering interactions
between patterns when designing a multiresilience
solution.

