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Recent Anecdotes

11,000 out of 18,800 GPUs had to be replaced in ORNL’s Titan
supercomputer in 2016-18 due to a serious reliability issue

Google in 2021 reported that certain processor cores compute wrong

results, such that some encrypted data could only be decrypted on cores
It was encrypted on

 Meta (Facebook Engineering) revealed in 2021 experiences with silent
data corruption at scale

o A 2022 New York Times article, titled “Chip Errors Are Becoming More
Common and Harder to Track Down”, detailed some of the ongoing
issues with computer hardware reliability
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The HPC Resilience Challenge

e Resilience in extreme-scale supercomputers is an optimization problem
between the key design and deployment cost factors:

- Performance, resilience, and power consumption

 The challenge is to build a reliable system within a given cost budget that
achieves the expected performance

e This requires fully understanding the resilience problem and offering
efficient resilience mitigation fechnologies

- Whatis the fault model of such systems?

- What are realistic expectations for reliability

- Whatis the impact of faults on applications?

- How can mitigation in hard-/software help and at what cost?
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Characterizing Supercomputer Faults, Errors and Failures

Novel Ideas:

» Applies a unified taxonomy for supercomputer
faults, errors and failures

» Understanding resilience is a data analytics
problem, requiring fusion and analysis of different
logs and system health data

Impact:

Develops an understanding of observed and
inferred supercomputer reliability conditions

Extrapolates this knowledge to future systems

Enables the systematic improvement of resilience in
extreme-scale systems

Keeps applications running to a correct solution in a
timely and efficient manner in spite of frequent
faults, errors, and failures
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Accomplishments:

» Analyzed 1.2 billion node hours of logs from the
Jaguar, Titan, and Eos systems at OLCF

» Developed tools for analyzing logs and creating a
fault, error and failure catalog

» Created novel modeling techniques to characterize
temporal and spatial failure behavior
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Figure: Each system goes through phases of high and low stability due to
continuous efforts of system administrators to improve overall system reliability

Saurabh Gupta, Devesh Tiwari, Tirthak Patel, and Christian Engelmann. Reliability of HPC systems:
Large-term Measurement, Analysis, and Implications. SC’17. DOI 10.1145/3126908.3126937.
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Characterizing Supercomputer Faults, Errors and Failures
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(c) Titan

Spatial distribution of failures among cabinets for 3 studied systems
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GPU Failures and Replacements in ORNL'’s Titan

GPU swaps detected at inventories (narrow blue) and yearly sum totals for 2014 and later ( )
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Root Cause: Non-ASR Components on SXM GPU
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ASR = Anti-Sulfur Resistor
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Cray XK7 Titan — Weekly GPU Failures

Cray XK7 Titan - Weekly GPU Failures, All Categories, 2014 - Present
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GPU Life Visualization: Serial Number View

Critical for:

Understanding data
Defining GPU Life

Data processing
verification

Produced in R via ggplot2 and lubridate packages
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GPU Life Visualization: Location View

Critical for:
« Understanding data
« Defining GPU Life

« Data processing
verification

Produced in R via ggplot2 and lubridate packages
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Traditional Reliability in HPC is Focused on MTBF

EEm Old GPUs: DBE data
Emm Old GPUs: OTB data
B New GPUs: DBE data
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Cage and Node Effect Explainable by Airflow in Cabinet
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Fill-in Scheduling Effect Explainable via Torus Coordinate

Variable N Events Hazard ratio Variable N Events | Hazard ratio
col col -

(X-1) 744 173
(X-2) 759 169

(x-25) 772 97 E B
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9 (X-6) 758 259
10 (x-21) 739 180
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DOE Early Career Award: Resilience Design Patterns

Novel Ideas: Accomplishments:
» Design patterns that cover the hardware and * Resilience design pattern specification with
software architecture aspects of resilience taxonomy, survey, and pattern anatomy,

lassification, catal dl
« Methods and metrics to holistically evaluate classiiication, catalog and language

and coordinate fault management * GMRES solver with portable multi-resilience

against process failures and data corruption
« Reusable programming templates for Jainst p " upt

resilience portability » Performance, reliability and availability models
for 15 structural resilience design patterns

Behavioral . State
vr

* Tools for trading off performance, resilience,
and power consumption at design and run time

Structural
Monitoring
Prediction
Restructure
N-Modular
Redundancy
Self-Aware

Impact:

Reinitialization
Rollback
Rollforward
Correction Code
Recovery Block

>
k<)
-
=
I}
I
(2]
=
5]
=
=
o
<

Forward Error
N-Version Design
Natural Tolerance

Self-Healing

Rejuvenation

Static State

Dynamic State
Environment State

- Enables the systematic improvement of T
resilience in extreme-scale systems

Stateless

Design Self- Self-

Checkpoint '
Diversity Masking Correction | !

Recovery Redundancy

Diagnosis Reconfiguration

| Architectural
T

s Keeps applications running to a CorreCt Fault Treatment Recovery Compensation Self-Stabilization : Stateful
solution in a timely and efficient manner in 1 i ||
spite of frequent faults, errors, and failures Figure: The 31 identified resilience design patterns

Strategy |
1
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Resilience Design Patterns Specification

« Taxonomy of resilience terms and metrics
o Survey of resilience techniques
» Classification of resilience design patterns

« Catalog of resilience design patterns
— Uses a pattern language to describe solutions

— 4 strategy patterns, 7 architectural patterns, 15
structural patterns, and 5 state patterns

» Case studies using the design patterns
» Aresilience design spaces framework

* Version 2.0 to be released soon

ORNL/TM-2017/745

Resilience Design Patterns

A Structured Approach to Resilience at Extreme Scale - version 1.2

Saurabh Hukerikar
Christian Engelmann

Approved for public release. August 2017
Distribution is unlimited.

OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

Saurabh Hukerikar and Christian Engelmann. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale (Version
1.2). Technical Report, ORNL/TM-2017/745, Oak Ridge National Laboratory, Oak Ridge, TN, USA, August, 2017. DOI: 10.2172/1436045

%OAK RIDGE

National Laboratory




Design Space Exploration for Resilience

» Vertical and horizontal pattern
compositions describe the resilience
capabilities of a system

e Pattern coordination leverages
beneficial and avoids counterproductive
interactions

« Pattern composition optimizes the
performance, resilience and power
consumption trade-off
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PLEXUS: A Pattern-Oriented Runtime System Architecture for
Resilient Extreme-Scale High-Performance Computing Systems

o PLEXUS implements pattern instances to
provide a resilient environment for HPC
applications

« Offers strategies for the resilience
patterns to be instantiated, modified and
destroyed by the runtime based on
policies to meet resiliency needs

» Prototype covers MPI process failures
and transient data corruption for a
GMRES solver.

S. Hukerikar and C. Engelmann. PLEXUS: A Pattern-Oriented
Runtime System Architecture for Resilient Exireme-Scale High-
Performance Computing Systems. 25th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC)
2020, Perth, Australia, December 1-4, 2020.

%OAK RIDGE

National Laboratory

’ Application

Application Interfaces

Pattern Property Manager @

Debugging,
Profiling
Libraries,
Runtimes

[ Scientific Domain Specific LibrariesJ

MPI, OpenMP,
CUDA Runtimes

Numerical Libraries J

Plexus Resilient
Runtime System

Pattern Factory Pattern Modifier Pattern Recycle

System Management Interface

[ Monitoring Framework M Job Scheduler M Node-level Scheduler J

Architecture of the Plexus resilient runtime system, interfacing
with programming model runtimes, libraries, system monitoring
and job and resource management.



RDPM: An Extensible Tool for Resilience Design Patterns Modeling

o Perm”‘s exploring ‘I‘he p.erform.gnce, 174,693 Multilevel Rollback Perforrm:a:r;%e 0761026 Multilevel Rollback Reliability 060536 Multilevel Rollback Availability
reliability, and availability design 173.515 v 0780738 STl posee
space of extreme-scale finre| £ g rsrise. B porsia.

SU perCOmpUTel’S 169.966 . rglc,0.785852 v en 0.96840 -
) ) ) 168.782 0.784557 =0 0.96166 -

« Offers customization of design T3 R $s 38 T2 88833 T3 R8s 38

parameters to optimize performance, M o M
(a) Performance (b) Reliability (c) Availability

reliability, and availability
. . . ‘ _ The performance, reliability, and availability of multi-level
Allows the investigation of frade-offs rollback (e.qg., accelerator-level and application-level

for combining multiple individual checkpoint/restart) modeled by the RDPM software tool with a
resilience solutions varying system mean-time-to-failure (MTTF) of 24-168 hours (1-7
- days), 80% of the computation offloaded to the accelerator
* Enables providing the most coverage  and protected by both levels, a 1 second checkpoint/restart
against faults, errors and failures while  time at the accelerator level and a 1, 5 or 10 minute

minimizing the impact on checkpoint/restart time at the application level.
performance

M. Kumar and C. Engelmann. RDPM: An Extensible Tool for Resilience Design Patterns Modeling. In Lecture Notes in Computer Science: Proceedings of the
27th European Conference on Parallel and Distributed Computing (Euro-Par) 2021 Workshops: 14th Workshop on Resiliency in High Performance
Computing (Resilience) in Clusters, Clouds, and Grids, August, 2021.
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Future Research and Development Needs (1/2)

e Resilience needs to become an integral part of the HPC
hardware/software ecosystem through codesign

* The burden for resilience should be on the system by design and not on
the operator or user as an afterthought

e Future smart HPC systems employ coordinated cross-layer and adaptive
resilience solutions to:

— Offer efficient error and failure masking, recovery, and avoidance at the appropriate
hardware or software component and compute or data granularity

— Handle errors and failures in specific components and granularities where it is most
appropriate to do so and in coordination with the rest of the system
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Future Research and Development Needs (2/2)

e |n the short term:

— Portable system/center monitoring and analysis solutions to enable identification of
emerging reliability issues and their root causes

- Low-overhead software mitigation techniques (beyond global checkpoint/restart) to
create a better resilience toolbox that can be used when needed

e In the long term:

- Autonomous resource management that considers the system/facility state and the
involved performance, resilience and power consumption tfrade-offs

- Autonomous adaptation of systems and facilities to emerging reliability issues

— Machine-in-the-loop operational intelligence for systems and centers (OODA loop to
improve productivity and lower costs)
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Questions®e
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