
TM-2022/2809

Resilience Design Patterns
A Structured Approach to Resilience at Extreme Scale - Version 2.0

Christian Engelmann
Rizwan Ashraf
Saurabh Hukerikar
Mohit Kumar
Piyush Sao

December, 2022



DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html


TM-2022/2809

Computer Science and Mathematics Division

Resilience Design Patterns
A Structured Approach to Resilience at Extreme Scale

Version 2.0

Christian Engelmann
Rizwan Ashraf

Saurabh Hukerikar
Mohit Kumar
Piyush Sao

Date Published: December 16, 2022

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725





CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Terminology and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.8 The Relationship between Faults, Errors and Failures . . . . . . . . . . . . . . . . . . . . . 8
2.9 Resilience Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.9.1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9.2 Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.9.3 Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.10 Resilience Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.10.1 Reliability Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.10.2 Availability Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.10.3 Error and Failure Detection Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10.4 Mean Time to Failure and Mean Time to Repair . . . . . . . . . . . . . . . . . . . . 12

3. The Resilience Challenge for Extreme-Scale HPC Systems . . . . . . . . . . . . . . . . . . . . . 13
4. Survey of HPC Resilience Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Hardware-based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Software-implemented Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Operating System & Runtime-based Solutions . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Message Passing Library-based Solutions . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Compiler-based Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.4 Programming Model Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.5 Algorithm-based Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Integrated Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5. Design Patterns for Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Introduction to Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Design Patterns for HPC Resilience Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Anatomy of a Resilience Design Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6. Classification of Resilience Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 State Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Behavioral Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2.1 Strategy Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 Architectural Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.3 Structural Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.4 Implementation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7. Catalog of Resilience Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



7.1 Describing Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Strategy Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2.1 Fault Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2.2 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2.3 Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2.4 Self-Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3 Architectural Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3.1 Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3.2 Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3.3 Checkpoint Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.4 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3.5 Design Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3.6 Self-Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.7 Self-Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Structural Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4.3 Restructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4.4 Rejuvenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4.5 Reinitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.6 Rollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4.7 Rollforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.8 Forward Error Correction Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4.9 Active/Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4.10 N-modular Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.11 N-version Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.4.12 Recovery Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4.13 Natural Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.14 Self-Healing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4.15 Self-Aware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5 State Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.1 Static State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.2 Dynamic State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5.3 Environment State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.5.4 Stateless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8. Building Resilience Solutions using Resilience Design Patterns . . . . . . . . . . . . . . . . . . . 147
8.1 Components of Resilience Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Design Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9. A Pattern Language for HPC Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.1 Types of Pattern Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Structure of the Pattern Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.3 Using the Pattern Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.3.1 Structured Design of HPC Resilience Solutions . . . . . . . . . . . . . . . . . . . . 152
9.3.2 Other Design Considerations for Resilience Solutions . . . . . . . . . . . . . . . . . 153

10. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.1 Checkpoint and Rollback Solution for Process Failures . . . . . . . . . . . . . . . . . . . . 155
10.2 Proactive Process Migration for Failure Avoidance . . . . . . . . . . . . . . . . . . . . . . 157
10.3 Cross-Layer Hardware/Software Solution for Soft Error Resilience . . . . . . . . . . . . . . 159

iv



11. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

v





LIST OF FIGURES

1 Relationship between fault, error and failure . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Anatomy of a resilience design pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Classification of resilience design patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Fault Treatment pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Fault Treatment pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . 32
6 Recovery pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Recovery pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . . 36
8 Compensation pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9 Compensation pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . 40
10 Self-Stabilization pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11 Self-Stabilization pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . 45
12 Fault Diagnosis pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
13 Fault Diagnosis pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . 49
14 Reconfiguration pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
15 Reconfiguration pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . 53
16 Checkpoint Recovery pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
17 Checkpoint Recovery pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . 57
18 Redundancy pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
19 Redundancy pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . 62
20 Design Diversity pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
21 Design Diversity pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . 66
22 Self-Masking pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
23 Self-Masking pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . 69
24 Self-Correction pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
25 Self-Correction pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . 72
26 Monitoring pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
27 Monitoring pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . 75
28 Prediction pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
29 Prediction pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . . 80
30 Restructure pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
31 Restructure pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . 84
32 Rejuvenation pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
33 Rejuvenation pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . 89
34 Reinitialization pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
35 Reinitialization pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . 93
36 Rollback pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
37 Rollback pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 98
38 Rollforward pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
39 Rollforward pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . 103
40 Forward Error Correction Code pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
41 Forward Error Correction Code pattern flowchart and state diagram . . . . . . . . . . . . . . 108
42 Active/Standby pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
43 Active/Standby pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . 112
44 N-modular Redundancy pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . 115
45 N-modular Redundancy pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . 116
46 N-version Design pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vii



47 N-version Design pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . 121
48 Recovery Block pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
49 Recovery Block pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . 125
50 Natural Tolerance pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
51 Natural Tolerance pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . 128
52 Self-Healing pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
53 Self-Healing pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . 132
54 Self-Aware pattern components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
55 Self-Aware pattern flowchart and state diagram . . . . . . . . . . . . . . . . . . . . . . . . 137
56 Static State pattern relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
57 Static State pattern flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
58 Dynamic State pattern relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
59 Dynamic State pattern flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
60 Environment State pattern relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
61 Environment State pattern flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
62 Elements of a resilience solution for HPC systems and applications . . . . . . . . . . . . . . 147
63 Design Spaces for construction of resilience solutions using patterns . . . . . . . . . . . . . 148
64 Resilience pattern language representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
65 Resilience solution case study: Checkpoint & restart using BLCR . . . . . . . . . . . . . . 155
66 Resilience solution case study: Process migration . . . . . . . . . . . . . . . . . . . . . . . 157
67 Resilience solution case study: Cross-layer design using ECC with ABFT . . . . . . . . . . 159

viii



LIST OF TABLES

1 Availability measured by the “nines” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Fault Treatment pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Recovery pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Compensation pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5 Self-Stabilization pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6 Fault Diagnosis pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7 Reconfiguration pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8 Checkpoint Recovery pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9 Redundancy pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10 Design Diversity pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11 Self-Masking pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
12 Self-Correction pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13 Monitoring pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
14 Prediction pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
15 Restructure pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
16 Rejuvenation pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
17 Reinitialization pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
18 Rollback pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
19 Rollforward pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
20 Forward Error Correction Code pattern parameters . . . . . . . . . . . . . . . . . . . . . . 107
21 Active/Standby pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
22 N-modular Redundancy pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 116
23 N-version Design pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
24 Recovery Block pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
25 Natural Tolerance pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
26 Self-Healing pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
27 Self-Aware pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
28 Types of pattern relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

ix





ACRONYMS

ABFT algorithm-based fault tolerance. 19, 37, 38, 41, 42, 58, 59, 61, 63, 104, 105, 108, 109
AMTTF application mean-time to failure. 12
AMTTR application mean-time to repair. 12
API application programming interface. 17, 18, 156
ASIC application-specific integrated circuit. 15
BCH Bose-Chaudhuri-Hocquenghem. 16, 41, 61, 108
BLCR Berkeley Lab Checkpoint/Restart. 16, 38, 59, 100, 156
BMC baseboard management controller. 158
C/R checkpoint/restart. 16, 17, 20, 155, 157
CIFTS Coordinated Infrastructure for Fault-Tolerant Systems. 20
CLE Cray Linux Environment. 54, 86
CMCI Corrected Machine Check Interrupt. 15
CMOS complementary metal oxide semiconductor. 13
CORBA Common Object Request Broker Architecture. 23
CPU central processing unit. 32, 33, 50, 76, 77
CRC cyclic redundancy check. 15, 41, 61, 108
CRMS Cray reliability, availability and serviceability (RAS) and Management Subsystem. 34, 51, 78
DAG directed acyclic graph. 8
DCE detectable correctable error. 7
DECTED double-error correction triple-error detection. 16
DIMM dual in-line memory module. 20, 42, 62, 109
DMR dual-modular redundancy. 16
DMTCP Distributed MultiThreaded CheckPointing. 37, 38, 58, 59, 100
DRAM dynamic random-access memory. 16, 159, 160
DRBD distributed replicated block device. 42, 63, 114
DUE detectable uncorrectable error. 7, 12
ECC error correcting code. 7, 15, 16, 42, 62, 109, 159, 160
EDDI error detection by duplicated instructions. 17
FFT fast Fourier transform. 19
FIT failures in time. 10
FTB Fault Tolerance Backplane. 20
FTI Fault Tolerance Interface. 37, 38, 58, 59, 100
GIB Global Information Bus. 20
GPGPU general-purpose computing graphics processing unit. 34, 51, 54, 82, 85, 86
GVR Global View Resilience. 18, 37, 38, 58, 59, 104, 105
HEC high-end computing. 14
HPC high-performance computing. 1–3, 5, 8, 13–18, 20, 22, 23, 26, 29, 30, 33–35, 37, 39, 41–44, 50–52,

54–56, 58–64, 66, 68, 71, 77, 78, 83, 86, 87, 90–92, 96, 100, 101, 106, 109, 110, 113–115, 117–119,
122, 123, 127, 131, 135, 138–141, 143–145, 147, 148, 151–153, 155, 157–159, 161

HSN high-speed network. 15
HSS Hardware Supervisory System. 15, 55, 95
I/O input/output. 16, 17, 29, 145
IPMI Intelligent Platform Management Interface. 32, 33, 50, 51, 77, 158
MCA Machine Check Architecture. 15
MD molecular dynamics. 19
MDS metadata service. 37, 41, 42, 54, 55, 61–63, 90, 91, 113, 114, 117, 118

xi



MPI Message Passing Interface. 17, 18, 20, 32–34, 37, 38, 41–43, 50, 51, 54, 55, 58, 59, 62, 63, 66, 77,
78, 85, 86, 100, 104, 105, 117, 118, 122, 144, 155, 158

MTBF mean-time between failures. 11, 35, 37, 56, 58, 87, 96, 98, 101, 103
MTTE mean-time to error. 10
MTTF mean-time to failure. 10, 13, 85, 90, 94, 99, 104, 108, 113, 117, 122, 125, 129, 133, 137
MTTR mean-time to repair. 11, 113, 117, 122, 125, 129, 133, 137
NTV near-threshold voltage. 1, 14
OO object-oriented. 21
OODA observe, orient, decide, and act. 33, 46, 50, 72, 82, 130, 133, 135, 136, 138
OPL Our Pattern Language. 21
OS operating system. 8, 16, 17, 29, 32–34, 37, 38, 50, 51, 54, 55, 58, 59, 76, 77, 90, 91, 100, 160
OS/R operating system and runtime. 20
PBS Portable Batch System. 42, 63, 118
PDF probability density function. 10
PGAS partitioned global address space. 18
PLR process-level redundancy. 17
POSIX Portable Operating System Interface. 155, 157, 158
PU planned uptime. 11, 76, 82, 85, 90, 94, 99, 104, 108
PVFS Parallel Virtual File System. 42, 63, 114, 118
RAID redundant array of independent disks. 15, 41, 42, 61–63, 108, 109, 114
RAM random-access memory. 16
RAS reliability, availability and serviceability. xi, 5, 15, 20, 34, 51, 78
SCR Scalable Checkpoint/Restart. 16, 38, 59, 100
SD scheduled downtime. 11, 76, 82, 85, 90, 94, 99, 104, 108
SDC silent data corruption. 7
SECDED single-error correction double-error detection. 7, 15, 16, 42, 62, 63, 109
SGE Sun Grid Engine. 42, 63, 114
SLURM Simple Linux Utility for Resource Management. 41, 42, 61, 63, 113, 114
SMART self-monitoring and reporting technology. 33, 51, 77
SMTTF system mean-time to failure. 12
SMTTR system mean-time to repair. 12
SOI Silicon-on-insulator. 15
SOS sum-of-squares. 19
SRMT software-based redundant multi-threading. 17
SWIFT software implemented fault tolerance. 17, 41, 43, 66, 67, 125, 126
TBB Thread Building Blocks. 22
TMR triple-modular redundancy. 16
UD unscheduled downtime. 11, 76, 82, 85, 90, 94, 99, 104, 108
ULFM user-level failure mitigation. 18, 54, 55, 85, 86, 144
VM virtual machine. 33, 46, 50, 73, 82, 138

xii



ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Early Career Research Program under contract number
DE-AC05-00OR22725.

xiii





ABSTRACT

Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems.
Projections based on the current generation of HPC systems and technology roadmaps suggest the
prevalence of very high fault rates in future systems. The errors resulting from these faults will propagate
and generate various kinds of failures, which may result in outcomes ranging from result corruptions to
catastrophic application crashes. Therefore, the resilience challenge for extreme-scale HPC systems
requires coordination between various hardware and software technologies that are capable of handling a
broad set of fault models at accelerated fault rates. Also, due to practical limits on power consumption in
future HPC systems, they are likely to embrace innovative architectures, increasing the levels of hardware
and software complexities. Therefore, the techniques that seek to improve resilience must navigate the
complex trade-off space between resilience and the overheads to power consumption and performance.
While the HPC community has developed various resilience solutions, application-level techniques as well
as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are
no formal methods to integrate the various HPC resilience techniques into composite solutions, nor are
there methods to holistically evaluate the adequacy and efficacy of such solutions in terms of their
protection coverage, and their performance & power efficiency characteristics. Additionally, few
implementations of current resilience solutions are portable to newer architectures and software
environments that will be deployed on future systems.

We developed a new structured approach to the management of HPC resilience using the concept of
resilience-based design patterns. In general, a design pattern is a repeatable solution to a commonly
occurring problem. We identified the well-known solutions that are commonly used to deal with faults,
errors and failures in HPC systems. In the initial design patterns specification (version 1.0), we described
the various solutions, which address specific problems in the design of resilient HPC environments, in the
form of patterns. Each pattern describes a problem caused by a fault, error or failure event in an HPC
environment, and then describes the core of the solution of the problem in such a way that this solution
may be adapted to different systems and implemented at different layers of the system stack. The catalog of
these resilience design patterns provides designers with a collection of design elements. To construct
complete resilience solutions using combinations of various patterns, we defined a framework that
enhances HPC designers’ understanding of the important constraints and the opportunities for the design
patterns to be implemented and deployed at various layers of the system stack. The design framework is
also useful for establishing interfaces and mechanisms to coordinate flexible fault management across
hardware and software components, as well as to consider the trade-off between performance, resilience,
and power consumption when constructing a solution. The resilience design patterns specification version
1.1 included more detailed explanations of the pattern solutions, the context in which the patterns are
applicable, and the implications for hardware or software design. It also provided several additional
examples and detailed case studies to demonstrate the use of patterns to build realistic solutions.

In version 1.2 of the specification document, we have improved the pattern descriptions, including
graphical representations of the pattern components. These improvements are largely based on critical
comments, feedback and suggestions received from pattern experts and readers of the previous versions of
the specification. The pattern classification has been modified to further clarify the relationships between
pattern categories. This version of the specification also introduces a pattern language for resilience design
patterns. The pattern language presents the patterns in the catalog as a network, revealing the relations
among the resilience patterns. The language provides designers with the means to explore alternative
techniques for handling a specific fault model that may have different efficiency and complexity
characteristics. Using the pattern language also enables the design and implementation of comprehensive
resilience solutions as a set of interconnected resilience patterns that can be instantiated across layers of the
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system stack. The overall goal of this work is to provide hardware and software designers, as well as the
users and operators of HPC systems, a systematic methodology for the design and evaluation of resilience
technologies in HPC systems that keep scientific applications running to a correct solution in a timely and
cost-efficient manner despite frequent faults, errors, and failures of various types.

Version 2.0 expands the resilience design pattern classification and catalog to include self-stabilization
patterns and reliability, availability and performance models for each structural pattern.
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1. INTRODUCTION

High-performance computing (HPC) systems enable transformative scientific research and discovery in
various areas of national importance through computational modeling, simulation, data analysis and
prediction. The opportunities to address complex emerging challenges that are important for environmental
issues and national security, and to drive fundamental scientific research, are the key motivators behind the
HPC community’s drive towards extreme-scale HPC systems. Future systems will enable computing at
scales in the hundreds of petaflops, exaflops, and beyond, which will provide computing capability for
rapid design and prototyping as well as big data analysis for a variety of scientific and engineering
disciplines. However, to build and effectively operate extreme-scale HPC systems, there are several key
challenges, including management of power, massive concurrency and resilience to the occurrence of faults
and failures in system components [62].

In the pursuit of greater computational capabilities, the architectures of HPC systems are expected to
change radically. These emerging HPC systems will be innovative systems designed to communicate and
compute at unprecedented rates, and will require novel technologies and architectures. Traditional HPC
system design methodologies have not had to account for power constraints, or parallelism on the level
designers must contemplate for future extreme-scale systems [164]. The evolution of the architectures will
also require substantial changes to the programming models and the system software stacks to ensure
application scalability. In the midst of these rapid changes, the resilience to faults or defects in system
components, which can cause errors and failures, will be critical. While many of the innovations in the
architectures will be driven by the continued scaling of transistors made possible by Moore’s law, the
reliability of these systems will be threatened by a decrease in individual device reliability due to
manufacturing defects prevalent at deeply scaled technology nodes, device aging related effects, etc. [33].
The chips built using these devices will also be increasingly susceptible to errors due to the effects of
operational and environmental conditions on the reduced noise margins arising from near-threshold voltage
(NTV) operation [64] (necessary to meet the limits on system power consumption). These effects are
expected to increase the rate of transient and permanent errors in the system, such that applications running
on these systems will no longer be able to assume correct behavior from the underlying machine. Due to
the complexity of the system environment and the interactions between the numerous hardware and
software components, these errors will propagate and generate various other kinds of errors and failures,
which may result in HPC application execution outcomes ranging from data corruptions to catastrophic
crashes.

Managing the resilience of future extreme-scale systems is a multidimensional challenge. As HPC systems
approach exaflops scale, the sheer frequency of faults and errors in these systems will render many of the
existing resilience solutions ineffective. Newer modes of failures due to faults and errors, which will only
emerge in advanced process technologies and complex multicomponent system environments, will require
novel resilience solutions. To remain viable the adaptations of existing solutions, as well as the designs of
new solutions, must also navigate the complexity of the hardware and software environments of future
systems. Additionally, HPC resilience methodologies, both hardware and software, must optimize for some
combination of performance, power consumption and cost while providing effective protection against
faults, errors and failures. Therefore, addressing the resilience challenge in extreme-scale HPC systems
will require integration and coordination between various hardware and software technologies that are
collectively capable of handling a broad set of fault models at accelerated fault rates.

The HPC research community and vendors have developed a number of hardware and software resilience
solutions over the years to confront faults and their consequences in a HPC system and to limit their impact
on the applications. Most of these solutions are based on a limited set of underlying detection, containment
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and mitigation techniques that have persisted through generations of systems and will remain important in
the future. Therefore, the key to the design and implementation of HPC resilience solutions is no longer the
invention of novel methodologies for dealing with the various fault types that may occur, or to manage the
extreme fault rates; rather, it is based on the selection and combination of the most appropriate solutions
among the fundamental resilience techniques and adapting them to the design concerns and constraints of
the emerging extreme-scale systems. However, there are no systematized methods to adapt the existing
solutions to future architectures and software environments, nor are there formalized methods to integrate
multiple solutions into composite solutions. There is also a lack of standardized methods to investigate and
evaluate the effectiveness and efficiency of such solutions. Therefore, the designers of HPC hardware and
software components have a compelling need for a systematic methodology for designing, assessing and
optimizing resilience solutions.

In this work, we develop a structured approach for constructing resilience solutions for HPC systems and
their applications based on the concept of design patterns. Design patterns are descriptions of well-known
solutions to specific, repeatedly occurring problems that are encountered in a specific domain. In an effort
to develop resilience design patterns, we identify well-known techniques to handle faults and their
consequences in various hardware and software components throughout the HPC system stack. In general,
resilience solutions provide techniques for the detection of faults, errors or failures in a system,
mechanisms to ensure that their propagation is limited, and for masking of error or failure and recovery of
the system. This specification document presents a complete catalog of patterns that capture the solutions
for each of these three aspects. Each pattern provides a solution to a recurring HPC resilience problem
under a set of clearly defined assumptions about the type of the fault, error or failure it deals with and the
constraints about the system behavior it guarantees. The resilience design patterns are specified at a high
level of abstraction and describe solutions that are free of implementation details. The patterns have the
potential to shape the design of HPC applications’ algorithms, numerical libraries, system software, and
hardware architectures, as well as the interfaces between layers of system abstraction. Therefore, they are
intended to be useful for HPC application, library and tool developers, hardware architects and system
software designers, as well as system users and operators.

We codify the resilience design patterns in a layered hierarchy, which classifies the patterns in the catalog,
and clearly conveys the relationships among them. The hierarchical scheme enables individual
hardware/software component designers to focus on problems and constraints related to detection,
containment and mitigation/recovery of specific fault types in specific contexts, while system architects
contemplate role of the individual patterns within the context of the overall system architecture and
software environment and issues related to stitching the various patterns together and refinement of their
interactions. Combining these patterns according to the guidelines given by the classification scheme
provides a systematic way to design and implement new resilience solutions, port existing solutions to
future architectures and software environments, and to holistically evaluate the scope and efficiency of the
solutions. Therefore, using the design patterns as building blocks enables:

• Systematic design and refinement of resilience solutions by using patterns to outline the overall structure
of the solution (independent of a specific implementation approach), and incrementally converging
towards a detailed implementation.

• Design of solutions with a clear understanding of their protection coverage and performance efficiency.

• Evaluation and comparison of alternative resilience solutions through qualitative and quantitative
evaluation of the coverage and handling efficiency of each solution.

• Design of flexible solutions through integration of multiple patterns into complete resilience solutions.
The individual patterns may be independently evolved and developed for portability to different HPC
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system architectures and software environments.

• Design of cross-layered resilience solutions that combine capabilities from different layers of the system
stack.

• Optimization of the trade-off space, at design time or at runtime, between the key system design factors:
performance, resilience, and power consumption.

We also develop a systematic methodology to combine an essential set of patterns into productive and
efficient resilience solutions. We present a conceptual framework based on the notion of design spaces that
enables HPC designers to use the patterns as reusable design elements. The framework enables designers
to navigate the complexities of composing patterns into complete solutions within the constraints of
performance and power overheads, the fault model and its impact on the system, hardware and software
implementation challenges, etc. The overall goal of this work is to enable a systematic methodology for the
design and evaluation of resilience technologies in HPC systems that keep applications running to a correct
solution in a timely and cost-efficient manner despite frequent faults, errors, and failures of various types.

The rest of this document is organized as follows:

• Section 2. provides a summary of the terminology used in fault tolerance and the basic concepts of
resilience to enable designers, system operators and users, whether experts in resilience or not, to
understand the essence of the patterns and use them in their designs, whether in hardware or in
software.

• Section 3. describes the challenges in managing the resilience of future extreme-scale HPC systems.

• Section 4. surveys the various HPC resilience solutions, including those used in production HPC
systems, as well as research proposals. The aim of this section is to provide a comprehensive
overview of the various HPC resilience techniques.

• Section 5. introduces the design pattern concept and discusses the potential for capturing the HPC
resilience techniques in the form of patterns.

• Section 6. describes a classification scheme to organize the various resilience techniques in a layered
hierarchy to enable designers to understand the capabilities of each solution and the relationships
between patterns.

• Section 7. presents the catalog of resilience design patterns that capture well-understood HPC
resilience techniques for error detection, recovery and masking in a structured format.

• Section 8. presents a structured methodology to use the design patterns for the construction of
effective and efficient resilience solutions. The design framework introduced in this section guides
HPC designers and programmers to select appropriate patterns from the catalog in order to develop
complete resilience solutions.

• Section 9. presents a pattern language for the design and implementation of complete, working HPC
resilience solutions. The pattern language organizes the patterns in the catalog in a hierarchy or
network in order to reveal the relations among the resilience patterns. This provides the means to
systematically explore alternative techniques for handling a specific fault model that may have
different efficiency and complexity characteristics.

• Section 10. presents case studies that demonstrate how these patterns may be used to understand and
evaluate existing resilience solutions, as well as develop new solutions using the pattern-based
design framework.
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2. TERMINOLOGY AND CONCEPTS

The terminology and concepts used in this document is largely based on prior work that established the
definitions for HPC RAS [170, 111, 181, 69, 73, 145].

2.1 RELIABILITY

Reliability is the property of a system that characterizes its ability to perform its required functions under
stated conditions for a specified time. It provides information about the probability of occurrence of an
error or failure event during normal system operation.

2.2 AVAILABILITY

Availability is the property of a system that defines the readiness of a system for service. It represents the
proportion of time a system provides a correct service, rather than incorrect service.

2.3 SERVICEABILITY

Serviceability is the property of a system that enables the identification of faults, errors or failures, the
isolation of the root cause, and the provision of hardware or software-based maintenance in order to restore
system operation.

2.4 SYSTEMS

• System: An entity that performs a specific set of functions.

• Component: A subsystem that is part of a larger system.

• State: A system’s information about its computation, communication, interconnection, and physical
condition.

• Behavior: What a system does to implement its function, described by a series of states.

• Service: A system’s externally perceived behavior.

• Functional specification: The description of system functionality, defining the threshold between:

– Correct service: The provided service is acceptable, i.e., within the functional specification.

– Incorrect service: The provided service is unacceptable, i.e., outside the functional
specification.

• Life cycle: A system has life cycle phases in the following order:

1. Development: A system that is in development, which includes its design, construction,
deployment and testing.

2. Operational: A system that is in operation and providing correct service.

3. Retired: A system that is no longer in operation since it has reached the end of its operating
lifetime.

• Operational status: A system has the following operational states:

1. Scheduled service outage: A system delivers no service due to a planned system downtime.
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2. Unscheduled service outage: A system delivers incorrect or no service due to an unplanned
outage that is caused by an error or failure.

3. Service delivery: A system delivers correct service under normal operating conditions.

The terms fault, error and failure are sometimes used interchangeably. However, in fault tolerance
literature [25], these terms are associated with distinct formal concepts, which are defined in the following:

2.5 FAULTS

Fault is an underlying flaw or defect in a system that has potential to cause problems. A fault can be
dormant and can have no effect. When activated during system operation, a fault leads to an error. Fault
activation may be due to triggers that are internal or external to the system.

• Fault classes: {benign, dormant, active} {permanent, transient, intermittent} {hard, soft}

These fault classes have the following categories:

• Benign: An inactive fault that does not activate.

• Dormant: An inactive fault that potentially does become active at some point in time.

• Active: A fault that causes an error at the moment it becomes active.

• Permanent: The presence of the fault is continuous in time.

• Transient: The presence of the fault is temporary.

• Intermittent: The presence of the fault is temporary and recurring.

• Hard: A fault that is systematically reproducible.

• Soft: A fault that is not systematically reproducible.

The following common terms map to these fault classes:

• Latent fault: Any type of dormant fault.

• Solid fault: Any type of hard fault.

• Elusive fault: Any type of soft fault.

An example of a fault is a radiation-induced bit-flip in memory is a dormant transient soft fault that
becomes an active transient soft fault when the memory is read. The fault disappears when the memory is
written. A radiation-induced bit-flip in memory is a dormant permanent soft fault if the memory is never
written. It becomes an active permanent soft fault when the memory is read.

2.6 ERRORS

Errors result from the activation of a fault and cause an illegal system state.

The following error classes exist:

• Error classes: {undetected, detected} {unmasked, masked} {hard, soft}

These error classes have the following categories:

• Undetected: An error whose presence is not indicated.
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• Detected: An error whose presence is indicated by a message or a signal.

• Masked: An error whose impact is compensated so that the system specification is satisfied despite
the incorrect state; the propagation of the error is limited.

• Unmasked: An error that has not been compensated and has the potential to propagate.

• Hard: An error caused by a permanent fault.

• Soft: An error caused by a transient or intermittent fault.

The following common terms map to these error classes:

• Latent error: Any type of undetected error.

• Silent error: Any type of undetected error.

• SDC: An undetected unmasked hard or soft error that affects the system state.

In an application program, the faulty assignment of a value to a loop counter variable may result in an error
that results in an illegal value for that variable. When the variable is used for control of a for-loop’s
execution, it may lead to incorrect program behavior. In the memory of a system, an active transient soft
fault, created by a radiation-induced bit-flip in memory being read, causes an undetected masked soft error,
when the read value is used in a multiplication with another value that happens to be 0. This causes an
undetected unmasked soft error, or silent data corruption (SDC), when the read value is used as an index in
a memory address calculation. A detectable correctable error (DCE) is often transparently handled by
hardware, such as a single bit flip in memory that is protected with single-error correction double-error
detection (SECDED) error correcting code (ECC) [131]. A detectable uncorrectable error (DUE) typically
results in a failure, such as multiple bit flips in the same addressable word that escape SECDED ECC
correction, but not detection, and ultimately cause an application abort. An undetectable error may result in
SDC, e.g., an incorrect application output.

2.7 FAILURES

Failure occurs if an error reaches the service interface of a system, resulting in system behavior that is
inconsistent with the system’s specification.

The following failure classes exist:

• Failure classes: {undetected, detected} {permanent, transient, intermittent} {complete, partial,
Byzantine}

These failure classes have the following categories:

• Undetected: A failure whose occurrence is not indicated.

• Detected: A failure whose occurrence is indicated by a message or a signal.

• Permanent: The presence of the failure is continuous in time.

• Transient: The presence of the failure is temporary.

• Intermittent: The failure is temporary but recurring in time.

• Complete: A failure that causes service outage of the system.

• Partial: A failure causing a degraded service within the functional specification.
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Figure 1. Relationship between fault, error and failure

• Byzantine: A failure causing an arbitrary deviation from the functional specification.

The following common terms map to these failure classes:

• Fail-stop: An undetected or detected failure that completely halts system operation, which often
causes an irretrievable loss of state.

• Fail-safe: A mode of system operation that mitigates the consequences of a system failure.

In an application program, a faulty value assignment to a pointer variable leads to erroneous accesses to a
data structure or buffer overflow, which in turn may cause the program to crash due to an attempt to access
an out-of-bound memory location. In the hardware, an active transient soft fault, created by a
radiation-induced bit-flip in memory being read, causes an undetected unmasked soft error, when the read
value is used as an index of a memory address calculation. A memory access violation caused by using a
corrupted address results in a detected permanent failure, as the executing process is killed by the operating
system (OS), and a message is provided to the user. However, if using the corrupted calculated address
results in an incorrect service that is not indicated, such as erroneous output, an undetected intermittent
Byzantine failure occurred.

2.8 THE RELATIONSHIP BETWEEN FAULTS, ERRORS AND FAILURES

While a fault is the cause of an error, its manifestation as a state change is considered an error, and the
transition to an incorrect service is observed as a failure [170]. A failure in a HPC system is typically
observed through an application abort or a full/partial system outage. For example, a bug or stuck bit is a
fault that manifests as an error in the form of a bad value or incorrect program execution; a failure is when
an application aborts or a system crashes. There is a causality relationship between fault, error and failure,
as shown in Figure 1. A fault-error-failure chain is a directed acyclic graph (DAG) representation with
faults, errors and failures represented by its vertices. When the system is composed of multiple
components, errors may be transformed into other errors and propagate through the system generating
further errors, which may eventually result in a failure in the system. The failure of a single component
causes a permanent or transient external fault for any other components that receive service from the failed
component, which potentially causes errors and failures in those components. A failure cascade occurs
when the failure of a component A causes an error and subsequently a failure in component B interfaced
with A, and the sequence of events leads to failures in other system components interfaced with B. For
example, a faulty procedure argument leads to erroneous computation and may manifest as an error in the
form of an illegal procedure return value. To the caller of the function, this activates a chain of errors as the
incorrect return value is passed to other functions, and the error propagates until service failure occurs, i.e.,
a program crash. In a parallel application, the failure of a process may potentially lead to failure of other
processes communicating with the failed process, which causes the parallel application to hang.

2.9 RESILIENCE CAPABILITIES

There are three key components to designing a resilience strategy:
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2.9.1 Detection

Detection entails the discovery of an error in the state of the system, either in the data, or in the
instructions. It is typically accomplished with the help of redundancy; the extra information enables the
verification of correct values.

Errors are detected by identifying the corresponding state change. Failures are detected by identifying the
corresponding transition to an incorrect service. An error or a failure is indicated by a detector. This
detector itself can experience errors or failure as well, which may lead to undetected errors or failures, or
the false positive indications of error or failure events.

The following detection classes exist:

• Detection classes: {true, false} {positive, negative}

These detection classes have the following categories:

• True: A correct detection.

• False: An incorrect detection.

• Positive: An indication, such as a message or a signal.

• Negative: No indication.

2.9.2 Containment

A containment capability enables limiting the effects of an error from propagating. Containment is
achieved by reasoning about the modularity of components or sub-systems that make up the system. In
terms of resilience of the system, a containment module is a unit that fails independently of other units and
it is also the unit of repair or replacement.

2.9.3 Masking

Masking may occur naturally when the erroneous state does not propagate, such as when an erroneous
value is multiplied with 0. Masking may also entail recovery or mitigation, which ensures correct operation
despite the occurrence of an error. Masking is usually accomplished by providing additional redundant
state information in order to construct correct, or at least acceptably close, values of the erroneous state.
When the masking involves the change of incorrect state into correct state, it is called error correction.

2.10 RESILIENCE METRICS

2.10.1 Reliability Metrics

The following metrics are widely used for quantifying various aspects of a system’s reliability:

• Error or failure reliability: The probability of a system not experiencing an error or failure during
0 ≤ t, R(t).

R(t) = 1 − F(t) =
∫ ∞

t
f (t)dt (1)
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• Error or failure distribution: The probability of the occurrence of an error or failure in the system
during 0 ≤ t, F(t).

F(t) = 1 − R(t) =
∫ t

0
f (t)dt (2)

• Probability density function (PDF): The relative likelihood of an error or failure, f (t). A
normalized exponential PDF of λe−λt with a constant rate λ is typically assumed for the prolonged
center period of the “bathtub curve”.

R(t) = e−λt (3)

• Error or failure rate: The frequency of errors or failures in a system, λ(t).

λ(t) =
f (t)
R(t)

(4)

• Mean-time to error (MTTE): A system’s expected time to error.

• Mean-time to failure (MTTF): A system’s expected time to failure.

MTT E or MTT F =
∫ ∞

0
R(t)dt (5)

• Failures in time (FIT): The number of expected failures per billion hours (109) of a system’s
operation, FIT .

FIT =
109

MTT F
(6)

• Serial reliability: The reliability of a system with n dependent components, R(n, t)s.

R(n, t)s =

n∏
i=1

Ri(t) (7)

• Parallel reliability: The reliability of a system with n redundant components, R(n, t)p.

R(n, t)p = 1 −
n∏

i=1

(1 − Ri(t)) (8)

• Identical serial reliability: The serial reliability with n identical components, R(n, t)is.

R(n, t)is = R(t)n (9)

• Identical parallel reliability: The parallel reliability with n identical components, R(n, t)ip.

R(n, t)ip = 1 − (1 − R(t))n (10)
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2.10.2 Availability Metrics

Availability is the property of a system that defines the proportion of time it provides correct service. The
following availability metrics are used:

• Availability: The proportion of time a system provides a correct service, A.

A =
tpu

tpu + tud + tsd
(11)

=
MTT F

MTT F + MTTR
(12)

=
MTT F
MT BF

(13)

(14)

• Planned uptime (PU): A system’s service delivery time, tpu.

• Unscheduled downtime (UD): A system’s unscheduled service outage time, tud.

• Scheduled downtime (SD): A system’s scheduled service outage time, tsd.

• Mean-time to repair (MTTR): The expected time to repair/replace a system, MTTR.

• Mean-time between failures (MTBF): The expected time between failures in a system, MT BF.

MT BF = MTT F + MTTR (15)

• Recovery rate: The frequency of recoveries in a system, µ(t).

• Serial availability: The availability of a system with n dependent components, As.

As =

n∏
i=1

Ai (16)

• Parallel availability: The availability of a system with n redundant components, Ap.

Ap = 1 −
n∏

i=1

(1 − Ai) (17)

• Identical serial availability: The availability of a system with n identical components, Ais.

Ais = An (18)

• Identical parallel availability: The availability of a parallel system with n identical redundant
components, Aip.

Aip = 1 − (1 − A)n (19)

A system can also be rated by the number of 9s in its availability figure (Table 1). For example, a system
with a five-nines availability rating has 99.999% availability and an annual downtime of 5 minutes and 15.4
seconds.
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Table 1. Availability measured by the “nines”

9s Availability Annual Downtime
1 90% 36 days, 12 hours
2 99% 87 hours, 36 minutes
3 99.9% 8 hours, 45.6 minutes
4 99.99% 52 minutes, 33.6 seconds
5 99.999% 5 minutes, 15.4 seconds
6 99.9999% 31.5 seconds

2.10.3 Error and Failure Detection Metrics

• Precision: The fraction of indicated errors or failures that are actual errors or failures.

• Recall: The fraction of all errors or failures in the system that are detected and indicated.

Precision =
True Positives

True Positives + False Positives
=

True Positives
Indicated Errors or Failures

(20)

= 1 −
False Positives

True Positives + False Positives
= 1 −

False Positives
Indicated Errors or Failures

(21)

Recall =
True Positives

True Positives + False Negatives
=

True Positives
Errors or Failures

(22)

= 1 −
False Negatives

True Positives + False Negatives
= 1 −

False Negatives
Errors or Failures

(23)

For example, a true positive detection corresponds to an existing error or failure being indicated, while a
false positive detection corresponds to a non-existing error or failure being indicated. A true negative
detection corresponds to a non-existing error or failure not being indicated, while a false negative detection
corresponds to an existing error or failure not being indicated.

2.10.4 Mean Time to Failure and Mean Time to Repair

Resilience is measured by vendors and operators from the system perspective, e.g., by system mean-time to
failure (SMTTF) and system mean-time to repair (SMTTR). Users measure resilience from the application
perspective, using the metric application mean-time to failure (AMTTF) and application mean-time to
repair (AMTTR) [170]. Both perspectives are quite different [53]. For example, an application abort
caused by a main memory DUE does not require the system to recover, i.e., the SMTTR is 0. However, the
aborted application needs to recover its lost state after it has been restarted, i.e., the AMTTR may be hours.
Conversely, a failure of a parallel file system server may only impact a subset of the running applications,
as the other ones access a different server. In this case, the server failure is counted toward the SMTTF,
while the AMTTF differs by application.
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3. THE RESILIENCE CHALLENGE FOR EXTREME-SCALE HPC SYSTEMS

Various studies that analyze faults, errors and failures in HPC systems indicate that faults are not rare
events in large-scale systems and that the distribution of failure root cause is dominated by faults that
originate in hardware. These may include faults due to radiation-induced effects such as particle strikes
from cosmic radiation, circuit aging related effects, and faults due to chip manufacturing defects and design
bugs that remain undetected during post-silicon validation and manifest themselves during system
operation. With aggressive scaling of complementary metal oxide semiconductor (CMOS) devices, the
amount of charge required to upset a gate or memory cell is decreasing with every process shrink. For very
fine transistor feature sizes, the lithography used in patterning transistors causes variations in transistor
geometries such as line-edge roughness, body thickness variations and random dopant fluctuations. These
effects lead to variations in the electrical behavior of individual transistor devices, and this manifests itself
at the circuit-level in the form of variations in circuit delay, power, and robustness [22]. The challenge of
maintaining resilience continues to evolve as process technology continues to shrink and system designers
will use components that operate at lower threshold voltages. The shrinking noise margins makes the
components inherently less reliable and leads to a greater number of manufacturing defects, as well as
device aging-related effects. The use of system-level performance and power modulation techniques, such
as dynamic voltage/frequency scaling, also tend to induce higher fault rates. It is expected that future
exascale-capability systems will use components that have transistor feature sizes between 5 nm and 7 nm,
and that these effects will become more prevalent, thereby causing the system components to be
increasingly unreliable [51]. The modeling and mitigation of these effects through improved manufacturing
processes and circuit-level techniques might prove too difficult or too expensive.

Today’s petascale-class HPC systems already employ millions of processor cores and memory chips to
drive HPC application performance. The recent trends in system architectures suggest that future
exascale-class HPC systems will be built from hundreds of millions of components organized in complex
hierarchies. However, with the growing number of components, the overall reliability of the system
decreases proportionally. If p is the probability of failure of an individual component and the system
consists of N components, the probability that the complete system works is (1 - p)N when the component
failures are independent. It may therefore be expected that some part of an exascale class supercomputing
system will always be experiencing failures or operating in a degraded state. The drop in MTTF of the
system is expected to be dramatic based on the projected system features [110]. In future exascale-class
systems, the unreliability of chips due to transistor scaling issues will be amplified by the large number of
components. For long-running scientific simulations and analysis applications that will run on these
systems, the accelerated rates of system failures will mean that their executions will often terminate
abnormally, or in many cases, complete with incorrect results. Finding solutions to these challenges will
therefore require a concerted and collaborative effort on the part of all the layers of the system stack.

Due to the constraints of power, resilience and performance, emerging HPC system architectures will
employ radically different node and system architectures. Future architectures will emphasize increasing
on-chip and node-level parallelism, in addition to scaling the number of nodes in the system, in order to
drive performance while meeting the constraints of power [165]. Technology trends suggest that present
memory technologies and architectures will yield much lower memory capacity and bandwidth per flop of
compute performance. Therefore, emerging memory architectures will be more complex, with denser
memory hierarchies and utilize more diverse memory technologies. The node and system architectures will
also become increasingly heterogeneous. The consequence of these architectural shifts is the increase in
complexity of the system software, and hence more errors are likely. The software stack must also contend
with power and resilience management, which also increase the complexity of the system software.
Furthermore, the scale of extreme-scale systems requires system software services to be decentralized to

13



remain scalable, which also increases the complexity and susceptibility to errors. Additionally, application
codes are also becoming increasingly intricate, employing several separately developed software
components and modules for numerical analysis, visualization, etc. The growing complexity of the
software stack compounds the resilience challenge by making it difficult to analyze the origin of faults, the
propagation of errors and limiting their impact.

Resilience is an approach to fault tolerance for high-end computing (HEC) systems that seeks to keep the
application workloads running to correct solutions in a timely and efficient manner in spite of frequent
errors [58]. The emphasis is on the application’s outcome and the reliability of application level
information in place of or even at the expense of reliability of the system. Resilience technologies in HPC
embrace the fact that the underlying fabric of hardware and system software will be unreliable and seek to
enable effective and resource efficient use of the platform in the presence of system degradations and
failures [51]. A complete resilience solution consists of detection, containment and mitigation strategies.

Performance, resilience, and power consumption are interdependent key system design factors. An increase
in resilience (e.g., though redundancy) can result in higher performance (as less work is wasted) and in
higher power consumption (as more hardware is being used). Similarly, a decrease in power consumption
(e.g., through NTV operation) can result in lower resilience (due to higher soft error vulnerability) and
lower performance (due to lower clock frequencies and more wasted work). The performance, resilience,
and power consumption cost/benefit trade-off between different resilience solutions depends on individual
system and application properties. Understanding this trade-off at system design time is a complex problem
due to uncertainties in future system hardware and software reliability. It is also difficult due to a needed
comprehensive methodology for design space exploration that accounts for performance, resilience, and
power consumption aspects across the stack and the system. Similarly, runtime adaptation to changing
resilience demands, while staying within a fixed power budget and achieving maximum performance, is
currently limited to chekpoint placement strategies. While resilience technologies seek to provide efficient
and correct operation despite the frequent occurrence of faults and defects in components that lead to errors
and failures in HPC systems, there is no standardized methodology for optimizing the trade-off, at design
time or runtime, between the key system design factors: performance, resilience, and power consumption.
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4. SURVEY OF HPC RESILIENCE TECHNIQUES

This section surveys various fault-tolerance techniques used in practical computing systems, as well as
research proposals.

4.1 HARDWARE-BASED TECHNIQUES

Various HPC vendors have developed several hardware-based resilience technologies. The use of SECDED
ECC for main memory, caches, registers and architectural state is typical in most modern HPC
installations. ECC uses a flavor of redundancy in memory structures that typically add additional bits to
enable detection and correction of memory errors. Systems such as the Cray XC40 also include
independent, redundant power supplies, redundant voltage regulator modules, redundant paths to all
system, redundant array of independent disks (RAID) and redundant hot swap blowers to ensure
continuous operation in the event that one of these units experiences malfunction or failure [103].

Production HPC systems also include reliability, availability and serviceability management systems for
monitoring and control. The Cray XT6 and newer series of machines include an integrated Cray Hardware
Supervisory System (HSS) that monitors operation of all operating system kernels. The HSS provides
hardware and software-based monitoring for all major hardware components in the system; it also controls
power-up, power-down and boot sequences, manages the interconnect, and displays the machine state to the
system administrator. The HSS system also includes the NodeKARE, which automatically runs diagnostics
on all compute nodes involved in the application removing any unhealthy nodes from the compute pool
[101]. Generations of the IBM Blue Gene series have included monitoring systems that generate online
information about the state of hardware and software of the system and store such information in the RAS
event log [112]. The RAS log information may be used for post-hoc analysis [117] to understand system’s
resilience behavior, or even in online analysis to discover trends in the failure events [193].

The Cray XE6 architecture was designed to tolerate the failure of compute nodes or services nodes [102].
The Cray Gemini high-speed network (HSN) is designed to dynamically route around the failed nodes
[183]. The Cray Gemini support out-of-band network management. Each torus link in the Gemini
comprises four groups of three lanes and the cyclic redundancy check (CRC) code for each packet are
checked by each device with automatic link level retry upon the occurrence of an error. Additionally,
Gemini uses ECC to protect major memories and data paths for the protection of all packet traffic in the
network. The Cray Aries network [17] also contains similar features.

In the IBM Blue Gene/Q, many mechanisms are deployed to protect the chip against errors. The compute
node of a Blue Gene/Q contains an application-specific integrated circuit (ASIC) compute chip that
consists of 18 PowerPC-A2 processor cores. Sixteen of these processor cores are designated as ’user’
cores, one core is designated for system management (handles interrupts message passing, etc.) and the
eighteenth core is a spare [91]. Additionally, the manufacturing process of the chip uses of
Silicon-on-insulator (SOI) technology, radiation-hardened latches, and detection and correction for on-chip
arrays, register files and caches [46].

The architectures of processors used in modern HPC systems contain a range of features for reliability
management. The IBM RAS features of the Power8 architecture contain features for soft error handling,
active memory mirroring, dynamic substitution of unused memory for predictive memory faults, memory
buffer replay, and triple redundant global clocks and chip-level thermal sensors [94]. The Intel Xeon series
of processors includes RAS features that enable co-operative hardware/software management of errors in
the processors. This includes Corrected Machine Check Interrupt (CMCI) for predictive failure analysis,
Machine Check Architecture (MCA) interrupt-based recovery, as well as capabilities to add processors,
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memory during system operation and socket migration in collaboration with the operating system [54].

Dual-modular redundancy (DMR) and triple-modular redundancy (TMR) hardware-based approaches have
been successfully used in mission-critical systems through hardware replication. Examples of fault-tolerant
servers include the Tandem Non-Stop [127] and the HP NonStop [30] that use two redundant processors
running in locked step. The IBM G5 [167] employs two fully duplicated lock-step pipelines to enable
low-latency detection and rapid recovery. While these solutions are transparent to the supervisor software
and application programmer, they require specialized hardware. While SECDED is the most widely used
variant of ECC, researchers have also explored Bose-Chaudhuri-Hocquenghem (BCH) and double-error
correction triple-error detection (DECTED) [135] for multi-bit error detection and correction. Chipkill [60]
is a stronger memory protection scheme that is widely used in production HPC systems. The scheme
accommodates single dynamic random-access memory (DRAM) memory chip failure as well as multi-bit
errors from any portion of a single memory chip by interleaving bit error-correcting codes across multiple
memory chips.

4.2 SOFTWARE-IMPLEMENTED TECHNIQUES

Software-based redundancy promises to offer more flexibility and tends to be less expensive in terms of
silicon area as well as chip development and verification costs; it also eliminates the need for modifications
of architectural specifications.

4.2.1 Operating System & Runtime-based Solutions

The most widely used strategies in production HPC systems are predominantly based on checkpoint/restart
(C/R). In general, C/R approaches are based on the concept of capturing the state of the application at key
points of the execution, which is then saved to persistent storage. Upon detection of a failure, the
application state is restored from the latest disk committed checkpoint, and execution resumes from that
point. The Condor standalone checkpoint library [120] was developed to provide checkpointing for UNIX
processes, while the Berkeley Lab Checkpoint/Restart (BLCR) library [65] was developed as an extension
to the Linux OS. The libckpt [148] provided similar OS-level process checkpointing, albeit based on
programmer annotations.

In the context of parallel distributed computing systems, checkpointing requires global coordination, i.e.,
all processes on all nodes are paused until all messages in-flight and those in-queue are delivered, at which
point all the processes’ address spaces, register states, etc., are written to stable storage, generally a parallel
file system, through dedicated input/output (I/O) nodes. The significant challenge in these efforts is the
coordination among processes so that later recovery restores the system to a consistent state. These
approaches typically launch daemons on every node that form and maintain communication groups that
allow tracking and managing recovery by maintaining the configuration of the communication system. The
failure of any given node in the group is handled by restarting the failed process on a different node, by
restructuring the computation, or through transparent migration to another node [13] [42] [114].

Much work has also been done to optimize the process of C/R. A two-level recovery scheme proposed
optimization of the recovery process for more probable failures, so that these incur a lower performance
overhead while the less probable failures incur a higher overhead [179]. The Scalable Checkpoint/Restart
(SCR) library [130] proposes multilevel checkpointing where checkpoints are written to storage that use
random-access memory (RAM), flash, or local disk drive, in addition to the parallel file system, to achieve
much higher I/O bandwidth. Oliner et al. propose an opportunistic checkpointing scheme that writes
checkpoints that are predicted to be useful - for example, when a failure in the near future is likely [143].
Incremental checkpointing dynamically identifies the changed blocks of memory since the last checkpoint
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through a hash function [12] in order to limit the amount of state required to be captured per checkpoint.
Data aggregation and compression also help reduce the bandwidth requirements when committing the
checkpoint to disk [104]. Plank et al. eliminate the overhead of writing checkpoints to disk altogether with
a diskless in-memory checkpointing approach [150].

Process-level redundancy (PLR) [166] creates a set of redundant application processes whose output values
are compared. The scheduling of the redundant processes is left to the OS. The RedThreads application
programming interface (API) [99] provides directives that support error detection and correction semantics
through the adaptive use of redundant multithreading.

4.2.2 Message Passing Library-based Solutions

In general, automatic application-oblivious checkpointing approaches suffer from scaling issues due to the
considerable I/O bandwidth for writing to persistent storage. Also, practical implementations tend to be
fragile [68]. Therefore, several Message Passing Interface (MPI) libraries have been enabled with
capabilities for C/R [115]. The CoCheck MPI [172], based on the Condor library, uses synchronous
checkpointing in which all MPI processes commit their message queues to disk to prevent messages in
flight from getting lost. The FT-MPI [74], Open MPI [100], MPICH-V [34] and LAM/MPI [160]
implementations followed suit by incorporating similar capabilities for C/R. In these implementations, the
application developers do not need to concern themselves with failure handling; the failure detection and
application recovery are handled transparently by the MPI library, in collaboration with the OS.

The process-level redundancy approach has also been evaluated in the context of a MPI library
implementation [77], where each MPI rank in the application is replicated and the replica takes the place of
a failed rank, allowing the application to continue. The RedMPI library [70] [78] replicates MPI tasks and
compares the received messages between the replicas in order to detect corruptions in the communication
data. Studies have also proposed the use of proactive fault tolerance in MPI [133] [186]. However, with the
growing complexity of long running scientific applications, complete multi-modular redundancy, whether
through hardware or software-based approaches, will incur exorbitant overhead to costs, performance and
energy, and is not a scalable solution to be widely used in future exascale-class HPC systems.

4.2.3 Compiler-based Solutions

Software implemented fault tolerance (SWIFT) [153] is a compiler-based transformation which duplicates
all program instructions and inserts comparison instructions during code generation so that the duplicated
instructions fill the scheduling slack. The DAFT [195] approach uses a compiler transformation that
duplicates the entire program in a redundant thread that trails the main thread and inserts instructions for
error checking. The software-based redundant multi-threading (SRMT) [188] uses compiler analysis to
generate redundant threads mapped to different cores in a chip multi-processor and optimizes performance
by minimizing data communication between the main thread and trailing redundant thread. Similarly, error
detection by duplicated instructions (EDDI) [142] duplicates all instructions and inserts “compare"
instructions to validate the program correctness at appropriate locations in the program code. The
ROSE::FTTransform [118] applies source-to-source translation to duplicate individual source-level
statements to detect transient processor faults.

4.2.4 Programming Model Techniques

Most programming model approaches advocate a collaborative management of the reliability requirements
of applications through a programmer interface in conjunction with compiler transformations, a runtime
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framework and/or library support. Each approach requires different levels of programmer involvement,
which has an impact on amount of effort to re-factor the application code, as well as on the portability of
the application code to different platforms.

HPC programs usually deploy a large number of nodes to implement a single computation and use MPI
with a flat model of message exchange in which any node can communicate with another. Every node that
participates in a computation acquires dependencies on the states of the other nodes. Therefore, the failure
of a single node results in the failure of the entire computation since the message passing model lacks
well-defined failure containment capabilities [68]. User-level failure mitigation (ULFM) [31] extends MPI
by encouraging programmer involvement in the failure detection and recovery by providing a fault-tolerant
API for MPI programs. The error handling of the communicator has changed from MPI_ERRORS_ARE
_FATAL to MPI_ERRORS_RETURN so that error recovery may be handled by the user. The proposed
API includes MPI_COMM_REVOKE, MPI_COMM_SHRINK to enable reconstruction of the MPI
communicator after process failure and the MPI_COMM_AGREE as a consistency check to detect failures
when the programmer deems such a sanity check necessary in the application code.

The abstraction of the transaction has also been proposed to capture a programmer’s fault-tolerance
knowledge. This entails division of the application code into blocks of code whose results are checked for
correctness before proceeding. If the code block execution’s correctness criteria are not met, the results are
discarded and the block can be re-executed. Such an approach was explored for HPC applications through
a programming construct called Containment Domains by Sullivan et al. [48] which is based on weak
transactional semantics. It enforces the check for correctness of the data value generated within the
containment domain before it is communicated to other domains. These containment domains can be
hierarchical and provide the means to locally recover from an error within that domain. A compiler
technique that, through static analysis, discovers regions that can be freely re-executed without
checkpointed state or side-effects, called idempotent regions, was proposed by de Kruijf et al. [57]. Their
original proposal [56], however, was based on language-level support for C/C++ that allowed the
application developer to define idempotent regions through specification of relax blocks and recover blocks
that perform recovery when a fault occurs. The FaultTM scheme adapts the concept of hardware-based
transactional memory where atomicity of computation is guaranteed. The approach requires an application
programmer to define vulnerable sections of code. For such sections, a backup thread is created. The
original and the backup thread are executed as an atomic transaction, and their respective committed result
values are compared [191].

Complementary to approaches that focus on resiliency of computational blocks, the Global View
Resilience (GVR) project [47] concentrates on application data and guarantees resilience through multiple
snapshot versions of the data whose creation is controlled by the programmer through application
annotations. Bridges et al. [36] proposed a malloc_failable that uses a callback mechanism to handle
memory failures on dynamically allocated memory, so that the application programmer can specify
recovery actions. The Global Arrays implementation of the partitioned global address space (PGAS) model
presents a global view of multidimensional arrays that are physically distributed among the memories of
processes. Through a set of library API for checkpoint and restart with bindings for C/C++/FORTRAN,
the application programmer can create checkpoints of array structures. The library guarantees that updates
to the global shared data are fully completed and any partial updates are prevented or undone [61]. Rolex
[98] provides various resilience semantics for error tolerance and amelioration through language-based
extensions that enable these capabilities to be embedded within standard C/C++ programs.
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4.2.5 Algorithm-based Fault Tolerance

Algorithm-based fault tolerance (ABFT) schemes encode the application data to detect and correct errors,
e.g., the use of checksums on dense matrix structures. The algorithms are modified to operate on the
encoded data structures. ABFT was shown to be an effective method for application-layer detection and
correction by Huang and Abraham [96] for a range of basic matrix operations including addition,
multiplication, scalar product, transposition. Such techniques were also proven effective for LU
factorization [55], Cholesky factorization [89] and QR factorization [107]. Several papers propose
improvements for better scalability in the context of parallel systems, that provide better error detection and
correction coverage with lower application overheads [155] [149] [158]. The checksum-based detection
and correction methods tend to incur very high overheads to performance in sparse matrix-based
applications. Sloan et al. [168] have proposed techniques for fault detection that employ approximate
random checking and approximate clustered checking by leveraging the diagonal, banded diagonal, and
block diagonal structures of sparse problems. Algorithm-based recovery for sparse matrix problems has
been demonstrated through error localization and re-computation [169] [44].

Various studies have evaluated the fault resilience of solvers of linear algebra problems [38]. Iterative
methods including Jacobi, Gauss-Seidel and its variants, the conjugate gradient, the preconditioned
conjugate gradient, and the multi-grid begin with an initial guess of the solution and iteratively approach a
solution by reducing the error in the current guess of the answer until a convergence criterion is satisfied.
Such algorithms have proved to be tolerant to errors, on a limited basis, since the calculations typically
require a larger number of iterations to converge, based on magnitude of the perturbation, but eventual
convergence to a correct solution is possible. Algorithm-based error detection in the multigrid method
shown by Mishra et al. [128], uses invariants that enable checking for errors in the relaxation, restriction
and the interpolation operators.

For fast Fourier transform (FFT) algorithms, an error-detection technique called the sum-of-squares (SOS)
was presented by Reddy et al. [152]. This method is effective for a broader class of problems called
orthogonal transforms and therefore applicable to QR factorization, singular-value decomposition, and
least-squares minimization. Error detection in the result of the FFT is possible using weighted checksums
on the input and output [189].

While the previously discussed methods are primarily for numerical algorithms, fault tolerance for other
scientific application areas has also been explored. In molecular dynamics (MD) simulations, the property
that pairwise interactions are anti-symmetric (Fi j = - F ji) may be leveraged to detect errors in the force
calculations [190]. The resilience of the Hartree-Fock algorithm, which is widely used in computational
chemistry, can be significantly enhanced through checksum-based detection and correction for the
geometry and basis set objects. For the two-electron integrals and Fock matrix elements, knowing their
respective value bounds allows for identifying outliers and correcting them with reasonable values from a
range of known correct values. The iterative nature of the Hartree-Fock algorithm helps to eliminate the
errors introduced by the interpolated values [180]. The fault-tolerant version of the 3D-protein
reconstruction algorithm, FT-COMAR, proposed by Vassura et al. [182] is able to recover from errors in as
many as 75% of the entries of the contact map.

4.3 INTEGRATED APPROACHES

Cross-layer resilience techniques [129] employ multiple error resilience techniques from different layers of
the system stack to collaboratively achieve error resilience. The design of cross-layer resilience solutions
distribute the responsibility of detection, containment and masking/recovery across multiple layers of the
system in contrast to the traditional approaches that seek to implement the solution within a single layer of
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abstraction. While the coordination across system layers increases the complexity of the design, the
cross-layer approach enables the creation of flexible resilience solutions. Based on the fault model,
frequency of fault events and their impact on the application running on a system, certain resilience tasks
may be implemented in software to save chip area and system power consumption. Additionally, the
system may use contextual information about the impact of an error available at each layer of the system to
optimize fault coverage, performance and power consumption. To formalize the design process for
resilience solutions, the cross-layer resilience study specifies a set of key tasks: detection, diagnosis,
reconfiguration, recovery, and adaptation, which may be implemented using hardware or software
mechanisms at different levels of the system stack [41]. The CLEAR framework [45] enables systematic
analysis of resilience techniques across various layers of the system stack through exploration of the large
space of combinations of resilience techniques. The framework combine selective circuit-level hardening
and logic-level parity checking with algorithm-based fault tolerance methods to provide resilient operation.

Software-only cross-layer resilience techniques enable fault management through collaboration between
the layers of the software stack, including operating systems, runtimes, libraries, middleware, and the
applications. The Coordinated Infrastructure for Fault-Tolerant Systems (CIFTS) infrastructure is based on
the notion of an information backplane (the Fault Tolerance Backplane (FTB)) that enables fault
notification and response information to be propagated through a uniform interface between layers of the
system stack [88]. The availability of fault information on the backplane enables the various software
modules to proactively coordinate fault management. The Hobbes operating system and runtime (OS/R)
provides the Global Information Bus (GIB) for sharing status information, including RAS events, that is
needed by other software components [37]. The ARGO OS/R system provides publish-subscribe
framework called BEACON that enables applications and system services with access to reporting and
resource monitoring [144].

Much of the research in HPC resilience has focused on fault-model driven approaches, in which designers
identify the physical effects (such as transient errors, permanent errors etc.), or their impact on a system
(such as node failure, dual in-line memory module (DIMM) failure, etc.) that their design must tolerate.
Many of these existing approaches develop techniques to address each of these individual effects. Such
techniques may be very effective when system resilience must be guaranteed for only a small number of
error sources. In an effort to address extreme rates and diverse sources of faults and errors, recent efforts
have explored the strategies that seek to address more than one fault model. The combination of
algorithm-based verification mechanisms and in-memory checkpoints for silent errors and disk checkpoints
for fail-stop errors has been proved effective [29]. In the context of iterative solvers, such as the conjugate
gradient solver, the combination of algorithm-based fault tolerance and disk-based checkpointing results in
more resilient and more performant solution than with the use of a pure disk-checkpointing based solution
[75]. The ACR is a C/R library-based solution integrated with Charm++ that accounts for failures due to
hard errors as well as undetected silent data corruptions [137]. There are also solutions that leverage
multiple techniques in an effort to mitigate the overhead of the resilience solution. In the MPI layer, the
combination of partial redundancy and checkpointing yields lower overheads in comparison to a full
redundancy approach [67].
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5. DESIGN PATTERNS FOR RESILIENCE

5.1 INTRODUCTION TO DESIGN PATTERNS

A design pattern describes a generalizable solution to a recurring problem that occurs within a well-defined
context. Patterns are often derived from best practices used by designers and they contain essential
elements of the problems and their solutions. They provide designers with a template on how to solve a
problem that may be used in many different situations. The patterns may also be used to describe design
alternatives to a specific problem. The original concept of design patterns was developed in the context of
civil architecture and engineering problems. With the goal of designing functional and aesthetically
beautiful living spaces and structures, patterns captured the detailed designs of towns and neighborhoods,
houses, gardens and rooms. These patterns identify and catalog solutions to recurrent problems and
solutions encountered during the process of building and planning. Each pattern described a problem,
which occurs repeatedly in our environment, and then described the core of the solution to that problem, in
such a way that this solution may be used a million times over, without ever doing it the same way twice
[15].

In general, a design pattern identifies the key aspects of a solution and creates an abstract description that
makes it useful in the creation of a reusable design element. Patterns don’t describe a concrete design or an
implementation - they are intended to be templates that may be applied by a designer in various contexts
and modified to suit the problem at hand. Patterns are also free from constraints of detail associated with
the level of system abstraction at which the solution is implemented. Patterns also describe the design
decisions that must be made when applying a certain solution. This enables a designer to reason about the
impact of the design decisions on a system’s flexibility or scalability as well as consider implementation
issues. The design patterns must address a specific problem at hand, and yet must be general enough to
remain relevant to future requirements of systems.

In the domain of software design, patterns were introduced in an effort to create reusable solutions in the
design of software and bring discipline to the art of programming. The intent of software design patterns
isn’t to provide a finished design that may be transformed directly into code; rather, design patterns are
used to enhance the software development process by providing proven development paradigms. With the
use of design patterns, there is sufficient flexibility for software developers to adapt their implementation to
accommodate any constraints, or issues that may be unique to specific programming paradigms, or the
target platform for the software. Related to design patterns, the concept of algorithmic skeletons was
introduced [49] and further refined [50].

In the context of object-oriented (OO) programming, design patterns provide a catalog of methods for
defining class interfaces and inheritance hierarchies, and establish key relationships among the classes [82].
In many object-oriented systems, reusable patterns of class relationships and communications between
objects are used to create flexible, elegant, and ultimately reusable software design. There are three
categories of OO patterns: (i) creational patterns for ways to do instantiation of objects (ii) structural
patterns concerned with class and object composition, and (iii) behavioral patterns for communication
between objects. Design patterns have also been defined in the design of software architectures [40] to
capture repeatedly used methodologies in software engineering practice. Pattern systems have also been
developed for cataloging concurrent and networked object-oriented environments [163], resource
management [109], and distributed software systems [39].

In the pursuit of quality and scalable parallel software, patterns for programming paradigms were
developed [124] as well as a pattern language, called Our Pattern Language (OPL) [108]. These parallel
patterns are used as means to systematically describe parallel computation and communication when
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architecting parallel software. In an effort to enable a more structured approach to designing and
implementing parallel applications, particularly for many-core processors, a catalog of parallel patterns
enables programmers to compose parallel algorithms, which may be easily implemented using various
programming interfaces such as OpenMP, OpenCL, Cilk Plus, ArBB, Thread Building Blocks (TBB)
[125]. For the design of parallel algorithms, deterministic patterns support the development of systems that
automatically avoid unsafe race conditions and deadlock [126].

Design patterns have been in a variety of other domains for codifying the best-known solutions to common
problems, including natural language processing [176], user interface design [32], web design [66],
visualization [93], and software security [63]. Patterns have also been defined for enterprise applications
that involve data processing in support or automation of business processes [80] in order to bring structure
to the construction of enterprise application architectures. In each of these domains of design, patterns
capture the essence of effective solutions in a succinct form that may be easily applied in similar form to
other contexts and problems.

5.2 DESIGN PATTERNS FOR HPC RESILIENCE SOLUTIONS

The occurrences of various types of faults, errors and failures are not rare events in modern large-scale
HPC system environments. HPC resilience solutions seek effective and efficient management of the
different types of fault and errors to ensure that HPC applications produce reliable outcomes despite system
degradations and component failures. The focus of resilience solutions is on application correctness lieu of,
or even at the expense of, reliability of state of the system.

In general, every resilience solution consists of the following core capabilities:

• Detection: Identifying the presence of an anomaly in the data or control value is an important aspect
of any resilience management strategy. The detection and diagnosis of faults in a system may allow
the remedy of the underlying defect, which may prevent the activation of an error or failure. The
timely detection of errors or failures enables recovery of the system.

• Containment: When an error or failure is discovered in a system, containment strategies assist in
limiting the impact of the event on other components in the system. Limiting the propagation enables
simplified recovery strategies and prevents the error from affecting other components in a system.

• Recovery: The recovery aspect of any resilience solution is necessary to ensure that the application
outcome is correct in spite of the presence of an error or a failure in a system. The recovery may
entail a workaround to isolate and bypass the presence of an error or a failed component, complete
elimination of the error or failure, and may also seek to prevent the root cause of the underlying fault
from resurfacing.

Often the solutions used to achieve these capabilities are based on well-known techniques, which have
been repeatedly used by hardware and software designers to guarantee that anomalous events in a system
are detected, their propagation limited and their impact on the correct operation of the system is minimized.
Many of these techniques that increase system reliability have been used since the early days of computing
systems. These techniques are based on the use of redundant structures to mask failed components,
error-control codes and duplication or triplication with voting to detect or correct information errors,
diagnostic techniques to locate failed components, and automatic switchovers to replace failed subsystems
[24]. Many of the hardware- and software-based resilience solutions used in HPC environments over the
past three decades are also largely based on these set of techniques.

The goal of this work is to capture the fundamental techniques that are used in the design of HPC resilience
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solutions and write them down in the form of design patterns. The patterns describe the techniques for
detection, containment and mitigation in a highly structured format. A resilience pattern systematically
names, describes the capability and explains the semantics of such a technique used in supporting
resilience in HPC systems.

Each resilience technique provides different guarantees in terms of its capabilities and impact on the system
operation (in the absence of any events as well as in response to a fault, error or failure). Using design
patterns to construct resilience solutions forces designers to contemplate the time or the space overhead
introduced, the efficiency of the reaction to a fault, error or failure event, as well as practical considerations
for implementing a pattern, such as choosing the appropriate layer of system abstraction, the assessing
design complexity added to the system, etc.

Therefore, we organize the resilience patterns in a catalog to provide designers with an accessible
collection of well-established techniques that may be reused or adapted to create new resilience solutions.
The purpose behind creating a resilience design pattern catalog is to capture the experiences and insights of
HPC hardware & software designers and practitioners in designing resilience capabilities for large-scale
parallel HPC systems. The patterns enable designers to build upon previous experience of using similar
solutions to new HPC environments. These patterns solve specific design problems for HPC resilience and
seek to make design of the solution flexible and elegant.

Previous efforts to define design patterns for fault tolerance have described a set of patterns for failure
detection, recovery and mitigation. These patterns were also defined based on well-known fault tolerance
solutions used in mission-critical systems such as telecommunication systems and space programs [90],
distributed systems [162] and enterprise data processing systems [81]. While the capabilities of some of the
patterns in these domains overlap with the capabilities of the patterns described in this document, these
patterns solve problems that are significantly different from those encountered in high-performance
computing systems in terms of the system’s architectures, the software environments, and the nature of the
applications that run on these computing systems. The patterns in this document specifically address the
challenges for maintaining resilient operation in HPC systems, which entails keeping scientific applications
running to a correct solution in a timely and efficient manner in spite of faults, errors, and failures. The
Common Object Request Broker Architecture (CORBA) [87] defines a set of standard services and
protocols defined by distributed object computing middleware. The fault tolerant version of CORBA [136]
supports a range of fault tolerance strategies, including request retry, redirection to an alternative server,
passive (primary/backup) replication, and active replication which provides applications with capabilities
for rapid recovery from faults.

5.3 ANATOMY OF A RESILIENCE DESIGN PATTERN

The basic template of a resilience design pattern is defined in an event-driven paradigm based on the
insight that any resilience solution is necessary in the presence of, or sometimes in the anticipation of an
anomalous event, such as a fault, error, or failure. The abstract resilience design pattern consists of a
behavior and a set of activation and response interfaces (Figure 2). The appeal of defining the resilience
design patterns in such an abstract manner is that they are universal. The abstract definition of the
resilience design pattern behavior enables description of solutions that are free of implementation details.
The instantiation of pattern behaviors may cover combinations of detection, containment and mitigation
capabilities. The individual implementations of the same pattern may have different levels of performance,
resilience, and power consumption. Also, the resilience pattern definition abstracts a pattern’s interfaces
from the implementation of these interfaces. In specification of the resilience patterns that serve as reusable
design elements, it is important to find pertinent techniques at the appropriate granularity, define their

23



activation and response interfaces in a manner that enables designers to establish key relationships among
the patterns.

Figure 2. Anatomy of a resilience design pattern
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6. CLASSIFICATION OF RESILIENCE DESIGN PATTERNS

The patterns presented in the resilience design patterns catalog provide solutions to problems that
repeatedly appear in the design of fault tolerance capabilities. The solutions offered by these patterns may
shape the design of hardware, system software as well as the applications and libraries independent of the
scope and scale of the problem. Due to the variety in the granularity and level abstraction at which each of
the patterns may be implemented, we must organize the patterns. A classification scheme codifies the
relationships between the various patterns in the catalog, which enables designers to understand their
individual capabilities and the relationships among the patterns, and to compose different patterns into
complete resilience solutions.

The most straightforward classification scheme for the resilience solutions is one based on the layer of
system abstraction at which the solution is implemented. The survey of resilience solutions presented in
section 4. is organized in this manner. However, the resilience patterns have various properties each of
which can be used as a basis for developing a classification scheme. These properties include:

• Capability: Whether the pattern offer detection, containment, recovery or masking semantics, or a
combination of these capabilities.

• Protection Coverage: The scope of the system that the pattern protects.

• Fault Model: The type of event that the pattern is equipped to handle.

• Impact: How a fault, error or failure event affects the outcome of a system, and the capabilities of
the pattern to deal with the consequences of the event.

• Design complexity of the solution: The effort necessary to incorporate the patterned solution in the
overall design of a system.

• Time overhead in the absence of fault/error/failure events: The impact of the pattern (in terms of
time to solution) on the fault-free operation of a system.

• Time overhead to manage fault/error/failure events: The impact on time to solution on account of
the actions required to manage an event.

• Space overhead of the solution: The number of additional components or sub-systems that the
solution requires.

• Power overhead of the solution: The impact of applying the pattern on the system’s power
consumption.

Our goal is to develop a classification scheme that facilitates the incorporation of resilience capabilities
which are an essential part of the design process. The scheme should enable system designers to easily
discover an appropriate pattern for a specific design problem. Therefore, we propose a classification that
organizes the resilience design patterns in a layered hierarchy. Such an organization of the patterns helps
designers to systematically evaluate the features of various patterns, and analyze the impact on coverage
and overhead of applying a pattern to a specific problem. Each layer in the hierarchy, which is illustrated in
Figure 3, enables designers to view the design problem at a different granularity. This permits the different
stakeholders to reason about resilience capabilities based on their view of the system and their core
expertise - system architects may analyze protection coverage for the various hardware and software
components that make up the system based on the patterns applied by each component; the designers of
individual components may operate within a single layer of system abstraction and focus on instantiation of
patterns based on local constraints, without the need to understand the overall system organization. Each
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Figure 3. Classification of resilience design patterns

level in the hierarchy also addresses one or more of the design considerations, including the type of event
handled, potential impact on a system, the capabilities supported by a pattern, design complexity, etc.
Therefore, the ordering of the patterns within a level in the hierarchy is based on these considerations.

Resilience in the context of HPC systems and applications has two key dimensions: (1) forward progress of
the system and (2) data consistency in the system. Based on these two aspects, the resilience design
patterns are broadly classified into:

• State Patterns: These patterns describe all aspects of the system structure that are relevant to the
forward progress of the system. The correctness and consistency of the system state ensures the
correct operation of the system. The state patterns implicitly define the scope of the protection
domain that must be covered by a resilience mechanism.

• Behavioral Patterns: These design patterns identify common detection, containment, or mitigation
actions that enable the components in a system that realize these patterns to cope with the presence
of a fault, error, or failure event.

In the classification scheme in Figure 3 the state patterns are placed separately from the behavioral patterns.
This classification enables designers to separately reason about scope of the protection domain and the
semantics of the pattern behavior.

6.1 STATE PATTERNS

The notion of state for an HPC application may be classified into three aspects [113]:

• Persistent/Static State, which represents the data that is computed once in the initialization phase of the
application and is unchanged thereafter.

• Volatile/Dynamic State, which includes all the system state whose value may change during the
computation.

• Operating Environment State, which includes the data needed to perform the computation, i.e., the
program code, environment variables, libraries, etc.

Within the layer of state patterns, the patterns are organized to capture each of these aspects of state. This
organization enables the behavioral patterns to be applied to individual aspects of the system state.
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However, the state patterns may also be fused to enable the application of a single behavioral pattern to
more than one state pattern. Certain resilience behaviors may be applied without regard for state; such
patterns are concerned with only the forward progress of the system. Therefore, the classification of state
patterns also includes a stateless pattern to enable designers to create solutions that define behavior without
state.

6.2 BEHAVIORAL PATTERNS

The behavioral patterns are presented in a layered hierarchy to provide designers with the flexibility to
organize the patterns in well-defined and effective solutions:

6.2.1 Strategy Patterns

These patterns define high-level policies of a resilience solution. Their descriptions are deliberately
abstract to enable hardware and software architects to reason about the overall organization of the
techniques used and their implications on the full system design. However, these patterns describe the
overall structure of each pattern and the key components in the solution and their capabilities independent
of the layer of system stack and hardware/software architectural features.

The strategy patterns are organized by the type of event that they intend to handle - fault, error or failure;
the techniques to handle these events are fundamentally different. Without delving into the specifics of the
precise type of fault, error, or failure and their impact on a system, these patterns describe the overall plan
for handling each event type.

The classification of the strategy patterns also captures the intent behind each solution. The fault treatment
patterns are concerned with diagnosing and preventing an imminent error or failure. The recovery and
compensation patterns must limit and remove an error or failure state in the system. The recovery pattern
aims to substitute an error/failure-free state in place of the erroneous/failed system state. The compensation
pattern seeks to tolerate the presence of an error or failure by providing redundancy in the system.

6.2.2 Architectural Patterns

These patterns convey specific methods necessary for the construction of a resilience solution. They
explicitly convey the type of fault/error/failure event that they handle and provide detail about the key
components and connectors that make up the solution. Since the architecture patterns are a sub-class to the
strategy patterns, they are also organized by the type of event they handle.

The architectural patterns are also organized to reflect the specific action that its solution takes to handle
the event, and the intended impact of the action on the system resilience. Consequently, there exists an
overlap between the sub-class relationships for one of the patterns.

The classification of these architectural patterns based on the core solution is also suggestive of the design
time complexity and runtime complexity of a pattern. However, architectural patterns are independent of
the precise fault model and may be implemented at any layer of the system stack.

6.2.3 Structural Patterns

These patterns provide concrete descriptions of the solution rather than high-level strategies. They
comprise of instructions that may be implemented in hardware/software components. While the strategy
and architectural patterns serve to provide designers with a clear overall framework of a solution and the
type of events that it can handle, the structural patterns express the details so they can contribute to the
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development of complete working solutions. Structural patterns provide a concrete description of the
components that make up the solution.

The structural patterns are also sub-classes of the strategy and architectural patterns. Therefore, their
first-order organization is also based on the type of fault event that their solution handles. However, the
pattern descriptions include the details of the fault model that the pattern protects the system against.
Although the structural patterns provide more detailed solutions, their descriptions are still independent of
the layer of system abstraction. However, based on the description of the modules, a designer may be able
to identify the layer of system stack at which the pattern may potentially be instantiated.

6.2.4 Implementation Patterns

These patterns bridge the gap between the design principles and the concrete details required for realization
of a complete resilience solution. These are often compound patterns, i.e., patterns of patterns, and consist
of a structure pattern and a state pattern. The implementation patterns explicitly specify the layer of system
abstraction at which they are implemented, and the activation and response interfaces. These patterns
enable the designer to understand the overhead of a solution in terms of time and space, as well as the
trade-off between design complexity and runtime complexity.
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7. CATALOG OF RESILIENCE DESIGN PATTERNS

The resilience solutions presented in this document have been extensively studied and/or used. The
primary objective is to capture them in a standardized and accessible format. The resilience design patterns
are based on practical solutions that have been or can be applied to HPC systems and their applications.
Each design pattern focuses on a specific problem in HPC resilience.

7.1 DESCRIBING DESIGN PATTERNS

Patterns are expressed in a written form and in a highly structured format to enable HPC architects and
designers to quickly discover whether the pattern is relevant to the problem being solved. Every pattern has
the following key attributes [82]:

• A descriptive name that distinctly identifies the pattern and enables designers to think about designs
in an abstract manner and communicate their design choices to others.

• A description of the problem that provides insight on when it is appropriate to apply the pattern.
Multiple patterns may address the same problem differently.

• A description of the solution that defines the abstract elements that are necessary for the composition
of the design solution as well as their relationships, responsibilities, and collaborations.

• The consequences of applying the pattern in terms of the protection coverage that the pattern offers
and the involved resource and execution time trade-offs.

For convenience and clarity, each resilience pattern presented in the catalog follows the same prescribed
format. There are three key reasons behind this pattern format: (1) to present the pattern solution in a
manner that simplifies comparison of the capabilities of patterns and their use in developing complete
resilience solutions, (2) to present the solution in a sufficiently abstract manner that designers may modify
the solution depending on the context and other optimization parameters, and (3) to enable these patterns to
be instantiated at different layers in the system.

Defining a catalog of resilience design patterns provides reusable solutions to specific problems in a way
that they may be instantiated in various ways, in hardware and software. Hardware design covers design of
microarchitecture blocks, processor architecture, memory hierarchy design, network interface design, as
well as design of racks, cabinet and system-level design. The scope of software design spans the spectrum
of OSs, runtimes for scheduling, memory management, communication frameworks, performance
monitoring tools, computational libraries, compilers, programming languages, and application frameworks.

In order to make the resilience pattern relevant to these diverse domains of computer system design, we
describe solutions in a generic manner. The descriptions use the term system to refer to an entity that has
the notion of a well-defined structure and behavior. A subsystem is a set of elements, which is a system
itself, and is a component of a larger system, i.e., a system is composed of multiple subsystems or
components. For an HPC system architect, the scope of system may include compute nodes, I/O nodes,
network interfaces, disks, etc., while an application developer may refer to a library interface, a function, or
even a single variable as a system. The instantiation of the pattern interprets the notion of system to refer to
any of these hardware or software-level components. A full system refers to the HPC system as a whole, or
to a collection of nodes that is capable of running a parallel application. The resilience design pattern
description format is as follows:

29



Name: Identifies the pattern and provides a convenient way to refer to it, typically using a short phrase.

Problem: A description of the problem indicating the intent behind applying the pattern. This de-
scribes the intended goals and objectives that will be accomplished with the use of this specific pattern.

Context: The preconditions under which the pattern is relevant, including a description of the system
before the pattern is applied.

Forces: A description of the relevant forces and constraints, and how they interact or conflict with
each other and with the intended goals and objectives. This description clarifies the intricacies of the
problem and makes explicit the trade-offs that must be considered.

Solution: A description of the solution that includes specifics of how to achieve the intended goals
and objectives. This description identifies the core structure of the solution and its dynamic behavior,
including its collaborations with other patterns. The description may include guidelines for imple-
menting the solution as well as descriptions of variants or specializations of the solution.

Capability: The resilience management capabilities provided by this pattern, which may include de-
tection, containment, mitigation, or a combination of these capabilities. The listing of capabilities
enables designers to determine whether other patterns must be employed to compose a complete re-
silience solution.

Protection Domain: The resiliency behavior provided by the pattern extends over a certain scope,
which may not always be explicit. Also, a solution may be suitable for a specific fault model. The
description of scope and nature of fault model that is supported by the pattern enables designers to
reason about the coverage scope in terms of the complete system.

Resulting Context: A brief description of the post-conditions arising from the application of the pat-
tern. There may be trade-offs between competing optimization parameters that arise due to the imple-
mentation of a solution using this pattern. The resulting context describes what aspects of the systems
have been provided with protection, and which remain unprotected. This indicates other patterns that
may be applied for supplementing the protection domain.

Examples: One or more sample applications of the pattern, which illustrate the use of the pattern for
a specific problem, the context, and set of forces. This also includes a description of how the pattern is
applied and the resulting context.

Rationale: An explanation of the pattern as a whole, with an elaborate description of how the pattern
actually works for specific situations. This provides insight into the internal workings of a resilience
pattern, including details on how the pattern accomplishes the desired goals and objectives.

Related Patterns: The relationships between this pattern and other relevant patterns. These patterns
may be predecessor or successor patterns in the hierarchical classification. The pattern may collaborate
to complement or enhance the resilience capabilities of other patterns. There may also be dependency
relationships between patterns, which necessitate the use of co-dependent patterns in order to develop
complete resilience solutions.

Known Uses: Known applications of the pattern in existing HPC systems, including any practical
considerations and limitations that arise due to the use of the pattern at scale in production HPC envi-
ronments.
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7.2 STRATEGY PATTERNS

7.2.1 Fault Treatment

Name: Fault Treatment

Problem: An incomplete understanding of the presence, root cause and impact of a defect or anomaly in
the system causes lack of corrective action at design or run time and may eventually result in an error or
failure.

Context: The pattern applies to a system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring system to discover the presence of a
defect or anomaly in the behavior of the monitored system.
• The interaction between the monitored and the monitoring systems is bounded in terms of time.
• The monitoring system has the capability to notify the monitored system, which enables the anomaly or

defect to be removed before or after it results in an error or a failure.

Forces:

• The interactions between the monitoring and monitored systems may interfere with the operation of the
monitored system, specifically its performance.
• While the frequency and duration of these interactions must be minimized to reduce the monitoring

overhead, the interactions must be able to detect/infer a defect or anomaly in the monitored system.
• The monitoring system’s data gathering and defect/anomaly detection/inference must be in time to

prevent the activation of an error and a subsequent failure.

Solution: The Fault Treatment strategy pattern enables the discovery and treatment of a defect or
anomaly in the system, which either has the potential to activate or already has activated to an error and
potentially a subsequent failure. The pattern supports methods that attempt to recognize the presence of a
defect or anomaly within a monitored system. It prevents its activation or enables its containment and
mitigation by notifying the monitored system, such that the anomaly or defect is removed before or after it
results in an error or a failure. The solution requires a monitoring system, which may be a subsystem of the
monitored system or an external independent system, to observe key parameters of the monitored system
and to notify the monitored system when these parameters deviate. The components of this pattern are
illustrated in Figure 4.

Protection  Domain

Monitoring
(Sub-) System

Monitored
(Sub-) System

Monitoring
Parameters

Notification

Figure 4. Fault Treatment pattern components

Capability: This pattern provides fault detection in the monitored system at design or run time, before it
eventually results in an error or failure or after activation, by identifying deviations in monitored
parameters. This pattern enables containment and mitigation of a future, imminent or present error or
failure in the monitored system through detection and by notifying the monitored system. The flowchart
and state diagram of the pattern is shown in Figure 5 and its parameters in Table 2.

Protection Domain: The protection domain extends to the monitored system.
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Figure 5. Fault Treatment pattern flowchart and state diagram

Table 2. Fault Treatment pattern parameters

Parameter Definition
Tm Time to monitor (sub-) system parameters, including wait and probe times
Tn Time to raise notification

Resulting Context: The discovery and treatment of a defect or anomaly in the system that has the potential
to activate or has activated is enabled, which can be used to prevent, contain and mitigate an error or a
failure in the system. The Fault Treatment strategy pattern requires identifying system parameters that
indicate the presence of a fault. The overall system design must include a monitoring system, which
introduces design complexity. When the monitoring system is extrinsic to the monitored system, the design
effort may be simplified, but the interfaces between the monitoring and monitored systems must be
well-defined. When the monitoring system is intrinsic to the design of the monitored system, design
complexity increases due to the need to interface the monitoring and monitored subsystems.

A trade-off exists between interference with the operation of the monitored system caused by the frequency
and duration of the interactions between the monitoring and monitored systems, and the ability to
detect/infer a defect or anomaly in the monitored system. A high performing solution reduces the
interference, while maintaining a reasonable ability to detect/infer a defect or anomaly.

The Fault Treatment strategy pattern may be used in conjunction with other strategy patterns that
provide containment and mitigation and require or can make use of fault detection. It detects the presence
of a defect or anomaly and reports it, but does act to remedy the fault.

Examples:

• Hardware sensors in the central processing units (CPUs), on the board, and in the power supply provide
real-time operational data about temperature, fan speeds, and voltages. Software sensors in the Linux OS
offer real-time operational data about CPU and memory load. The data is made available by sensor
interface tools, such as Intelligent Platform Management Interface (IPMI) [10], such that a monitoring
tool, like the Ganglia Monitoring System [123], can aggregate it with time stamps in a central database.
The monitoring tool can be configured to send a notification when a certain threshold value for a sensor
is exceeded.
• A heartbeat monitoring tool checks the liveness of an MPI process in the system by regularly sending a
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message and waiting for a reply [147]. If no message is received back within a certain time period, the
MPI process is considered failed and the MPI programming model runtime software is informed. This
heartbeat monitoring is performed between all MPI processes, where all MPI processes watch each
other. A message sent by the application can be used as a liveness request or reply message.
• An MPI tracing tool, like Vampir [8], is used to capture detailed time-stamped information about an

application’s MPI messages at execution time. The created MPI message trace contains time-stamped
information about when an MPI function was called and when it was completed, such that it can be
analyzed for inefficiencies in the MPI application’s messaging behavior. A common root cause for MPI
application scaling limitations is the inefficient use of MPI collectives. The MPI application developer is
informed by the tool about such situations.
• In proactive fault tolerance, an observe, orient, decide, and act (OODA) loop control is employed that

utilizes monitoring tools for collecting sensor data (e.g., temperature, fan speeds, voltages,
computational load, memory and storage usage, etc.). It leverages the warning thresholds of these
sensors as early fault indicators to migrate computation away from compute nodes that are about to
fail [72]. The mitigation may use process-level [187] or virtual machine (VM) level [134] migration.
• Monitoring tools collecting event data (e.g., anomalous, error and failure events, debug messages, etc.)

are used in conjunction with tools for temporal and spatial filtering to identify event correlations and to
predict failures [116].
• Probabilistic networks are utilized for establishing correlations between event collected with monitoring

tools to predict failures [159].

Rationale: The Fault Treatment strategy pattern enables a system to discover and treat a defect or
anomaly in the system that has the potential to activate and become an error or failure or already has
activated. It relies on a monitoring system to observe the monitored system, identifying deviations in
monitored parameters. A discovered defect or anomaly is treated by raising a notification, permitting the
monitored system to provide containment and mitigation. A key benefit of this pattern is preemptive
discovery of faults in the system, before they are activated and result in errors or failures. Preventive
actions taken upon such discovery avoid the need for expensive error/failure recovery, compensation, or
correction actions.

Related Patterns: Unlike the other strategy patterns, the Fault Treatment strategy pattern does not
provide error or failure containment or mitigation. However, it enables error and failure containment and
mitigation. Since the Recovery strategy pattern does not offer error or failure detection, it may be used in
conjunction with the Fault Treatment strategy for a complete solution. The Compensation and
Self-Stabilization strategy patterns do offer error and failure detection, but their capabilities can be
enhanced by additionally employing the Fault Treatment strategy pattern.

Known Uses: HPC system installations use monitoring tools for collecting operational data, such as sensor
data (e.g., heat, fan speeds, voltages, computational load, memory and storage usage, etc.), performance
data (e.g., application execution, message and file system access times, etc.) and event data (e.g.,
anomalous, error and failure events, debug messages, etc.). Popular solutions include:

• Hard- and software sensors in CPUs, on the board, in the power supply, in the OS, and in system services
that provide real-time operational data to sensor interface tools. Examples are the hardware sensors in
the IBM Power 8 [94] and Intel Xeon [54] processors, and the Linux OS monitoring capabilities.
• Sensor interface tools that gather real-time operational data from hard- and software sensors, such that

they are available for monitoring tools. Examples are self-monitoring and reporting technology
(SMART) [173] and IPMI [10].
• Monitoring tools that gather time-stamped information from sensor interface tools in a distributed

computing system at a central location, such that they can be analyzed. Examples are the Supermon
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High-Speed Cluster Monitoring System [171], the Ganglia Monitoring System [123], Nagios [4], and
the OVIS Lightweight Distributed Monitoring System [14].
• Heartbeat monitoring tools for liveness checking of individual nodes in the system [147] or MPI

processes [26].
• System event loggers that gather time-stamped information from the OS or system services in a

distributed computing system, such that they can be analyzed. The most prominent example is Linux’s
syslog [6].
• MPI tracing tools gather detailed time-stamped information about an application’s MPI messages, such

as when a particular message was sent and when it was received. Examples are Vampir [8] and
SCALASCA [7].
• Comprehensive RAS management tools by vendors that support real-time monitoring of an entire HPC

system, such as the Cray RAS and Management Subsystem (CRMS) [28].

The collected operational data may be analyzed by advanced tools for predicting future behavior based on
experiences with past behavior and/or based on current behavior, such as for predicting faults, errors and
failures. Known uses include:

• Utilizing a wide-variety of methods to analyze monitoring and log data to predict failures [105]
• Using machine learning to predict general-purpose computing graphics processing unit (GPGPU)

memory errors [139]
• Leveraging warning thresholds of sensors as early fault indicators to migrate computation away from

compute nodes that are about to fail [72]
• Characterizing the correlation between temperature, power consumption and memory or logic errors

using monitoring and log data [138]
• Using probabilistic networks for establishing event correlations for prediction algorithms [159]
• Employing temporal and spatial filtering for failure prediction [116]
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7.2.2 Recovery

Name: Recovery

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., resource underprovisioning) in an HPC environment causes a software,
such as an application, to experience an error and potentially a subsequent failure.

Context: The pattern applies to a system with the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The error or failure in the system that the pattern handles must be detected, as the pattern offers no error

or failure detection.
• The system is capable of compartmentalizing its state that is accurately representative of the progress of

the system since initialization at the time such a state is captured.

Forces:

• The pattern requires additional persistent storage to capture system state, which increases overhead in
terms of resources required by the system.
• The amount of state captured during each creation of a recovery point incurs storage space and execution

time overheads.
• The creation frequency of system state snapshots determines overhead. More frequent snapshot creation

increases system execution time, but reduces the amount of lost work upon an error or failure.
• The time interval for the recovery of a system from a snapshot as well as the time interval to create a

snapshot must be less than the system’s MTBF to guarantee forward progress.

Solution: The Recovery strategy pattern enables the resumption of correct operation of a system impacted
by an error or failure. It supports resilient operation by restoring the system to a known correct state in the
event of an error or failure. The pattern relies on the creation of system state snapshots and the maintenance
of such snapshots on a persistent storage system that is not affected by the error or failure. Upon detection
of an error or failure, the most recent snapshot is used to recreate the last known error/failure-free state of
the system. When the system state is recovered, the operation of the system is resumed. Based on a
temporal view of the system’s progress, the error/failure recovery may be either backward to the time when
the snapshot occurred (rollback) or forward to the time when the error/failure event occurred (rollforward).

Undetected (latent) errors that are either detected later or result in a different detected error or failure later
represent a problem, as the most recent or even more snapshots may contain an illegal system state. In this
case, the most recent correct snapshot may be used to recreate the last known error/failure-free state of the
system, skipping snapshots containing illegal state and going further back in time in terms of when the
snapshot was made. The components of this pattern are illustrated in Figure 6.
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System

(Sub-)
System...

Persistent
Storage

Recovery
Manager

StateControl

Figure 6. Recovery pattern components
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Capability: This pattern provides mitigation of an error or failure in the system by preserving system state
before such an event, often in a periodic fashion, and restoring the previously preserved system state after
such an event to resume operation from a known correct state. The flowchart and state diagram of the
pattern is shown in Figure 7 and its parameters in Table 3.
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Figure 7. Recovery pattern flowchart and state diagram

Table 3. Recovery pattern parameters

Parameter Definition
Te Time to execute (sub-) system progress
Td Time to detect an error/failure (not part of this pattern, but shown for completeness)
Tr Time to restore (sub-) system state and progress (initial and/or previously saved)
Ts Time to save (sub-) system state and progress

Protection Domain: The protection domain extends to the system state that can be restored using the
system state captured by snapshots stored on persistent storage.

Resulting Context: Correct operation is resumed after an error or failure impacted the system. Progress in
the system is lost after an error or failure if the recovery is only able to recreate the system state to the time
when the snapshot occurred. Progress is not lost if the recovery is able to recreate the system state to the
time when the error/failure occurred. The system is interrupted during error-/failure-free operation for
creating system state snapshots and maintaining them on a persistent storage system. The system is
interrupted upon an error or failure for recreating the last known error/failure-free state of the system.

A trade-off exists between the creation frequency of system state snapshots and its corresponding execution
time overhead during error-/failure-free operation vs. the amount of lost progress in case of a rollback or
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the amount of work required to recreate the state in the case of a rollforward. The optimal solution of this
trade-off depends on the MTBF, the time it takes to save and load a system state snapshot and the time it
takes to recreate the system state.

The Recovery strategy pattern does not provide error or failure detection and may be used in conjunction
with the Fault Treatment strategy pattern to be fully functional. The Recovery strategy pattern may be
used in conjunction with other strategy patterns that provide containment and mitigation in a
complementary fashion, where some error/failure types are covered by the other strategy pattern(s) and the
Recovery strategy pattern covers for the remaining error/failure types.

Examples: Many HPC applications implement application-level checkpoint recovery by regularly saving
intermediate results to stable storage as checkpoints and supporting the capability to load such a checkpoint
in addition to some or all of the original data upon restart to recreate the last known correct state.
Library-based solutions, such as Fault Tolerance Interface (FTI) [27], permit tracking of state that needs to
be saved and restored. System-level solutions, such asDistributed MultiThreaded CheckPointing
(DMTCP) [18], support transparent state saving and restoration using OS support. GVR [47] is a runtime
system that provides fault tolerance to applications by versioning distributed arrays for checkpoint
recovery, while the checkpoint-on-failure protocol [18] for MPI applications leverages the features of a
high-quality fault-tolerant MPI implementation. In either case, algorithm-specific knowledge is needed to
perform checkpoint recovery, Some ABFT solutions [122] can utilize the original or previously saved data
as a replacement for lost or erroneous data and recover their state to the point at which the error/failure
event occurred.

Rationale: The Recovery strategy pattern enables a system to tolerate an error or failure through
resumption of correct operation after impact. It relies on the capability to preserve system state before an
error or failure, often in a periodic fashion, and restore the previously preserved system state upon such an
event to resume operation from a known correct state. The pattern performs proactive actions, such as
preserving system state, but mostly relies on reactive actions after an error or failure impacted the system.

Error or failure detection is not part of the pattern. The preserved system state is managed on persistent
storage, which is not part of the protection domain. The containment and mitigation offered by this pattern
are independent from the type of error or failure. The pattern has very little design complexity and has low
dependence on a system’s architecture, which makes it appealing as a general and portable solution.

Related Patterns: The Recovery, Compensation, and Self-Stabilization strategy patterns provide
containment and mitigation using different approaches. The Recovery strategy pattern relies on system
state snapshots and may experience a loss of progress, but has low design complexity. The Compensation
strategy pattern relies on redundancy of system state and optionally on system resources and experiences
no loss of progress, but has high design complexity. The Self-Stabilization strategy pattern relies on
the capability of reaching a correct system state from an illegal system state after a finite number of
execution steps and guarantees forward progress, but has high design complexity.

Known Uses:

• The Mini-Ckpts framework [79] enables HPC applications to survive OS errors and failures. The OS is
effectively rebooted, while the application and OS state directly relevant to the application is preserved
in persistent memory. This rejuvenates all OS state that is not directly relevant to the application.
• Individual services, such as the parallel file system metadata service (MDS) or the system’s resource

manager, may be rebooted to fix erroneous behavior or failures. The correct service state is maintained
on persistent storage to allow for resumption after reboot.
• Many HPC applications implement application-level checkpoint recovery by regularly saving
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intermediate results to stable storage as checkpoints and supporting the capability to load such a
checkpoint in addition to some or all of the original data upon restart to recreate the last known correct
state.
• FTI [27] is a library-based checkpoint recovery solution, tracking, saving and restoring data structures in

multilevel checkpoint storage.
• The CoCheck supports checkpoint recovery for an MPI implementation; for the coordination of the

checkpoints, CoCheck uses a special process [172]. The Condor checkpoint/restart facility is enabled by
the user by linking the program source code with the condor library [121].
• The libckpt [148] is a user-level, library-based checkpointing solution that supports explicit directives to

determine the scope of an application’s checkpointed state.
• The SCR [130] library uses multilevel checkpointing; it creates frequent inexpensive checkpoints that

can recover the loss of a few nodes to the local node-level storage and writes complete checkpoints that
can withstand an entire system failure to the parallel file system.
• BLCR is a process-level checkpoint recovery module for the Linus OS. It has been used in conjunction

with LAM/MPI to permit OS-level checkpoint recovery for MPI applications [184].
• Improvements to system-level checkpoint recovery solutions, such as BLCR, include incremental

checkpoint recovery, where only changes between two checkpoints are being saved and the recovery
performs a reconstruction of correct state from multiple incremental checkpoints [185].
• DMTCP [18] is a transparent checkpoint recovery solution for multi-threaded and MPI applications.
• The local failure local recovery protocol uses checkpoint recovery of only some processes with locally

stored checkpoints to create correct state [177].
• Message logging protocols have been implemented in OpenMPI to support faster failure recovery with

message replay [35].
• GVR [47] is a runtime system that provides fault tolerance to applications by versioning distributed

arrays. It supports checkpoint recovery based on application-specified mechanisms. Past versions of lost
or erroneous data can be retrieved and used for computing the state at which the error/failure event
occurred.
• The checkpoint-on-failure protocol [18] for MPI applications leverages the features of a high-quality

fault-tolerant MPI implementation and algorithm-based checkpoint recovery. It provides the ability for
all healthy processes to continue to operate and perform checkpoint recovery using message passing.
• Some ABFT solutions [122] can utilize the original or previously saved data as a replacement for lost or

erroneous data and recover their state to the point at which the error/failure event occurred.
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7.2.3 Compensation

Name: Compensation

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., human mistake or defective design tool) in an HPC environment causes
a software, such as a system service or an application, to experience an error and potentially a subsequent
failure.

Context: The pattern applies to a system with the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has a modular design that has a well-defined scope and a set of inputs and outputs.

Forces:

• The pattern introduces an execution time and/or resource requirement (storage space, computational
capability, etc.) penalty independent of whether an error or failure occurs during system operation or not.
• The scope and strength of the redundancy employed by the pattern determines its execution time and

resource requirement overhead.

Solution: The Compensation strategy pattern enables the correct operation of a system impacted by an
error or failure. It supports resilient operation by applying redundancy to system state and optionally to
system resources. This redundancy may be in the form of encoded system state, functionally identical
replicas, or functionally equivalent alternate system implementations. The pattern requires very well
defined input and output to permit encoding/decoding of system state, input encoding/replication, and
output decoding/comparison/validation.

Redundancy can be in time, meaning the same system resources are used for redundancy. Redundancy can
also be in space, meaning additional (redundant) system resources are used. Redundancy in time saves
system resources, while redundancy in space offers more error/failure coverage. A mix between
redundancy in time and space is possible as well, where there is more encoded system state or there are
more functionally identical replicas or functionally equivalent alternate system implementations than
additional (redundant) system resources. The components of this pattern are illustrated in Figure 8.
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Capability: This pattern provides error and/or failure detection in the system by applying redundancy to
system state in the form of encoded system state, functionally identical replicas, or functionally equivalent
alternate system implementations. The pattern provides mitigation of an error or failure in the system by
applying redundancy to system state and optionally to system resources, such that the system continues to
operate correctly in the presence of such an event. The flowchart and state diagram of the pattern is shown
in Figure 9 and its parameters in Table 4.
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Figure 9. Compensation pattern flowchart and state diagram

Table 4. Compensation pattern parameters

Parameter Definition
Ta Time to activate the redundant (sub-) systems
Ti Time to encode/replicate the input to the redundant (sub-) systems
Te Time to execute redundant (sub-) system progress
To Time to decode/compare/validate the output from the redundant (sub-) systems
Tr Time to remove, replace or discount the affected redundant (sub-) systems

Protection Domain: The protection domain extends to (1) the encoded system state and to the system
resources processing it, (2) the system state and the system resources that implement the N functionally
identical replica systems, and (3) the system state and the system resources described by the design
specification that implement the functionally equivalent alternate systems.

Resulting Context: Correct operation is performed despite an error or failure impacting the system.
Progress in the system is not lost due to an error or failure. The system is not interrupted during
error-/failure-free operation. The system may be interrupted when encountering an error or failure.
Resource usage in time or space is increased according to the amount of redundancy employed in the form
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of encoded system state, functionally identical replicas, or functionally equivalent alternate system
implementations.

A trade-off exists between the amount of redundancy employed and the number of errors and/or failures
that can be tolerated at the same time and/or in time. More redundancy generally tolerates more errors
and/or failures, but requires either more resources or more execution time.

The Compensation strategy pattern may be used in conjunction with other strategy patterns that provide
containment and mitigation in a complementary fashion, where some error/failure types are covered by the
other strategy pattern(s) and the Compensation strategy pattern covers for the remaining error/failure
types.

Examples: There are various schemes that enable forward error correction redundancy in memory devices,
storage systems as well as communication channels. Based on time and space overhead constraints,
schemes of different detection and correction capabilities are used. Popular examples include parity bits,
checksums, Hamming codes, hash function codes. More elaborate schemes such as systematic cyclic block
codes include binary BCH, Reed-Solomon and CRC. Forward error correction can be found in HPC storage
systems with RAID, the InfiniBand interconnect [9], the memory hierarchy [131, 59], ABFT solutions [95]
and coded computing [106]. Active/Standby redundancy is typically used for critical hardware or software
systems in HPC environments. For example, power supplies, voltage regulators, the parallel file system
MDS in Lustre [194] and the Simple Linux Utility for Resource Management (SLURM) [192] job and
resource manager are often implemented in an active/standby fashion. Dual-modular redundancy for error
detection and failure compensation and triple-modular redundancy for error detection and correction and
failure compensation are used n HPC environments as well. Examples include dual-redundant cooling fans,
dual- and triple–modular redundant MPI implementations [78], dual-redundant parallel file system MDS
solutions [92] and dual-redundant mission-critical HPC systems (e.g., weather forecast).

Various versions of the same software are used in HPC systems for the detection of implementation errors.
This applies to completely different implementations of the MPI standard and to numerical libraries as well
as to different versions of the same implementation. Regression and comparison tests are performed to
identify incorrect behavior, missing features and performance problems. Containment Domains [48] and
the SWIFT library [97] provide language-based approaches for recovery blocks with design diversity.
Applications also often contain verification routines that check for the validity of a computation and correct
any detected errors using application-specific knowledge and design diversity.

Rationale: The Compensation strategy pattern enables a system to tolerate an error or failure through
continuation of correct operation after impact. It relies on system state redundancy in the form of encoded
system state, functionally identical replicas, or functionally equivalent alternate system implementations.
The pattern performs mostly proactive actions, such as maintaining redundancy. Error or failure detection
is part of the pattern in the form of output decoding, comparison, or validation. The pattern has high design
complexity, as input needs to be encoded/replicated, processed encoded, and output needs to be
decoded/compared. The need for functionally equivalent alternate system implementations additionally
increases the design complexity.

Related Patterns: The Recovery, Compensation, and Self-Stabilization strategy patterns provide
containment and mitigation using different approaches. The Recovery strategy pattern relies on system
state snapshots and may experience a loss of progress, but has low design complexity. The Compensation
strategy pattern relies on redundancy of system state and optionally on system resources and experiences
no loss of progress, but has high design complexity. The Self-Stabilization strategy pattern relies on
the capability of reaching a correct system state from an illegal system state after a finite number of
execution steps and guarantees forward progress, but has high design complexity.
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Known Uses:

• HPC storage systems use forward error correction redundancy in the form of RAID.
• InfiniBand, which is among the most widely deployed high-speed interconnect employs forward error

correction redundancy in the InfiniBand devices, including adapters and switches, to fix bit errors
throughout the network [9]. The forward error correction allows reduction in data re-transmission
between the end-nodes.
• HPC systems use memory DIMMs that employ ECC, which is based on forward error correction

redundancy by maintaining redundant bits per memory line to support SECDED for bit flips [131].
• Chipkill [59] uses forward error correction redundancy across memory chips atop ECC to perform

SECDED at a symbol-level granularity.
• Some ABFT methods use schemes, such as checksums, that perform forward error correction

redundancy at the application-level [95].
• Coded computing uses algorithmic forward error correction redundancy. A recent solution used coded

computing for parallel matrix-matrix multiplication [106].
• Production HPC systems such as the Cray XC40 series [103] include active/standby redundant power

supplies and voltage regulator modules to ensure continuous operation in the event that one of these
units experiences malfunction or failure.
• Active/standby (cold, warm and hot) redundancy using shared storage between active and standby

systems is a common technique. The shared storage may be a dual-hosted hard drive, a networked
storage using RAID, or a distributed replicated block device (DRBD) [154]. Such solutions have been
extensively used in HPC environments for critical system services, such as the job and resource manager
(e.g., SLURM [192] and Sun Grid Engine (SGE) [175]) and the parallel file system MDS (e.g., Parallel
Virtual File System (PVFS) [146] and Lustre [194]).
• Active/hot-standby redundancy using a commit protocol for state replication has been implemented for

some HPC job and resource managers as part of high availability cluster solutions, such as
HA-OSCAR [119] with its commit protocol for OpenPBS [16].
• High availability clustering is a form of active/hot-standby redundancy with n active systems and m

standby systems that are set up in an n +m configuration. It targets high throughput processing of a large
number of small service requests with no or minimal state changes, where the active systems respond to
service requests. High availability clustering may use shared storage, state replication or state separation.
In contrast to shared storage and state replication, where systems have the same state, state separation
splits the state space among active systems, such as two parallel file system MDSs serving two different
file system directories. An implementation of HA-OSCAR supported high availability clustering for two
job and resource managers, OpenPBS [16] and SGE [175]). Parallel file system MDSs, such as
Lustre [194], support high availability clustering as well.
• Active/standby redundancy also plays a role in resilience for parallel applications in HPC environments.

Starting a parallel application with additional spare compute nodes enables its reconfiguration and the
replacement of a failed compute node without completely restarting the application [21].
• Production HPC systems such as the Cray XC40 series [103] include n-modular redundant cooling fans

to ensure continuous operation in the event that one of these units experiences malfunction or failure.
• Some implementations of the MPI standard use n-modular redundancy for detection and correction of

errors by replicating the MPI messages, or even by replicating MPI processes. The MR-MPI [70],
rMPI [76], and RedMPI [78] prototypes are known examples for this n-modular redundancy approach.
N-modular redundancy for compute nodes in a system have been evaluated and shown to improve the
overall availability of a HPC system [71].
• Some n-modular redundancy implementations for service nodes in HPC systems exist as well, such as

for the MDS of PVFS [92] and for HPC job and resource managers that are compliant with the Portable
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Batch System (PBS) [178].
• N-modular redundancy at the whole system level is often implemented for mission critical HPC systems,

such as for weather forecast. In this case, two completely redundant HPC systems perform exactly the
same computation.
• HPC centers often provide various MPI library implementations, such as the MVAPICH2 [3],

OpenMPI [5], MPICH2 [2], and Intel MPI [1], all of which are based on the MPI standard. Running
large-scale applications with these separate implementations of MPI potentially exposes implementation
errors in the MPI libraries. Similarly, different versions of numerical libraries are often provided as well.
Regression and comparison tests are performed to identify incorrect behavior, missing features and
performance problems.
• The DIVA processor architecture [23] includes an out-of-order core as well as a simple in-order

pipelined core. The in-order pipeline is functionally equivalent to the primary processor core (it
implements the same instruction set architecture) and is used to detect errors in the design of the
out-of-order processor core.
• Containment Domains [48] provide a recover routine with design diversity that is initiated upon

detection of an error in the execution of the block of code encapsulated by the domain. This enables the
containment domain to constrain the detection and correction of errors to the boundary of the domain.
• The SWIFT library [97] provides language-based implementation of a recovery block with design

diversity for use in C language programs.
• Applications often contain verification routines that check for the validity of a computation.

Application-specific knowledge is used in a recovery block to correct any detected errors.
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7.2.4 Self-Stabilization

Name: Self-Stabilization

Problem: A hardware or software error or subsystem failure in an HPC environment causes a software,
such as a numerical library or application, to experience an error and potentially a subsequent failure.

Context: The pattern applies to a system with the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.

Forces:

• System performance in the presence of errors and failures is determined by the efficiency in reaching a
correct system state from an illegal system state, which may differ for different illegal system states.
• There is no inherent impact on system performance in error/failure-free conditions. However, the needed

capability to reach a correct state from an illegal state may reduce error/failure-free performance.
• A correct state may not be reached from all illegal system states, which limits the scope of this pattern.

Solution: The Self-Stabilization strategy pattern relies on the capability of reaching a correct system
state from an illegal system state after a finite number of execution steps. This can be achieved in multiple
ways, such as by self-masking or self-correction. The illegal system state is identified by the pattern either
implicitly and the incorrect state is self-masked, or explicitly and the incorrect state is self-corrected. In
both cases, forward progress is guaranteed by design as a correct system state can be reached in a finite
number of steps due to self-masking or self-correction to a correct state.

Self-masking may be as simple as an approximation of a correct state. Self-correction may be as simple as
discarding, recomputing, or estimating a wrong value in the system or a wrong or missing output from a
subsystem. The correct state reached after self-masking or self-correction is not necessarily the same state
that would have been reached without an error or failure. The scope of this pattern extends to the system
state space that is either correct or incorrect but self-maskable or self-correctable to a correct state. The
components of the pattern are illustrated in Figure 10.
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Figure 10. Self-Stabilization pattern components

Capability: This pattern supports the handling of errors and failures with detection, containment, and
mitigation using self-stabilization, i.e., dynamic adaptation. Detection is either implicit by providing the
capability to self-mask illegal system state or explicit by offering the ability to self-correct an illegal system
state. Both, self-masking and self-correction are architectural features of the self-stabilization capability.
The flowchart and state diagram of the pattern is shown in Figure 11 and its parameters in Table 5.

Protection Domain: The protection domain of this pattern extends to the system state space that is either
correct or illegal but self-stabilizing to a correct state.
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Figure 11. Self-Stabilization pattern flowchart and state diagram

Table 5. Self-Stabilization pattern parameters

Parameter Definition
Te Time to execute system progress
Td Time to detect illegal system state
Ts Time to self-stabilize illegal system state

Resulting Context: An error or failure is tolerated through adaptation. The Self-Stabilization
strategy pattern requires the capability of reaching a correct system state from an illegal system state,
which may reduce error/failure-free performance. The efficiency of self-stabilization determines
performance in the presence of errors and failures. A high performing solution reduces the impact on
error/failure-free performance, while at the same time providing efficient self-stabilization.

A trade-off exists between both, performance in the presence of errors and failures and error/failure-free
performance, especially in systems with high error/failure rates. Self-stabilization may be performed by
self-masking, a passive approach, or self-correction, an active approach. In both cases, implicit or explicit
detection may reduce error/failure-free performance. The pattern’s protection domain does not cover illegal
system state that is not self-stabilizing.

The Compensation strategy pattern may be applied to extend the pattern’s protection domain with
redundant or diverse system state for self-correction. The Self-Stabilization strategy pattern may be
used in conjunction with other strategy patterns that provide containment and mitigation in a
complementary fashion, where some error/failure types are covered by the other strategy pattern(s) and the
Self-Stabilization strategy pattern covers for the remaining error/failure types.

Examples:

• Gossip-based algorithms tolerate errors and failures using the Self-Stabilization strategy pattern.
Data is communicated to multiple parts of the system participating in the Gossip-based algorithm and
errors or failures are self-masked. The efficiency and performance of self-masking in the presence of
errors and failures and the error/failure-free performance depend on the communication pattern (e.g.,
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reach and frequency).
• Iterative solvers or solvers using sampling tolerate errors and failures using the Self-Stabilization

strategy pattern using either an iterative process that progresses toward a correct solution in the presence
of errors or a probabilistic sampling process that generates enough correct samples over incorrect
samples to calculate a correct solution. The efficiency and performance of self-masking in the presence
of errors and failures and the error/failure-free performance depend on the algorithmic capabilities of the
iterative process (e.g., step size) or the probabilistic sampling process (e.g., oversampling).
• Self-stabilizing solvers may produce an illegal state in the presence of errors or failures and tolerate their

impact using the Self-Stabilization strategy pattern to reach a correct state. The efficiency and
performance of self-correction in the presence of errors and failures and the error/failure-free
performance depend on the methods used for explicit error/failure detection (e.g., error check after every
iteration) and for reaching the correct state (e.g., successive approximation toward a correct state).
• In proactive fault tolerance, an OODA loop control is employed that utilizes monitoring tools for

collecting sensor data (e.g., temperature, fan speeds, voltages, computational load, memory and storage
usage, etc.). It leverages the warning thresholds of these sensors as early fault indicators to migrate
computation away from compute nodes that are about to fail [72]. The mitigation may use
process-level [187] or VM level [134] migration.

Rationale: The Self-Stabilization strategy pattern enables a system to tolerate errors or subsystem
errors or failures through adaptation. It relies on the capability of reaching a correct system system state
from an illegal system state in a finite number of execution steps. The transition from an illegal to a correct
system state uses self-masking or self-correction. Self-masking uses implicit error/failure detection and
passively performs this transition. Self-correction uses explicit detection and performs the transition
actively by correcting the illegal state. Self-masking or self-correction are intrinsic to the design of the
system when this pattern is applied. The pattern has high design complexity and has low dependence on a
system’s architecture.

Related Patterns: The Recovery, Compensation, and Self-Stabilization strategy patterns provide
containment and mitigation using different approaches. The Recovery strategy pattern relies on system
state snapshots and may experience a loss of progress, but has low design complexity. The Compensation
strategy pattern relies on redundancy of system state and optionally on system resources and experiences
no loss of progress, but has high design complexity. The Self-Stabilization strategy pattern relies on
the capability of reaching a correct system state from an illegal system state after a finite number of
execution steps and guarantees forward progress, but has high design complexity.

Like the Compensation and Recovery strategy patterns, the Self-Stabilization strategy pattern
seeks to mask or correct system state when using self-correction. However, it does not rely on state saving
or redundancy for masking or correction. The Compensation strategy pattern may be applied to extend the
Self-Stabilization strategy pattern’s protection domain.

Known Uses:

• Gossip-based algorithms tolerate errors and failures using the Self-Stabilization pattern. This
includes gossip-based aggregation and reduction algorithms [43, 140, 83], orthogonalization
methods [84, 83], eigensolvers [174], and least squares solvers [151].
• Fixed point methods that converge globally when certain conditions are satisfied are able to tolerate

certain errors using the Self-Stabilization pattern [20, 19], such as a Jacobi iterative scheme that
will converge for any initial guess if the matrix is diagonally dominant.
• Certain domain decomposition methods are tolerant to errors using the Self-Stabilization pattern

as they converge in the presence of errors, such as the classical overlapping Schwarz algorithm [86],
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asynchronous domain decomposition methods [85] and task-based domain decomposition approaches
that use sampling and a regression-based solution update [157, 156, 132].
• A self-stabilizing label-propagation algorithm that computes the connected components in a graph while

being tolerant to errors [161].
• Two self-stabilizing iterative linear solvers [161], one for the steepest descent and one for conjugate

gradient, are tolerant to errors.
• Leveraging warning thresholds of sensors as early fault indicators to migrate computation away from

compute nodes that are about to fail [72].
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7.3 ARCHITECTURAL PATTERNS

7.3.1 Fault Diagnosis

Name: Fault Diagnosis

Problem: An incomplete understanding of the presence, root cause and impact of a defect or anomaly in
the system causes lack of corrective action at design or run time and may eventually result in an error or
failure.

Context: The pattern is a derivative pattern of the Fault Treatment strategy pattern and applies to a
system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring system to discover the presence of a
defect or anomaly in the behavior of the monitored system.
• The interaction between the monitored and monitoring systems is bounded in terms of time.
• The monitoring system has the capability to analyze the behavior of the monitored system.

Forces:

• The interactions between the monitoring and monitored systems may interfere with the operation of the
monitored system, specifically its performance.
• While the frequency and duration of these interactions must be minimized to reduce the monitoring

overhead, the interactions must be able to detect/infer a defect or anomaly in the monitored system.
• The monitoring system’s data gathering and defect/anomaly detection/inference must be in time to

prevent the activation of an error and a subsequent failure.
• The diagnostic resolution, i.e., the degree of accuracy of the fault diagnosis, must be high to be effective.

Solution: The Fault Diagnosis architectural pattern enables the discovery and treatment of a defect or
anomaly in the system, which either has the potential to activate or already has activated to an error and
potentially a subsequent failure. The pattern supports methods that attempt to recognize the presence of a
defect or anomaly within a monitored system. It prevents its activation or enables its containment and
mitigation by notifying the monitored system about a fault with location and type information, such that
the anomaly or defect is removed before or after it results in an error or a failure. The solution requires a
monitoring system, which may be a subsystem of the monitored system or an external independent system,
to observe key parameters of the monitored system and to notify the monitored system when these
parameters deviate.

The Fault Diagnosis architectural pattern makes an assessment on what may potentially or actually be
wrong with a system. The diagnosis entails making inferences based on the observed behavior of a system
and narrowing the search for the root cause of the fault. The assessment is based on the operating behavior
of the monitored system. The components of this pattern are shown in Figure 12.

Protection Domain
Monitoring

(Sub-) System

Monitored
(Sub-) System

Monitoring
Parameters

Inference
Diagnosis
Notification

Figure 12. Fault Diagnosis pattern components
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Capability: This pattern provides fault detection in the monitored system at design or run time, before it
eventually results in an error or failure or after activation, by identifying deviations in monitored
parameters. This pattern enables containment and mitigation of a future, imminent or present error or
failure in the monitored system through detection and by notifying the monitored system about a fault with
location and type information. The flowchart and state diagram of the pattern is shown in Figure 13 and its
parameters in Table 6.
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Figure 13. Fault Diagnosis pattern flowchart and state diagram

Table 6. Fault Diagnosis pattern parameters

Parameter Definition
Tm Time to monitor (sub-) system parameters, including wait and probe times
Td Time to determine the domain
Tn Time to raise notification with type and location

Protection Domain: The protection domain extends to the monitored system.

Resulting Context: The discovery and treatment of a defect or anomaly in the system that has the potential
to activate or has activated is enabled, which can be used to prevent, contain and mitigate an error or a
failure in the system. The Fault Diagnosis architectural pattern requires identifying system parameters
that indicate the presence of a fault. The overall system design must include a monitoring system, which
introduces design complexity. When the monitoring system is extrinsic to the monitored system, the design
effort may be simplified, but the interfaces between the monitoring and monitored systems must be
well-defined. When the monitoring system is intrinsic to the design of the monitored system, design
complexity increases due to the need to interface the monitoring and monitored subsystems.

A trade-off exists between interference with the operation of the monitored system caused by the frequency
and duration of the interactions between the monitoring and monitored systems, and the ability to
detect/infer a defect or anomaly in the monitored system. A high performing solution reduces the
interference, while maintaining a reasonable ability to detect/infer a defect or anomaly.

The Fault Diagnosis architectural pattern may be used in conjunction with other architectural patterns
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that provide containment and mitigation and require or can make use of fault detection. It detects the
presence of a defect or anomaly and reports it, but does act to remedy the fault.

Examples:

• Hardware sensors in the CPUs, on the board, and in the power supply provide real-time operational data
about temperature, fan speeds, and voltages. Software sensors in the Linux OS offer real-time
operational data about CPU and memory load. The data is made available by sensor interface tools, such
as IPMI [10], such that a monitoring tool, like the Ganglia Monitoring System [123], can aggregate it
with time stamps in a central database. The monitoring tool can be configured to send a notification
when a certain threshold value for a sensor is exceeded.
• A heartbeat monitoring tool checks the liveness of an MPI process in the system by regularly sending a

message and waiting for a reply [147]. If no message is received back within a certain time period, the
MPI process is considered failed and the MPI programming model runtime software is informed. This
heartbeat monitoring is performed between all MPI processes, where all MPI processes watch each
other. A message sent by the application can be used as a liveness request or reply message.
• An MPI tracing tool, like Vampir [8], is used to capture detailed time-stamped information about an

application’s MPI messages at execution time. The created MPI message trace contains time-stamped
information about when an MPI function was called and when it was completed, such that it can be
analyzed for inefficiencies in the MPI application’s messaging behavior. A common root cause for MPI
application scaling limitations is the inefficient use of MPI collectives. The MPI application developer is
informed by the tool about such situations.
• In proactive fault tolerance, an OODA loop control is employed that utilizes monitoring tools for

collecting sensor data (e.g., temperature, fan speeds, voltages, computational load, memory and storage
usage, etc.). It leverages the warning thresholds of these sensors as early fault indicators to migrate
computation away from compute nodes that are about to fail [72]. The mitigation may use
process-level [187] or VM level [134] migration.
• Monitoring tools collecting event data (e.g., anomalous, error and failure events, debug messages, etc.)

are used in conjunction with tools for temporal and spatial filtering to identify event correlations and to
predict failures [116].
• Probabilistic networks are utilized for establishing correlations between event collected with monitoring

tools to predict failures [159].

Rationale: The Fault Diagnosis architectural pattern enables a system to discover and treat a defect or
anomaly in the system that has the potential to activate and become an error or failure or already has
activated. It relies on a monitoring system to observe the monitored system, identifying deviations in
monitored parameters. A discovered defect or anomaly is treated by raising a notification about a fault with
location and type information, permitting the monitored system to provide containment and mitigation. A
key benefit of this pattern is preemptive discovery of faults in the system, before they are activated and
result in errors or failures. Preventive actions taken upon such discovery avoid the need for expensive
error/failure recovery, compensation, or correction actions.

Related Patterns: In contrast to the Fault Diagnosis architectural pattern, the Reconfiguration
architectural pattern additionally offers containment and mitigation.

Known Uses: HPC system installations use monitoring tools for collecting operational data, such as sensor
data (e.g., heat, fan speeds, voltages, computational load, memory and storage usage, etc.), performance
data (e.g., application execution, message and file system access times, etc.) and event data (e.g.,
anomalous, error and failure events, debug messages, etc.). Popular solutions include:

• Hard- and software sensors in CPUs, on the board, in the power supply, in the OS, and in system services
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that provide real-time operational data to sensor interface tools. Examples are the hardware sensors in
the IBM Power 8 [94] and Intel Xeon [54] processors, and the Linux OS monitoring capabilities.
• Sensor interface tools that gather real-time operational data from hard- and software sensors, such that

they are available for monitoring tools. Examples are SMART [173] and IPMI [10].
• Monitoring tools that gather time-stamped information from sensor interface tools in a distributed

computing system at a central location, such that they can be analyzed. Examples are the Supermon
High-Speed Cluster Monitoring System [171], the Ganglia Monitoring System [123], Nagios [4], and
the OVIS Lightweight Distributed Monitoring System [14].
• Heartbeat monitoring tools for liveness checking of individual nodes in the system [147] or MPI

processes [26].
• System event loggers that gather time-stamped information from the OS or system services in a

distributed computing system, such that they can be analyzed. The most prominent example is Linux’s
syslog [6].
• MPI tracing tools gather detailed time-stamped information about an application’s MPI messages, such

as when a particular message was sent and when it was received. Examples are Vampir [8] and
SCALASCA [7].
• Comprehensive RAS management tools by vendors that support real-time monitoring of an entire HPC

system, such as the CRMS [28].

The collected operational data may be analyzed by advanced tools for predicting future behavior based on
experiences with past behavior and/or based on current behavior, such as for predicting faults, errors and
failures. Known uses include:

• Utilizing a wide-variety of methods to analyze monitoring and log data to predict failures [105]
• Using machine learning to predict GPGPU memory errors [139]
• Leveraging warning thresholds of sensors as early fault indicators to migrate computation away from

compute nodes that are about to fail [72]
• Characterizing the correlation between temperature, power consumption and memory or logic errors

using monitoring and log data [138]
• Using probabilistic networks for establishing event correlations for prediction algorithms [159]
• Employing temporal and spatial filtering for failure prediction [116]

51



7.3.2 Reconfiguration

Name: Reconfiguration

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., resource underprovisioning) in an HPC environment causes a software,
such as an application, to experience an error or failure.

Context: The pattern is a derivative of the Fault Treatment and Recovery strategy patterns and applies
to a system that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has well-defined parameters that enable a monitoring system to discover the presence of an

existing or future fault, error, or failure in the behavior of the monitored system.
• The interaction between the monitored and monitoring systems is bounded in terms of time.
• The monitoring system has the capability to readily analyze the behavior of the monitored system to

detect or predict a fault, error, or failure.
• The system is able to be reconfigured, where altering the configuration enables the system to remain

operational.

Forces:

• The interactions between the monitoring and monitored systems may interfere with the operation of the
monitored system, specifically its performance.
• While the frequency and duration of these interactions must be minimized to reduce the monitoring

overhead, the interactions must be able to detect or predict a fault, error, or failure in the monitored
system.
• The diagnostic resolution, i.e., the degree of accuracy of the fault diagnosis, must be high to be effective.
• The ability of the system to change its configuration must permit system operation that is functionally

equivalent to the fault, error, or failure-free operation of the system.
• The reconfiguration may force the system to operate at a lower level of performance.

Solution: The Reconfiguration architectural pattern alleviates the impact of a fault, error, or failure on
system operation by changing the system’s configuration. It has a detection component that is derived from
the Fault Treatment strategy pattern and an additional containment and mitigation component that is
derived from the Recovery strategy pattern and acts upon the notification from the detection component.

The detection component enables the discovery of an existing or future fault, error, or failure in the system.
It enables its containment and mitigation by notifying the system about it with location and type
information. The solution requires a monitoring system, which may be a subsystem of the monitored
system or an external independent system, to observe key parameters of the monitored system and to notify
the monitored system when these parameters deviate. This pattern does not specify the detailed method of
detection or prediction, which may be similar to the Fault Diagnosis architectural pattern.

The containment and mitigation component acts upon the notification from the detection component by (1)
modifying the interconnection between N subsystems in the overall system, (2) restoring the affected
subsystem or system to a known correct state (similar to the Checkpoint Recovery architectural pattern),
or (3) restoring the affected subsystem or system to its initial state. When modifying the interconnection
between N subsystems in the overall system, the affected subsystem is permanently isolated (excluded) and
the system retains functional equivalency. When restoring the affected subsystem or system to a known
correct state, previously preserved system state is restored and operation is resumed from a known correct
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state. When restoring the affected subsystem or system to its initial state, the subsystem or system is reset.
The components of this pattern are illustrated in Figure 14.

Protection Domain
Monitoring

(Sub-) System Monitored System

Monitoring
Parameters

Inference
Diagnosis
Notification

Sub-System Sub-System

Sub-System Sub-System

Protection Domain
Monitoring

(Sub-) System Monitored System

Monitoring
Parameters

Inference
Diagnosis
Notification

Sub-System Sub-System

Sub-System Sub-System

Recon-
figure

Figure 14. Reconfiguration pattern components

Capability: A system using this pattern is able to continue to operate in the presence of a non-permanent
fault, error, or failure with some to significant interruption and some to no loss of progress. This pattern
provides detection/prediction, containment, and mitigation of a future or existing fault, error, or failure in
the system by changing the system’s configuration. The flowchart and state diagram of the pattern is shown
in Figure 15 and its parameters in Table 7.
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Figure 15. Reconfiguration pattern flowchart and state diagram

Table 7. Reconfiguration pattern parameters

Parameter Definition
Te Time to execute system progress
Td Time to detect or predict a fault, error or failure
Ti Time to isolate the affected subsystem(s)
Tr Time to reconfigure the system (may include or exclude the affected/isolated subsystem(s))

Protection Domain: The protection domain extends to the monitored system’s state that is not lost due to a
subsystem or system reconfiguration and to all of its resources that are able to be operate correctly after a
reconfiguration.

Resulting Context: A fault, error, or failure is prevented from affecting the correct operation of the system.
While functional equivalency to the original system configuration is maintained through reconfiguration,
progress in the system may be lost. Reconfiguration may force the system to operate at a lower level of
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performance. The system is interrupted during reconfiguration in response to a detected or predicted fault,
error, or failure. It is interrupted during fault-, error- and failure-free operation when preserving system
state. After reconfiguration, the system’s ability to prevent a fault, error, or failure from affecting the
correct operation of the system remains the same if it retains the ability to reconfigure to a functionally
equivalent configuration.

The Reconfiguration architectural pattern may be used in conjunction with other architectural patterns
that provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other architectural pattern(s) and the Reconfiguration architectural pattern covers for the
remaining error/failure types.

Examples: Unhealthy, erroneous, or failed system resources, such as compute nodes or NVIDIA GPGPU
memory pages [141], are removed from the system’s pool of resources. A programming model, such as the
proposed ULFM extension to the MPI standard [31], permits an application to reconfigure the
programming environment to handle resource failures. The targeted rejuvenation of data structures in
system software, such as OS data structures, permits avoidance of and recovery from errors or failures
without the need to reinitialize the affected compute node or the complete HPC system. The individual
rejuvenation of HPC system services, such as the parallel file system MDS or the system’s resource
manager, allows dealing with errors or failures without the need to reinitialize the entire HPC system. A
malfunctioning compute node may be rebooted.

Rationale: The Reconfiguration architectural pattern prevents an existing or future fault, error, or
failure from affecting the correct operation of the system through changing the system’s configuration. It
relies on the ability to assume a configuration in response to a detected or predicted fault, error, or failure
that retains functional equivalency with the original system configuration. The pattern may perform
proactive actions, such as reconfiguring the system or subsystem before a fault, error, or failure impacts its
operation, or reactive actions, such as reconfiguring the system or subsystem upon such an event.

Progress in the system may be lost. Reconfiguration may force the system to operate at a lower level of
performance. Fault, error, or failure detection/prediction is part of the pattern and similar to the Fault
Diagnosis architectural pattern. The containment and mitigation offered by this pattern can be similar to
the Checkpoint Recovery architectural pattern and is independent from the type of fault, error, or failure.
The pattern has very little to some design complexity and has low dependence on a system’s architecture.

Related Patterns: In contrast to the Fault Diagnosis architectural pattern, the Reconfiguration
architectural pattern additionally offers containment and mitigation. The Reconfiguration architectural
pattern provides containment and mitigation capabilities that are, in part, similar to the Checkpoint
Recovery architectural pattern, such as restoring the affected subsystem or system to a known correct state
using previously preserved system state. In contrast to the Checkpoint Recovery architectural pattern,
the Reconfiguration architectural pattern additionally offers detection and its containment and
mitigation capabilities include changing the system’s configuration.

Known Uses:

• HPC systems often automatically take unhealthy, erroneous, or failed compute nodes out of the system’s
resource manager’s pool of available computing resources to avoid scheduling jobs on them and to
permit maintenance (e.g., the the NodeKARE module in Cray Linux Environment (CLE) [102]).
• The recurrence of memory errors in a specific cell or region of the chip often indicates degradation of the

memory module or region. NVIDIA GPGPU drivers support dynamic page retirement, which removes a
memory page from the pool of available physical memory resources [141].
• The proposed ULFM extension to the MPI standard [31] allows parallel applications to get notifications
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of process failures and to restructure the MPI environment. ULFM permits revoking an MPI
communicator to prevent any further usage. It also allows shrinking an MPI communicator to exclude
failed MPI processes from future communication.
• The Charm++ adaptive runtime system interacts with the resource manager to dynamically reconfigure

the number of nodes assigned to a job based on the resilience, power, and performance characteristics of
the system [11].
• The Mini-Ckpts framework [79] enables HPC applications to survive OS errors and failures. The OS is

effectively rebooted, while the application and OS state directly relevant to the application is preserved
in persistent memory. This rejuvenates all OS state that is not directly relevant to the application.
• Individual services, such as the parallel file system MDS or the system’s resource manager, may be

rebooted to fix erroneous behavior or failures. The correct service state is maintained on persistent
storage to allow for resumption after reboot.
• OS structures may be regularly verified for correctness and rejuvenated if the correctness test fails.

Inherent redundancy, such as with doubly linked lists, or other methods, such as using the known size of
OS structures, are used to rejuvenate state, such as pointers.
• Various cluster management software systems, such as the Cray HSS [102], enable malfunctioning

nodes in the cluster to be reset. The HSS initiates a reboot sequence for a failing node without disrupting
the remaining nodes in the system.
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7.3.3 Checkpoint Recovery

Name: Checkpoint Recovery

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., resource underprovisioning) in an HPC environment causes a software,
such as an application, to experience an error due to loss of or corrupted state, and potentially a subsequent
failure.

Context: The pattern is a derivative of the Recovery strategy pattern. It applies to a system that has the
following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The error or failure in the system that the pattern handles must be detected, as the pattern offers no error

or failure detection.
• The system is capable of compartmentalizing its state that is accurately representative of the progress of

the system since initialization at the time such state is captured.
• The system operation has well-defined intervals that enable the pattern to transition the system to a

known correct interval in response to an error or failure.

Forces:

• The pattern requires additional storage to capture system state or to log messages or events, which
increases overhead in terms of resources required by the system.
• The amount of state captured during each creation of a recovery point incurs storage space and execution

time overheads.
• The creation frequency of system state snapshots determines overhead. More frequent snapshot creation

increases system execution time, but reduces the amount of lost work upon an error or failure.
• The time interval for the recovery of a system from a snapshot as well as the time interval to create a

snapshot must be less than the system’s MTBF to guarantee forward progress.

Solution: The Checkpoint Recovery architectural pattern enables the resumption of correct operation
of a system impacted by an error or failure. It supports resilient operation by restoring the system to a
known correct state in the event of an error or failure. Checkpoint-recovery solutions are classified into
checkpoint-based and log-based strategies.

The checkpoint-based strategy relies on the creation of system state snapshots and the maintenance of such
checkpoints on a persistent storage system that is not affected by the error or failure. Upon detection of an
error or failure, the most recent snapshot is used to recreate the last known error/failure-free state of the
system. The log-based strategy relies on logging, i.e., storing the information of, events, such as messages
sent between different parts of the system or to the system as input, on a persistent storage system that is
not affected by the error or failure. Upon detection of an error or failure, the log is replayed to recreate the
last known error/failure-free state of the system. In contrast to the checkpoint-based strategy, the log-based
strategy is able to offer resilience in the presence of non-deterministic events and for non-deterministic
systems, as replaying the event log deterministically recreates system state.

The checkpoint and log-based strategies may be used together, where events are logged in-between
snapshots. With both strategies, the operation of the system is resumed when the system state is recovered.
Based on a temporal view of the system’s progress, the error/failure recovery may be either backward to
the time when the snapshot occurred (rollback) or forward to the time when the error/failure event occurred
(rollforward).
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Undetected (latent) errors that are either detected later or result in a different detected error or failure later
represent a problem, as the most recent or even more snapshots may contain an illegal system state. In this
case, the most recent correct snapshot may be used to recreate the last known error/failure-free state of the
system, skipping snapshots containing illegal state and going further back in time in terms of when the
snapshot was made. The components of this pattern are illustrated in Figure 16.
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Figure 16. Checkpoint Recovery pattern components

Capability: This pattern provides mitigation of an error or failure in the system by preserving system state
on a persistent storage system before an error or failure, using a checkpoint-based and or log-based
strategy, and restoring the previously preserved system state upon such an event to resume operation from a
known correct state. The flowchart and state diagram of the pattern is shown in Figure 17 and its
parameters in Table 8.
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Figure 17. Checkpoint Recovery pattern flowchart and state diagram

Protection Domain: The protection domain extends to the system state that can be recreated using the
system state captured by snapshots stored on persistent storage.
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Table 8. Checkpoint Recovery pattern parameters

Parameter Definition
Te Time to execute (sub-) system progress
Td Time to detect an error/failure (not part of this pattern, but shown for completeness)
Tl Time to load (sub-) system state and progress from storage
Tr Time to recreate (sub-) system state (initial and/or previously saved)
Ts Time to save (sub-) system state and progress to storage

Resulting Context: Correct operation is resumed after an error or failure impacted the system. Progress in
the system is lost after an error or failure if the recovery is only able to recreate the system state to the time
when the snapshot occurred. Progress is not lost if the recovery is able to recreate the system state to the
time when the error/failure event occurred. The system is interrupted during error-/failure-free operation
for creating system state snapshots and maintaining them on a persistent storage system. The system is
interrupted upon an error or failure for recreating the last known error/failure-free state of the system.

A trade-off exists between the creation frequency of system state snapshots and/or event logging and the
corresponding execution time overhead during error-/failure-free operation vs. the amount of lost progress
in case of a rollback or the amount of work required to recreate the state in the case of a rollforward. The
optimal solution of this trade-off depends on the MTBF, the time it takes to save and load a system state
snapshot, the time it takes to log events, and the time it takes to recreate the system state.

The Checkpoint Recovery architectural pattern does not provide error or failure detection and may be
used in conjunction with the Fault Diagnosis architectural pattern to be fully functional. The
Checkpoint Recovery architectural pattern may be used in conjunction with other architectural patterns
that provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other architectural pattern(s) and the Checkpoint Recovery architectural pattern covers
for the remaining error/failure types.

Examples: Many HPC applications implement application-level checkpoint recovery by regularly saving
intermediate results to stable storage as checkpoints and supporting the capability to load such a checkpoint
in addition to some or all of the original data upon restart to recreate the last known correct state.
Library-based solutions, such as FTI [27], permit tracking of state that needs to be saved and restored.
System-level solutions, such asDMTCP [18], support transparent state saving and restoration using OS
support. GVR [47] is a runtime system that provides fault tolerance to applications by versioning
distributed arrays for checkpoint recovery, while the checkpoint-on-failure protocol [18] for MPI
applications leverages the features of a high-quality fault-tolerant MPI implementation. In either case,
algorithm-specific knowledge is needed to perform checkpoint recovery, Some ABFT solutions [122] can
utilize the original or previously saved data as a replacement for lost or erroneous data and recover their
state to the point at which the error/failure event occurred.

Rationale: The Checkpoint Recovery architectural pattern enables a system to tolerate an error or
failure through resumption of correct operation after impact. It relies on the capability to preserve system
state before an error or failure, often in a periodic fashion, and restore the previously preserved system state
upon such an event to resume operation from a known correct state. The pattern performs proactive actions,
such as preserving system state, but mostly relies on reactive actions after an error or failure impacted the
system.

Error or failure detection is not part of the pattern. The preserved system state is managed on persistent
storage, which is not part of the protection domain. The containment and mitigation offered by this pattern
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are independent from the type of error or failure. The pattern has very little design complexity and has low
dependence on a system’s architecture, which makes it appealing as a general and portable solution.

Related Patterns: The Reconfiguration architectural pattern provides containment and mitigation
capabilities that are, in part, similar to the Checkpoint Recovery architectural pattern, such as restoring
the affected subsystem or system to a known correct state using previously preserved system state. In
contrast to the Checkpoint Recovery architectural pattern, the Reconfiguration architectural pattern
additionally offers detection and its containment and mitigation capabilities include changing the system’s
configuration.

Known Uses:

• Many HPC applications implement application-level checkpoint recovery by regularly saving
intermediate results to stable storage as checkpoints and supporting the capability to load such a
checkpoint in addition to some or all of the original data upon restart to recreate the last known correct
state.
• FTI [27] is a library-based checkpoint recovery solution, tracking, saving and restoring data structures in

multilevel checkpoint storage.
• The CoCheck supports checkpoint recovery for an MPI implementation; for the coordination of the

checkpoints, CoCheck uses a special process [172]. The Condor checkpoint/restart facility is enabled by
the user by linking the program source code with the condor library [121].
• The libckpt [148] is a user-level, library-based checkpointing solution that supports explicit directives to

determine the scope of an application’s checkpointed state.
• The SCR [130] library uses multilevel checkpointing; it creates frequent inexpensive checkpoints that

can recover the loss of a few nodes to the local node-level storage and writes complete checkpoints that
can withstand an entire system failure to the parallel file system.
• BLCR is a process-level checkpoint recovery module for the Linus OS. It has been used in conjunction

with LAM/MPI to permit OS-level checkpoint recovery for MPI applications [184].
• Improvements to system-level checkpoint recovery solutions, such as BLCR, include incremental

checkpoint recovery, where only changes between two checkpoints are being saved and the recovery
performs a reconstruction of correct state from multiple incremental checkpoints [185].
• DMTCP [18] is a transparent checkpoint recovery solution for multi-threaded and MPI applications.
• The local failure local recovery protocol uses checkpoint recovery of only some processes with locally

stored checkpoints to create correct state [177].
• Message logging protocols have been implemented in OpenMPI to support faster failure recovery with

message replay [35].
• GVR [47] is a runtime system that provides fault tolerance to applications by versioning distributed

arrays. It supports checkpoint recovery based on application-specified mechanisms. Past versions of lost
or erroneous data can be retrieved and used for computing the state at which the error/failure event
occurred.
• The checkpoint-on-failure protocol [18] for MPI applications leverages the features of a high-quality

fault-tolerant MPI implementation and algorithm-based checkpoint recovery. It provides the ability for
all healthy processes to continue to operate and perform checkpoint recovery using message passing.
• Some ABFT solutions [122] can utilize the original or previously saved data as a replacement for lost or

erroneous data and recover their state to the point at which the error/failure event occurred.

59



7.3.4 Redundancy

Name: Redundancy

Problem: A hardware error or subsystem failure due to a physical fault (e.g., wear-out or destruction) in an
HPC environment causes a software, such as a system service or an application, to experience an error and
potentially a subsequent failure.

Context: The pattern is a derivative of the Compensation strategy pattern and applies to a system that has
the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has a modular design that has a well-defined scope and a set of inputs and outputs.

Forces:

• The pattern introduces an execution time and/or resource requirement (storage space, computational
capability, etc.) penalty independent of whether an error or failure occurs during system operation or not.
• The scope and strength of the redundancy employed by the pattern determine its execution time and

resource requirement overhead.

Solution: The Redundancy architectural pattern enables the continuous correct operation of a system
impacted by an error or failure. It supports resilient operation by applying redundancy to system state and
optionally to system resources. This redundancy may be in the form of encoded system state or N
functionally identical replicas. The pattern requires very well defined input and output to permit
encoding/decoding of system state, input encoding/replication, and output decoding/comparison.

For redundancy through encoded system state, input is encoded, processed redundantly in an encoded
fashion by the system, and the output is then decoded. The decoding corrects an error or failure. The scope
and strength of the redundancy are defined by the encoding/decoding. For redundancy through N
functionally identical replicas, input is replicated to identical instances of the system, processed by each
replica system, and the output is then compared. The comparison corrects an error or failure of a replica
system. The scope and strength of the redundancy are defined by the number of functionally identical
replicas N.

Redundancy can be in time, meaning the same system resources process the encoded input or execute the
N functionally identical replicas in time. Redundancy can also be in space, meaning additional (redundant)
system resources are used, such that the different system resources process the encoded input or execute the
N functionally identical replicas in space. Redundancy in time saves system resources, while redundancy
in space offers more error/failure coverage. A mix between redundancy in time and space is possible as
well, where there is more encoded system state or there are more functionally identical replicas than
additional (redundant) system resources. The components of this pattern are illustrated in Figure 18.

Capability: This pattern provides error and/or failure detection in the system by applying redundancy to
system state in the form of encoded system state or N functionally identical replicas. The pattern provides
mitigation of an error or failure in the system by applying redundancy to system state and optionally to
system resources, such that the system continues to operate correctly in the presence of such an event. The
flowchart and state diagram of the pattern is shown in Figure 19 and its parameters in Table 9.

Protection Domain: The protection domain extends to the encoded system state and to the system
resources processing it, and to the system state and the system resources that implement the N functionally
identical replica systems.
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Figure 18. Redundancy pattern components

Table 9. Redundancy pattern parameters

Parameter Definition
Ta Time to activate the redundant (sub-) systems
Ti Time to encode/replicate the input to the redundant (sub-) systems
Te Time to execute redundant (sub-) system progress
To Time to decode/compare the output from the redundant (sub-) systems
Tr Time to remove, replace or discount the affected redundant (sub-) systems

Resulting Context: Correct operation is performed despite an error or failure impacting the system.
Progress in the system is not lost due to an error or failure. The system is not interrupted during
error-/failure-free operation. The system may be interrupted when encountering an error or failure.
Resource usage in time or space is increased according to the amount of redundancy employed in the form
of encoded system state or N functionally identical replicas.

A trade-off exists between the amount of redundancy employed and the number of errors and/or failures
that can be tolerated at the same time and/or in time. More redundancy tolerates generally more errors
and/or failures, but requires either more resources or more execution time.

The Redundancy architectural pattern may be used in conjunction with other architectural patterns that
provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other architectural pattern(s) and the Redundancy architectural pattern covers for the
remaining error/failure types.

Examples: There are various schemes that enable forward error correction redundancy in memory devices,
storage systems as well as communication channels. Based on time and space overhead constraints,
schemes of different detection and correction capabilities are used. Popular examples include parity bits,
checksums, Hamming codes, hash function codes. More elaborate schemes such as systematic cyclic block
codes include binary BCH, Reed-Solomon and CRC. Forward error correction can be found in HPC
storage systems with RAID, the InfiniBand interconnect [9], the memory hierarchy [131, 59], ABFT
solutions [95] and coded computing [106]. Active/Standby redundancy is typically used for critical
hardware or software systems in HPC environments. For example, power supplies, voltage regulators, the
parallel file system MDS in Lustre [194] and the SLURM [192] job and resource manager are often
implemented in an active/standby fashion. Dual-modular redundancy for error detection and failure
compensation and triple-modular redundancy for error detection and correction and failure compensation
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Figure 19. Redundancy pattern flowchart and state diagram

are used n HPC environments as well. Examples include dual-redundant cooling fans, dual- and
triple–modular redundant MPI implementations [78], dual-redundant parallel file system MDS
solutions [92] and dual-redundant mission-critical HPC systems (e.g., weather forecast).

Rationale: The Redundancy architectural pattern enables a system to tolerate an error or failure through
continuation of correct operation after impact. It relies on system state redundancy in the form of encoded
system state or functionally identical replicas. The pattern performs mostly proactive actions, such as
maintaining redundancy. Error or failure detection is part of the pattern in the form of output decoding or
comparison. The pattern has low to high design complexity, as input needs to be encoded/replicated,
processed encoded, and output needs to be decoded/compared.

Related Patterns: The Redundancy and Design Diversity architectural patterns are based on inclusion
of redundancy to compensate for errors or failures. The diversity in the Redundancy architectural pattern
stems from the replication of the system’s state, unlike the Design Diversity architectural pattern,
which uses independently implemented versions of the system’s design to tolerate errors or failures.

Known Uses:

• HPC storage systems use forward error correction redundancy in the form of RAID.
• InfiniBand, which is among the most widely deployed high-speed interconnect employs forward error

correction redundancy in the InfiniBand devices, including adapters and switches, to fix bit errors
throughout the network [9]. The forward error correction allows reduction in data re-transmission
between the end-nodes.
• HPC systems use memory DIMMs that employ ECC, which is based on forward error correction

redundancy by maintaining redundant bits per memory line to support SECDED for bit flips [131].
• Chipkill [59] uses forward error correction redundancy across memory chips atop ECC to perform
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SECDED at a symbol-level granularity.
• Some ABFT methods use schemes, such as checksums, that perform forward error correction

redundancy at the application-level [95].
• Coded computing uses algorithmic forward error correction redundancy. A recent solution used coded

computing for parallel matrix-matrix multiplication [106].
• Production HPC systems such as the Cray XC40 series [103] include active/standby redundant power

supplies and voltage regulator modules to ensure continuous operation in the event that one of these
units experiences malfunction or failure.
• Active/standby (cold, warm and hot) redundancy using shared storage between active and standby

systems is a common technique. The shared storage may be a dual-hosted hard drive, a networked
storage using RAID, or a DRBD [154]. Such solutions have been extensively used in HPC environments
for critical system services, such as the job and resource manager (e.g., SLURM [192] and SGE [175])
and the parallel file system MDS (e.g., PVFS [146] and Lustre [194]).
• Active/hot-standby redundancy using a commit protocol for state replication has been implemented for

some HPC job and resource managers as part of high availability cluster solutions, such as
HA-OSCAR [119] with its commit protocol for OpenPBS [16].
• High availability clustering is a form of active/hot-standby redundancy with n active systems and m

standby systems that are set up in an n +m configuration. It targets high throughput processing of a large
number of small service requests with no or minimal state changes, where the active systems respond to
service requests. High availability clustering may use shared storage, state replication or state separation.
In contrast to shared storage and state replication, where systems have the same state, state separation
splits the state space among active systems, such as two parallel file system MDSs serving two different
file system directories. An implementation of HA-OSCAR supported high availability clustering for two
job and resource managers, OpenPBS [16] and SGE [175]). Parallel file system MDSs, such as
Lustre [194], support high availability clustering as well.
• Active/standby redundancy also plays a role in resilience for parallel applications in HPC environments.

Starting a parallel application with additional spare compute nodes enables its reconfiguration and the
replacement of a failed compute node without completely restarting the application [21].
• Production HPC systems such as the Cray XC40 series [103] include n-modular redundant cooling fans

to ensure continuous operation in the event that one of these units experiences malfunction or failure.
• Some implementations of the MPI standard use n-modular redundancy for detection and correction of

errors by replicating the MPI messages, or even by replicating MPI processes. The MR-MPI [70],
rMPI [76], and RedMPI [78] prototypes are known examples for this n-modular redundancy approach.
N-modular redundancy for compute nodes in a system have been evaluated and shown to improve the
overall availability of a HPC system [71].
• Some n-modular redundancy implementations for service nodes in HPC systems exist as well, such as

for the MDS of PVFS [92] and for HPC job and resource managers that are compliant with the
PBS [178].
• N-modular redundancy at the whole system level is often implemented for mission critical HPC systems,

such as for weather forecast. In this case, two completely redundant HPC systems perform exactly the
same computation.
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7.3.5 Design Diversity

Name: : Design Diversity

Problem: A hardware or software error or subsystem failure due to a design fault (e.g., human mistake or
defective design tool) in an HPC environment causes a software, such as a system service or an application,
to experience an error and potentially a subsequent failure.

Context: The pattern is a derivative of the Compensation strategy pattern and applies to a system that has
the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has a well-defined specification for which multiple implementation variants may be created.
• There is an implicit assumption of independence between multiple variants of the implementation.

Forces:

• The pattern introduces an execution time and/or resource requirement (storage space, computational
capability, etc.) penalty independent of whether an error or failure occurs during system operation or not.
• The scope and strength of the diversity employed by the pattern determine its execution time and

resource requirement overhead.
• The pattern requires distinct implementations of the same design specification, which may need to be

created by different individuals.
• The pattern increases design complexity due to the need of additional design and verification effort

required to create multiple implementations.
• The pattern may introduce a performance penalty during error/failure-free operation due to disparity in

the implementation variants.

Solution: The Design Diversity architectural pattern enables the continuous correct operation of a
system impacted by an error or failure. It supports resilient operation by applying redundancy to system
state and optionally to system resources. This redundancy is in the form of N functionally equivalent
alternate system implementations. This pattern designs different implementations of the system that are
functionally equivalent to enable error and failure resilience through design diversity. Different
implementations of the system are less likely to experience the same error or failure.

The pattern requires very well defined input and output to permit input replication and output validation.
Input is replicated to functionally equivalent alternate system implementations, processed by each
implementation of the system, and then compared. The validation corrects an error or failure of a system
implementation. The scope and strength of the redundancy are defined by the number of functionally
equivalent alternate system implementations, N, and by their implementation design diversity.

Redundancy can be in time, meaning the same system resources execute the N functionally equivalent
alternate system implementations in time. Redundancy can also be in space, meaning additional
(redundant/diverse) system resources execute the N functionally equivalent alternate system
implementations in space. Redundancy in time saves system resources, while redundancy in space offers
more error/failure coverage. A mix between redundancy in time and space is possible as well, where there
are more functionally equivalent alternate system implementations than additional (redundant/diverse)
system resources. The components of this pattern are illustrated in Figure 20.
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Capability: This pattern provides error and/or failure detection in the system by applying redundancy to
system state in the form of N functionally equivalent alternate system implementations. The pattern
provides mitigation of an error or failure in the system by applying redundancy to system state and
optionally to system resources, such that the system continues to operate correctly in the presence of such
an event. The flowchart and state diagram of the pattern is shown in Figure 21 and its parameters in
Table 10.

Table 10. Design Diversity pattern parameters

Parameter Definition
Ta Time to activate the alternative (sub-) systems
Ti Time to replicate the input to the alternative (sub-) systems
Te Time to execute redundant/alternative (sub-) system progress
To Time to validate the output from the alternative (sub-) systems
Tr Time to remove, replace or discount the affected alternative (sub-) systems

Protection Domain: The protection domain extends to the system state and the system resources described
by the design specification that implement the functionally equivalent alternate systems.

Resulting Context: Correct operation is performed despite an error or failure impacting the system.
Progress in the system is not lost due to an error or failure. The system is not interrupted during
error-/failure-free operation. The system may be interrupted when encountering an error or failure.
Resource usage in time or space is increased according to the amount of redundancy employed in the form
of N functionally equivalent alternate system implementations.

A trade-off exists between the amount of redundancy employed and the number of errors and/or failures
that can be tolerated at the same time and/or in time. More redundancy tolerates generally more errors
and/or failures, but requires either more resources or more execution time.

The Design Diversity architectural pattern may be used in conjunction with other architectural patterns
that provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other architectural pattern(s) and the Design Diversity architectural pattern covers for
the remaining error/failure types.
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Figure 21. Design Diversity pattern flowchart and state diagram

Examples: In HPC environments, various versions of the same software are used for the detection of
implementation errors. This applies to completely different implementations of the MPI standard and to
numerical libraries as well as to different versions of the same implementation. Regression and comparison
tests are performed to identify incorrect behavior, missing features and performance problems.
Containment Domains [48] and the SWIFT library [97] provide language-based approaches for recovery
blocks with design diversity. Applications also often contain verification routines that check for the validity
of a computation and correct any detected errors using application-specific knowledge and design diversity.

Rationale: The Design Diversity architectural pattern enables a system to tolerate an error or failure
through continuation of correct operation after impact. It relies on system state redundancy in the form of
functionally equivalent alternate system implementations. The pattern performs mostly proactive actions,
such as maintaining redundancy. Error or failure detection is part of the pattern in the form of output
validation. The pattern has high design complexity due to the need for functionally equivalent alternate
system implementations.

Related Patterns: The Redundancy and Design Diversity architectural patterns are based on inclusion
of redundancy to compensate for errors or failures. The diversity in the Redundancy architectural pattern
stems from the replication of the system’s state, unlike the Design Diversity architectural pattern,
which uses independently implemented versions of the system’s design to tolerate errors or failures.

Known Uses:

• HPC centers often provide various MPI library implementations, such as the MVAPICH2 [3],
OpenMPI [5], MPICH2 [2], and Intel MPI [1], all of which are based on the MPI standard. Running
large-scale applications with these separate implementations of MPI potentially exposes implementation
errors in the MPI libraries. Similarly, different versions of numerical libraries are often provided as well.
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Regression and comparison tests are performed to identify incorrect behavior, missing features and
performance problems.
• The DIVA processor architecture [23] includes an out-of-order core as well as a simple in-order

pipelined core. The in-order pipeline is functionally equivalent to the primary processor core (it
implements the same instruction set architecture) and is used to detect errors in the design of the
out-of-order processor core.
• Containment Domains [48] provide a recover routine with design diversity that is initiated upon

detection of an error in the execution of the block of code encapsulated by the domain. This enables the
containment domain to constrain the detection and correction of errors to the boundary of the domain.
• The SWIFT library [97] provides language-based implementation of a recovery block with design

diversity for use in C language programs.
• Applications often contain verification routines that check for the validity of a computation.

Application-specific knowledge is used in a recovery block to correct any detected errors.
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7.3.6 Self-Masking

Name: Self-Masking

Problem: A hardware or software error or subsystem failure in an HPC environment causes a software,
such as a numerical library or application, to experience an error and potentially a subsequent failure.

Context: The pattern is a derivative of the Self-Stabilization strategy pattern and applies to a system
that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.

Forces:

• System performance in the presence of errors and failures is determined by the efficiency in reaching a
correct system state from an illegal system state, which may differ for different illegal system states.
• There is no inherent impact on system performance in error/failure-free conditions. However, the needed

capability to reach a correct state from an illegal state may reduce error/failure-free performance.
• A correct state may not be reached from all illegal system states, which limits the scope of this pattern.
• The process of self-masking requires implicit error and/or failure detection of the illegal system state to

be masked and self-maskable system state, which may require a system redesign to apply the pattern.

Solution: The Self-Masking pattern relies on the capability of reaching a correct system state from an
illegal system state after a finite number of execution steps using implicit error/failure detection and
self-masking. Forward progress is guaranteed by design as a correct system state can be reached in a finite
number of steps. Self-masking may be as simple as an approximation of a correct state. The correct state
reached after self-masking is not necessarily the same state that would have been reached without an error
or failure. The scope of this pattern extends to the system state space that is either correct or incorrect but
self-maskable to a correct state. The components of the pattern are illustrated in Figure 10.

Illegal State

System State

Self-Maskable
State

Correct State

Protection Domain

Figure 22. Self-Masking pattern components

Capability: This pattern supports the handling of errors and failures with detection, containment, and
mitigation using self-masking, i.e., dynamic adaptation through masking of errors/failures. Error/failure
detection is implicit by providing the capability to self-mask an illegal system state. Self-masking is an
architectural feature of self-stabilization. The flowchart and state diagram of the pattern is shown in
Figure 23 and its parameters in Table 11.

Table 11. Self-Masking pattern parameters

Parameter Definition
Te Time to execute system progress
Td Time to detect illegal system state
Tm Time to self-mask illegal system state
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Figure 23. Self-Masking pattern flowchart and state diagram

Protection Domain: The protection domain of this pattern extends to the system state space that is either
correct or incorrect but self-maskable to a correct state.

Resulting Context: An error or failure is tolerated through self-masking. The Self-Masking pattern
requires the capability of reaching a correct system state from an illegal system state, which may reduce
error/failure-free performance. The efficiency of self-masking determines performance in the presence of
errors and failures. A high performing solution reduces the impact on error/failure-free performance, while
at the same time providing efficient self-masking.

A trade-off exists between both, performance in the presence of errors and failures and error/failure-free
performance, especially in systems with high error/failure rates. Self-masking is a passive approach, where
the system is designed with self-maskable illegal system state. Self-masking becomes an intrinsic property
of the system. The implicit detection may reduce error/failure-free performance. The pattern’s protection
domain does not cover illegal system state that is not self-maskable.

The Redundancy architectural pattern may be applied to extend the pattern’s protection domain with
redundant or diverse system state for self-masking. The Self-Masking pattern may be used in
conjunction with other architectural patterns that provide containment and mitigation in a complementary
fashion, where some error/failure types are covered by the other architectural pattern(s) and the
Self-Masking pattern covers for the remaining error/failure types.

Examples:

• Gossip-based algorithms tolerate errors and failures using the Self-Masking pattern. Data is
communicated to multiple parts of the system participating in the Gossip-based algorithm and errors or
failures are self-masked. The efficiency and performance of self-masking in the presence of errors and
failures and the error/failure-free performance depend on the communication pattern (e.g., reach and
frequency).
• Iterative solvers or solvers using sampling tolerate errors and failures using the Self-Masking pattern

using either an iterative process that progresses toward a correct solution in the presence of errors or a
probabilistic sampling process that generates enough correct samples over incorrect samples to calculate
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a correct solution. The efficiency and performance of self-masking in the presence of errors and failures
and the error/failure-free performance depend on the algorithmic capabilities of the iterative process
(e.g., step size) or the probabilistic sampling process (e.g., oversampling).

Rationale: The Self-Masking pattern enables a system to tolerate errors or subsystem errors or failures
through adaptation. It relies on the capability of reaching a correct system state from an illegal system state
in a finite number of execution steps. It uses implicit error/failure detection and self-masking to passively
transition from an illegal to a correct system state. Self-masking is intrinsic to the design of the system
when this pattern is applied. The pattern has high design complexity and has low dependence on a system’s
architecture.

Related Patterns: The Self-Correction architectural pattern uses the same Self-Stabilization
strategy pattern, but employs explicit detection and self-correction as architectural features. Like the
Checkpoint Recovery, Redundancy and Design Diversity architectural patterns, the
Self-Masking architectural pattern seeks to mask system state when using self-masking. However, it does
not rely on state saving, redundancy, or design diversity for masking. The Redundancy architectural
pattern may be applied to extend the Self-Masking architectural pattern’s protection domain.

Known Uses:

• Gossip-based algorithms tolerate errors and failures using the Self-Masking pattern. This includes
gossip-based aggregation and reduction algorithms [43, 140, 83], orthogonalization methods [84, 83],
eigensolvers [174], and least squares solvers [151].
• Fixed point methods that converge globally when certain conditions are satisfied are able to tolerate

certain errors using the Self-Masking pattern [20, 19], such as a Jacobi iterative scheme that will
converge for any initial guess if the matrix is diagonally dominant.
• Certain domain decomposition methods are tolerant to errors using the Self-Masking pattern as they

converge in the presence of errors, such as the classical overlapping Schwarz algorithm [86],
asynchronous domain decomposition methods [85] and task-based domain decomposition approaches
that use sampling and a regression-based solution update [157, 156, 132].
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7.3.7 Self-Correction

Name: Self-Correction

Problem: A hardware or software error or subsystem failure in an HPC environment causes a software,
such as a numerical library or application, to experience an error and potentially a subsequent failure.

Context: The pattern is a derivative of the Self-Stabilization strategy pattern and applies to a system
that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.

Forces:

• System performance in the presence of errors and failures is determined by the efficiency in reaching a
correct system state from an illegal system state, which may differ for different illegal system states.
• There is no inherent impact on system performance in error/failure-free conditions. However, the needed

capability to reach a correct state from an illegal state may reduce error/failure-free performance.
• A correct state may not be reached from all illegal system states, which limits the scope of this pattern.
• The process of self-correction requires an explicit error and/or failure detection of the illegal system state

to be masked and self-correctable system state, which may require a system redesign to apply the pattern.

Solution: The Self-Correction pattern relies on the capability of reaching a correct system state from
an illegal system state after a finite number of execution steps using explicit error/failure detection and
self-correction. Forward progress is guaranteed by design as a correct system state can be reached in a
finite number of steps. Self-correction may be as simple as discarding, recomputing, or estimating a wrong
value in the system or a wrong or missing output from a subsystem. The correct state reached after
self-correction is not necessarily the same state that would have been reached without an error or failure.
The scope of this pattern extends to the system state space that is either correct or incorrect but
self-correctable to a correct state. The components of the pattern are illustrated in Figure 10.

Illegal State

System State

Self-Correctable
State

Correct State

Protection Domain

Figure 24. Self-Correction pattern components

Capability: This pattern supports the handling of errors and failures with detection, containment, and
mitigation using self-correction, i.e., dynamic adaptation through correction of errors/failures. Error/failure
detection is explicit by providing the capability to self-correct an illegal system state. Self-correction is an
architectural feature of self-stabilization. The flowchart and state diagram of the pattern is shown in
Figure 25 and its parameters in Table 12.

Protection Domain: The protection domain of this pattern extends to the system state space that is either
correct or incorrect but self-correctable to a correct state.

Resulting Context: An error or failure is tolerated through self-correction. The Self-Correction pattern
requires the capability of reaching a correct system state from an illegal system state, which may reduce
error/failure-free performance. The efficiency of self-correction determines performance in the presence of
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Figure 25. Self-Correction pattern flowchart and state diagram

Table 12. Self-Correction pattern parameters

Parameter Definition
Te Time to execute system progress
Td Time to detect illegal system state
Tc Time to self-correct illegal system state

errors and failures. A high performing solution reduces the impact on error/failure-free performance, while
at the same time providing efficient self-correction.

A trade-off exists between both, performance in the presence of errors and failures and error/failure-free
performance, especially in systems with high error/failure rates. Self-correction is an active approach,
where the system is designed with self-correctable illegal system state. Self-correction becomes an
intrinsic property of the system. The explicit detection may reduce error/failure-free performance. The
pattern’s protection domain does not cover illegal system state that is not self-correctable.

The Redundancy architectural pattern may be applied to extend the pattern’s protection domain with
redundant or diverse system state for self-correction. The Self-Correction pattern may be used in
conjunction with other architectural patterns that provide containment and mitigation in a complementary
fashion, where some error/failure types are covered by the other architectural pattern(s) and the
Self-Correction pattern covers for the remaining error/failure types.

Examples:

• Self-stabilizing solvers may produce an illegal state in the presence of errors or failures and tolerate their
impact using the Self-Correction pattern to reach a correct state. The efficiency and performance of
self-correction in the presence of errors and failures and the error/failure-free performance depend on the
methods used for explicit error/failure detection (e.g., error check after every iteration) and for reaching
the correct state (e.g., successive approximation toward a correct state).
• In proactive fault tolerance, an OODA loop control is employed that utilizes monitoring tools for

collecting sensor data (e.g., temperature, fan speeds, voltages, computational load, memory and storage
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usage, etc.). It leverages the warning thresholds of these sensors as early fault indicators to migrate
computation away from compute nodes that are about to fail [72]. The mitigation may use
process-level [187] or VM level [134] migration.

Rationale: The Self-Correction pattern enables a system to tolerate errors or subsystem errors or
failures through adaptation. It relies on the capability of reaching a correct system state from an illegal
system state in a finite number of execution steps. It uses explicit error/failure detection and self-correction
to actively transition from an illegal to a correct system state. Self-correction is intrinsic to the design of the
system when this pattern is applied. The pattern has high design complexity and has low dependence on a
system’s architecture.

Related Patterns: The Self-Masking architectural pattern uses the same Self-Stabilization strategy
pattern, but employs implicit detection and self-masking as architectural features. Like the Checkpoint
Recovery, Redundancy and Design Diversity architectural patterns, the Self-Correction
architectural pattern seeks to correct system state when using self-correction. However, it does not rely on
state saving, redundancy, or design diversity for correction. The Redundancy architectural pattern may be
applied to extend the Self-Correction architectural pattern’s protection domain. The Fault
Diagnosis architectural pattern may be applied for explicit error and/or failure detection.

Known Uses:

• A self-stabilizing label-propagation algorithm that computes the connected components in a graph while
being tolerant to errors [161].
• Two self-stabilizing iterative linear solvers [161], one for the steepest descent and one for conjugate

gradient, are tolerant to errors.
• Leveraging warning thresholds of sensors as early fault indicators to migrate computation away from

compute nodes that are about to fail [72].
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7.4 STRUCTURAL PATTERNS

7.4.1 Monitoring

Name: Monitoring

Problem: Not knowing the presence, root cause, and impact of a defect or anomaly in the system causes a
lack of corrective action at design or run time and may eventually result in an error or failure.

Context: The pattern is a derivative pattern of the Fault Diagnosis architectural pattern and applies to a
system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring system to discover the presence of a
defect or anomaly in the behavior of the monitored system.
• The interaction between the monitored and monitoring systems is bounded in terms of time.
• The monitoring system has the capability to readily analyze the behavior of the monitored system to

identify a defect or anomaly.

Forces:

• The interactions between the monitoring and monitored systems may interfere with the operation of the
monitored system, specifically its performance.
• While the frequency and duration of these interactions must be minimized to reduce the monitoring

overhead, the interactions must be able to detect/infer a defect or anomaly in the monitored system.
• The monitoring system’s data gathering and defect/anomaly detection/inference must be in time to

prevent the activation of an error and a subsequent failure.
• The diagnostic resolution, i.e., the degree of accuracy of the fault diagnosis, must be high to be effective.

Solution: The Monitoring structural pattern enables the discovery and treatment of a defect or anomaly
in the system, which either has the potential to activate or already has activated to an error and potentially a
subsequent failure. The pattern supports methods that attempt to recognize the presence of a defect or
anomaly within a monitored system. It prevents its activation or enables its containment and mitigation by
notifying the monitored system about a fault with location and type information, such that the anomaly or
defect is removed before or after it results in an error or a failure. The solution requires a monitoring
system, which may be a subsystem of the monitored system or an external independent system, to observe
key parameters of the monitored system and to notify the monitored system when these parameters deviate.

The Monitoring structural pattern makes an assessment on what may potentially or actually be wrong
with a system. The diagnosis entails making inferences based on the observed behavior of a system and
narrowing the search for the root cause of the fault. The assessment is based on the operating behavior of
the monitored system. The monitoring system may approach the problem using two strategies:

• Effect-Cause Fault Diagnosis: This approach entails observation of the parameters of the overall system
for anomalies. When a parameter deviates from a range of values that may be considered as fault-free
operation, the monitoring system attempts to determine the root cause. The monitoring system logically
partitions the system into subsystems and progressively eliminates the subsystems known to be
fault-free. Through this process, it narrows the search for the fault in the system.
• Cause-Effect Fault Diagnosis: This approach is based on a set of known fault models and the monitoring

system comparing the system parameters with a model developed using fault-free system operation, or
using simulations. When observed parameters deviate from the fault-free system operation model, the
presence, location, and the type of fault may be inferred.

The components of this pattern are shown in Figure 26.
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Figure 26. Monitoring pattern components

Capability: This pattern provides fault detection in the monitored system at design or run time, before it
eventually results in an error or failure, or after activation, by identifying deviations in monitored
parameters. This pattern enables containment and mitigation of a future, imminent or present error or
failure in the monitored system through detection and by notifying the monitored system about a fault with
location and type information. A system using this pattern is able to detect faults and take corrective action
at design and run time. This pattern provides fault detection in the monitored system at design or run time,
before it eventually results in an error or failure or after activation, by identifying deviations in monitored
parameters and performing effect-cause or cause-effect fault diagnosis.

This pattern enables containment and mitigation of a future, imminent or present error or failure in the
monitored system through detection and by notifying the monitored system about a fault with location and
type information based on effect-cause or cause-effect inferences. The flowchart and state diagram of the
pattern is shown in Figure 27 and its parameters in Table 13.
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Figure 27. Monitoring pattern flowchart and state diagram

Table 13. Monitoring pattern parameters

Parameter Definition
Tm Time to monitor (sub-) system parameters, including wait and probe times
Ta Time to perform the cause/effect or effect/cause analysis
Tn Time to raise notification with type and location

Protection Domain: The protection domain extends to the monitored system.
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Resulting Context: The discovery and treatment of a defect or anomaly in the system that has the potential
to activate are enabled, which can be used to prevent, contain and mitigate an error or a failure in the
system. The Monitoring structural pattern requires identifying system parameters that indicate the
presence of a fault. The overall system design must include a monitoring system, which introduces design
complexity. When the monitoring system is extrinsic to the monitored system, the design effort may be
simplified, but the interfaces between the monitoring and monitored systems must be well-defined. When
the monitoring system is intrinsic to the design of the monitored system, design complexity increases due
to the need to interface the monitoring and monitored subsystems.

A trade-off exists between interference with the operation of the monitored system caused by the frequency
and duration of the interactions between the monitoring and monitored systems, and the ability to
detect/infer a defect or anomaly in the monitored system. A high performing solution reduces the
interference, while maintaining a reasonable ability to detect/infer a defect or anomaly.

The Monitoring structural pattern may be used in conjunction with other structural patterns that provide
containment and mitigation and require or can make use of fault detection. It detects the presence of a
defect or anomaly and reports it, but does act to remedy the fault. Based on the monitored system design
and accessibility of the parameters selected for observation, the diagnosis may not be very precise and may
sometimes give no indication. An efficient implementation performs effect-cause or cause-effect analysis
with a reasonable degree of precision and recall.

Performance: In case when monitoring system is not a part of monitored system, monitoring system
doesn’t impact the task total execution time TE . If monitoring system is a part of monitored system, it can
impact the task total execution time by δ, the ratio of available resources utilized by monitored system. The
performance T when monitoring system is a part of monitored system is defined by Equation 24.

T =
TE

1 − δ
(24)

Reliability: As Monitoring pattern is not impacted by error or failure, the reliability remain same as per
Equation 25.

R(t) = e−λt (25)

Availability: The availability of Monitoring pattern can be calculated using the task’s total execution time
without Monitoring pattern TE and the performance with Monitoring pattern T (Equation 26). TE is PU
and T is PU, SD and UD.

A =
tpu

tpu + tud + tsd
(26)

Examples:

• Hardware sensors in the CPUs, on the board, and in the power supply provide real-time operational data
about temperature, fan speeds, and voltages. Software sensors in the Linux OS offer real-time
operational data about CPU and memory load. The data is made available by sensor interface tools, such
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as IPMI [10], such that a monitoring tool, like the Ganglia Monitoring System [123], can aggregate it
with time stamps in a central database. The monitoring tool can be configured to send a notification
when a certain threshold value for a sensor is exceeded.
• A heartbeat monitoring tool checks the liveness of an MPI process in the system by regularly sending a

message and waiting for a reply [147]. If no message is received back within a certain time period, the
MPI process is considered failed and the MPI programming model runtime software is informed. This
heartbeat monitoring is performed between all MPI processes, where all MPI processes watch each
other. A message sent by the application can be used as a liveness request or reply message.
• An MPI tracing tool, like Vampir [8], is used to capture detailed time-stamped information about an

application’s MPI messages at execution time. The created MPI message trace contains time-stamped
information about when an MPI function was called and when it was completed, such that it can be
analyzed for inefficiencies in the MPI application’s messaging behavior. A common root cause for MPI
application scaling limitations is the inefficient use of MPI collectives. The MPI application developer is
informed by the tool about such situations.

Rationale: The Monitoring structural pattern enables a system to discover and treat a defect or anomaly
in the system that has the potential to activate and become an error or failure or already has activated. It
relies on a monitoring system to observe the monitored system, identifying deviations in monitored
parameters. A discovered defect or anomaly is treated by raising a notification about a fault with location
and type information, permitting the monitored system to provide containment and mitigation. A key
benefit of this pattern is preemptive discovery of faults in the system, before they are activated and result in
errors or failures. Preventive actions taken upon such discovery avoid the need for expensive error/failure
recovery, compensation, or correction actions.

Related Patterns: The Monitoring and Prediction structural pattern are both derivatives of the Fault
Diagnosis architectural pattern. While the Monitoring structural pattern detects existing faults in the
system that already have or have not been activated to an error, the Prediction structural pattern primarily
predicts future faults that have not been activated based on the idea that such future faults have detectable
precursors. The Prediction structural pattern may also detect existing faults in the system that already
have or have not been activated to an error. Both patterns use different methods to achieve their goals.

Known Uses: HPC system installations use monitoring tools for collecting operational data, such as sensor
data (e.g., temperature, fan speeds, voltages, computational load, memory and storage usage, etc.),
performance data (e.g., application execution, message and file system access times, etc.) and event data
(e.g., anomalous, error and failure events, debug messages, etc.). Popular solutions include:

• Hard- and software sensors in the CPUs, on the board, in the power supply, in the OS, and in system
services that provide real-time operational data to sensor interface tools. Examples are the hardware
sensors in the IBM Power 8 [94] and Intel Xeon [54] processors, and the Linux OS monitoring
capabilities.
• Sensor interface tools that gather real-time operational data from hard- and software sensors, such that

they are available for monitoring tools. Examples are SMART [173] and IPMI [10].
• Monitoring tools that gather time-stamped information from sensor interface tools in a distributed

computing system at a central location, such that they can be analyzed. Examples are the Supermon
High-Speed Cluster Monitoring System [171], the Ganglia Monitoring System [123], Nagios [4], and
the OVIS Lightweight Distributed Monitoring System [14].
• Heartbeat monitoring tools for liveness checking of individual nodes in the system [147] or MPI

processes [26].
• System event loggers that gather time-stamped information from the OS or system services in a

distributed computing system, such that they can be analyzed. The most prominent example is Linux’s
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syslog [6].
• MPI tracing tools gather detailed time-stamped information about an application’s MPI messages, such

as when a particular message was sent and when it was received. Examples are Vampir [8] and
SCALASCA [7].
• Comprehensive RAS management tools by vendors that support real-time monitoring of an entire HPC

system, such as the CRMS [28].
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7.4.2 Prediction

Name: Prediction

Problem: Not anticipating the presence, root cause, and impact of a defect or anomaly in the system
causes lack of corrective action at design or run time and may eventually result in an error or failure.

Context: The pattern is a derivative pattern of the Fault Diagnosis architectural pattern and applies to a
system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring system to discover the presence of a
defect or anomaly in the behavior of the monitored system.
• The interaction between the monitored and monitoring systems is bounded in terms of time.
• The monitoring system has the capability to store historical data about the behavior of the monitored

system to analyze it for defect or anomaly occurrences.

Forces:

• The interactions between the monitoring and monitored systems may interfere with the operation of the
monitored system, specifically its performance.
• While the frequency and duration of these interactions must be minimized to reduce the monitoring

overhead, the interactions must be able to detect/infer a defect or anomaly in the monitored system.
• The monitoring system’s data gathering and defect/anomaly detection/inference must be in time to

prevent the activation of an error and a subsequent failure.
• The diagnostic resolution, i.e., the degree of accuracy of the fault diagnosis, must be high to be effective.

Solution: The Prediction structural pattern enables the discovery and treatment of a defect or anomaly
in the system, which has the potential to activate an error and potentially a subsequent failure. The pattern
supports methods that attempt to recognize the potential of a future defect or anomaly within a monitored
system. It prevents its activation or enables its containment and mitigation by notifying the monitored
system about a future fault with location and type information, such that the anomaly or defect is removed
before or after it results in an error or a failure.

The solution requires a monitoring system, which may be a subsystem of the monitored system or an
external independent system, to observe key parameters of the monitored system and to notify the
monitored system when these parameters deviate. The pattern identifies anomalous behavior that indicates
the potential for a future fault, which may result in an error or failure in the system. The monitoring system
may approach the problem using two strategies:

• Statistical method: The monitoring system discovers probabilistic characteristics of a potential fault in
the system using statistical inference techniques that examine correlations with previous events.
• Rule-based method: The monitoring system builds rules of association to capture the causal correlations

between system parameter values and faults.

The monitoring system contains the following components to predict faults in the monitored system:

• Filter/Preprocessor: This component removes incomplete monitoring data and duplicates and produces a
consistent monitoring data format for analysis.
• Regression: This component analyzes the monitoring parameter values and establishes relationships

between them.
• Knowledge Base: This storage component maintains the rules or statistical properties and models to be

used for online prediction of faults using real-time monitoring data captured from the monitored system.
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The components of this pattern are shown in Figure 28.
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Figure 28. Prediction pattern components

Capability: This pattern provides fault anticipation in the monitored system at design or run time, before it
eventually results in an error or failure or after activation, by identifying deviations in monitored
parameters. This pattern enables containment and mitigation of a future, imminent or present error or
failure in the monitored system through prediction and by notifying the monitored system about a future
fault with location and type information. A system using this pattern is able to predict faults and take
corrective action at design and run time. This pattern provides fault prediction/detection in the monitored
system at design or run time, before it eventually results in an error or failure or after activation, by
identifying deviations in monitored parameters and performing regression and statistical/rule-based
modeling.

This pattern enables containment and mitigation of a future, imminent or present error or failure in the
monitored system through detection and by notifying the monitored system about a fault with location and
type information based on regression and statistical/rule-based modeling. The flowchart and state diagram
of the pattern is shown in Figure 29 and its parameters in Table 14.
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Figure 29. Prediction pattern flowchart and state diagram

Protection Domain: The protection domain extends to the monitored system.
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Table 14. Prediction pattern parameters

Parameter Definition
Tmon Time to monitor (sub-) system parameters, including wait and probe times
T f Time to perform the filtering
Tr Time to perform the regression
Tmod Time to perform the statistical/rule-based modeling
Tn Time to raise notification

Resulting Context: The discovery and treatment of a defect or anomaly in the system that has the potential
to activate are enabled, which can be used to prevent, contain, and mitigate an error or a failure in the
system. The Prediction structural pattern requires identifying system parameters that indicate the
potential for a fault. The overall system design must include a monitoring system, which introduces design
complexity. When the monitoring system is extrinsic to the monitored system, the design effort may be
simplified, but the interfaces between the monitoring and monitored systems must be well-defined. When
the monitoring system is intrinsic to the design of the monitored system, design complexity increases due
to the need to interface the monitoring and monitored subsystems.

A trade-off exists between interference with the operation of the monitored system caused by the frequency
and duration of the interactions between the monitoring and monitored systems, and the ability to
detect/infer a defect or anomaly in the monitored system. A high performing solution reduces the
interference, while maintaining a reasonable ability to detect/infer a defect or anomaly.

The Prediction structural pattern may be used in conjunction with other structural patterns that provide
containment and mitigation and require or can make use of fault prediction/detection. It detects the
presence of a defect or anomaly and reports it, but does act to remedy the future fault. Based on the
monitored system design and accessibility of the parameters selected for observation, the diagnosis may
not be very precise and may sometimes give no indication. An efficient implementation performs
regression and statistical/rule-based modeling with a reasonable degree of precision and recall.

Performance: When the monitoring system is a part of the monitored system, the failure-free performance
T f=0 of the Prediction pattern is defined by the task’s total execution time without any resilience strategy
TE , the time to monitor sub-system parameters, including wait and probe times Tmon, the time to perform
the filtering T f , the time to perform the regression Tr, and the time to perform the statistical/rule-based
modeling Tmod with the total number of input-execute-output cycles P. The performance under failure T is
defined by T f=0, plus the time Tn to raise notification with type and location, where the total time to raise
notification with type and location is number of faults time Tn. Assuming constant times Tmon (tmon), T f

(t f ), Tr (tr), Tmod (tmod), and Tn, T can be defined by Eq. 27.

T = TE + P(tmon + t f + tr + tmod) +
TE

M
(Tn) (27)

Reliability: As Prediction pattern is not impacted by error or failure, the reliability remain same as per
Equation 28.

R(t) = e−λt (28)
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Availability: The availability of Prediction pattern can be calculated using the task’s total execution time
without Prediction pattern TE and the performance with Prediction pattern T (Equation 29). TE is PU
and T is PU, SD and UD.

A =
tpu

tpu + tud + tsd
(29)

Examples:

• In proactive fault tolerance, an OODA loop control is employed that utilizes monitoring tools for
collecting sensor data (e.g., temperature, fan speeds, voltages, computational load, memory and storage
usage, etc.). It leverages the warning thresholds of these sensors as early fault indicators to migrate
computation away from compute nodes that are about to fail [72]. The mitigation may use
process-level [187] or VM level [134] migration.
• Monitoring tools collecting event data (e.g., anomalous, error and failure events, debug messages, etc.)

are used in conjunction with tools for temporal and spatial filtering to identify event correlations and to
predict failures [116].
• Probabilistic networks are utilized for establishing correlations between event collected with monitoring

tools to predict failures [159].

Rationale: The Prediction structural pattern enables a system to discover and treat a defect or anomaly
in the system that has the potential to activate and become an error or failure. It relies on a monitoring
system to observe the monitored system, identifying deviations in monitored parameters. A discovered
defect or anomaly is treated by raising a notification about a future fault with location and type
information, permitting the monitored system to provide containment and mitigation. A key benefit of this
pattern is prediction of faults in the system, before they are activated and result in errors or failures.
Preventive actions taken upon such discovery avoid the need for expensive error/failure recovery,
compensation, or correction actions.

Related Patterns: The Monitoring and Prediction structural pattern are both derivatives of the Fault
Diagnosis architectural pattern. While the Monitoring structural pattern detects existing faults in the
system that already have or have not been activated to an error, the Prediction structural pattern primarily
predicts future faults that have not been activated based on the idea that such future faults have detectable
precursors. The Prediction structural pattern may also detect existing faults in the system that already
have or have not been activated to an error. Both patterns use different methods to achieve their goals.

Known Uses: Prediction is mostly a research area and less used in practice. Most work focuses on
proof-of-concept prototypes that utilize an offline learning approach based on system monitoring and
failure logs. Known uses include:

• Utilizing a wide-variety of methods to analyze monitoring and log data to predict failures [105]
• Using machine learning to predict GPGPU memory errors [139]
• Leveraging warning thresholds of sensors as early fault indicators to migrate computation away from

compute nodes that are about to fail [72]
• Characterizing the correlation between temperature, power consumption and memory or logic errors

using monitoring and log data [138]
• Using probabilistic networks for establishing event correlations for prediction algorithms [159]
• Employing temporal and spatial filtering for failure prediction [116]
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7.4.3 Restructure

Name: Restructure

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., resource underprovisioning) in an HPC environment causes a software,
such as an application, to experience an error or failure.

Context: The pattern is a derivative of the Reconfiguration architectural pattern and applies to a system
that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has well-defined parameters that enable a monitoring system to discover the presence of an

existing or future fault, error, or failure in the behavior of the monitored system.
• The interaction between the monitored and monitoring systems is bounded in terms of time.
• The monitoring system has the capability to readily analyze the behavior of the monitored system to

detect or predict a fault, error, or failure.
• The system is able to be partitioned into logical subsystems, where altering the interconnection between

the subsystems enables the system to remain operational.

Forces:

• The interactions between the monitoring and monitored systems may interfere with the operation of the
monitored system, specifically its performance.
• While the frequency and duration of these interactions must be minimized to reduce the monitoring

overhead, the interactions must be able to detect or predict a fault, error, or failure in the monitored
system.
• The diagnostic resolution, i.e., the degree of accuracy of the fault diagnosis, must be high to be effective.
• The ability of the system to alter the interconnection among subsystems must permit system operation

that is functionally equivalent to the fault, error, or failure-free operation of the system.
• The restructuring may force the system to operate at a lower level of performance.

Solution: The Restructure structural pattern alleviates the impact of a fault, error, or failure on system
operation by changing the interconnection between the subsystems in the overall system. It has a detection
component that is similar to the Monitoring or Prediction structural patterns and an additional
containment and mitigation component that acts upon the notification from the detection component.

The detection component enables the discovery of an existing or future fault, error, or failure in the system.
It enables its containment and mitigation by notifying the system about it with location and type
information. The solution requires a monitoring system, which may be a subsystem of the monitored
system or an external independent system, to observe key parameters of the monitored system and to notify
the monitored system when these parameters deviate. This pattern does not specify the detailed method of
detection or prediction, which may be similar to the Monitoring or Prediction structural patterns.

The containment and mitigation component acts upon the notification from the detection component by
modifying the interconnection between the N subsystems in the overall system to permanently isolate
(exclude) the subsystem affected by the predicted or detected fault, error, or failure. The system assumes an
N − 1 subsystem configuration in response to a notification, which is characterized by its own
interconnection topology and retains functional equivalency with the original system configuration. The
components of this pattern are illustrated in Figure 30.
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Figure 30. Restructure pattern components

Capability: A system using this pattern is able to continue to operate in the presence of a non-permanent
fault, error, or failure with some interruption. This pattern provides detection/prediction, containment, and
mitigation of a future or existing fault, error, or failure in the system by changing the interconnection
between the subsystems in the overall system to a functionally equivalent configuration, permanently
isolating (excluding) the affected subsystem. The flowchart and state diagram of the pattern is shown in
Figure 31 and its parameters in Table 15.
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Figure 31. Restructure pattern flowchart and state diagram

Table 15. Restructure pattern parameters

Parameter Definition
Te Time to execute system progress
Td Time to detect or predict a fault, error or failure
Ti Time to isolate the affected subsystem(s)
Tr Time to remove the affected subsystem(s)

Protection Domain: The protection domain extends to the monitored system’s state that is not lost due to a
subsystem exclusion and to all of its resources that are able to be operate correctly after a restructuring.

Resulting Context: A fault, error, or failure is prevented from affecting the correct operation of the system.
While functional equivalency to the original system configuration is maintained through reconfiguration,
progress in the system may be lost. The system is interrupted during reconfiguration in response to a
detected or predicted fault, error, or failure, but is not interrupted during fault-, error-, and failure-free
operation. The restructuring may force the system to operate at a lower level of performance. After
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reconfiguration, the system’s ability to prevent a fault, error or failure from affecting the correct operation
of the system remains the same if it retains the capability to assume an N − 1 system configuration with
functional equivalency (where N is the new number of subsystems after the previous reconfiguration).

The Restructure structural pattern may be used in conjunction with other structural patterns that provide
containment and mitigation in a complementary fashion, where some error/failure types are covered by the
other structural pattern(s) and the Restructure structural pattern covers for the remaining error/failure
types.

Performance: In case when monitoring system is a part of monitored system, the failure-free performance
T f=0 of the Restructure pattern is defined by the task’s total execution time without any resilience
strategy TE and the time to detect or predict a fault, error or failure Td with the total number of
input-execute-output cycles P. The performance under failure T is defined by T f=0, plus the time Ti to
isolate the affected subsystem(s) and the time Tr to remove the affected subsystem(s), where the total time
to isolate the affected subsystem(s) and to remove the affected subsystem(s) is number of faults, errors, or
failures time Ti and Tr. Assuming constant times Td (td), Ti, and Tr, T can be defined by Eq. 30.

T = TE + P(td) +
TE

M
(Ti + Tr) (30)

Reliability: Given that the Restructure pattern enables the resumption of correct operation after an error
or failure, the reliability of a system employing it is defined by errors and failures that are not handled by
the pattern, such as failures of the persistent storage system. The reliability after applying the
Restructure pattern R(t) can be obtained using the performance under failure T and the failure rate λu (or
MTTF Mu) of the unprotected part of the system (Eq. 31).

R(t) = e−λuT = e−T/Mu (31)

Availability: The availability of Restructure pattern can be calculated using the task’s total execution
time without Restructure pattern TE and the performance with Restructure pattern T (Equation 32).
TE is PU and T is PU, SD and UD.

A =
tpu

tpu + tud + tsd
(32)

Examples: Unhealthy, erroneous, or failed system resources, such as compute nodes or NVIDIA GPGPU
memory pages [141], are removed from the system’s pool of resources though restructuring. A
programming model, such as the proposed ULFM extension to the MPI standard [31], permits an
application to restructure the programming environment to handle resource failures.

Rationale: The Restructure structural pattern prevents an existing or future fault, error, or failure from
affecting the correct operation of the system through changing the interconnection between N subsystems
in the overall system. It relies on the ability to assume an N − 1 functionally equivalent system
configuration in response to a detected or predicted fault, error, or failure that retains functional
equivalency with the original system configuration. The pattern may perform proactive actions, such as
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restructuring the system or subsystem before a fault, error, or failure impacts its operation, or reactive
actions, such as restructuring the system or subsystem upon such an event.

Progress in the system may be lost. Fault, error, or failure detection/prediction is part of the pattern, similar
to the Monitoring or Prediction structural patterns. The containment and mitigation offered by this
pattern are independent from the type of fault, error, or failure. The pattern has some design complexity
due to the need to partition the system into logical subsystems. It has low dependence on a system’s
architecture.

Related Patterns: In contrast to the Monitoring and Prediction structural patterns, the Restructure
structural pattern additionally offers containment and mitigation. In contrast to many other structural
patterns providing containment and mitigation, the Restructure structural pattern does not restore
previously preserved system state, employ redundancy, or self-mask or self-correct illegal system state.

The Restructure, Rejuvenation, and Reinitialization structural patterns are derived from the
Reconfiguration architectural pattern. They provide the same detection/prediction capability, but offer
different containment and mitigation capabilities. The Restructure structural pattern reconfigures a
system of N subsystems to N − 1 functionally equivalent subsystems. The Rejuvenation structural
pattern restores the operation of the system or affected subsystem using previously preserves system state.
The Reinitialization structural pattern resets the system or affected subsystem to its initial state.

Known Uses:

• HPC systems often automatically take unhealthy, erroneous, or failed compute nodes out of the system’s
resource manager’s pool of available computing resources to avoid scheduling jobs on them and to
permit maintenance (e.g., the the NodeKARE module in CLE [102]).
• The recurrence of memory errors in a specific cell or region of the chip often indicates degradation of the

memory module or region. NVIDIA GPGPU drivers support dynamic page retirement, which removes a
memory page from the pool of available physical memory resources [141].
• The proposed ULFM extension to the MPI standard [31] allows parallel applications to get notifications

of process failures and to restructure the MPI environment. ULFM permits revoking an MPI
communicator to prevent any further usage. It also allows shrinking an MPI communicator to exclude
failed MPI processes from future communication.
• The Charm++ adaptive runtime system interacts with the resource manager to dynamically reconfigure

the number of nodes assigned to a job based on the resilience, power, and performance characteristics of
the system [11].
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7.4.4 Rejuvenation

Name: Rejuvenation

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., resource underprovisioning) in an HPC environment causes a software,
such as an application, to experience an error or failure.

Context: The pattern is a derivative of the Reconfiguration architectural pattern and applies to a system
that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has well-defined parameters that enable a monitoring system to discover the presence of an

existing or future fault, error, or failure in the behavior of the monitored system.
• The interaction between the monitored and monitoring systems is bounded in terms of time.
• The monitoring system has the capability to readily analyze the behavior of the monitored system to

detect or predict a fault, error, or failure.
• The experienced fault, error, or failure must not be persistent.
• The system is capable of compartmentalizing its state that is accurately representative of the progress of

the system since initialization at the time such state is captured.
• The system operation has well-defined intervals that enable the pattern to transition the system to a

known correct interval in response to an error or failure.
• The system is capable of saving its current state and loading a previously saved state.

Forces:

• The interactions between the monitoring and monitored systems may interfere with the operation of the
monitored system, specifically its performance.
• While the frequency and duration of these interactions must be minimized to reduce the monitoring

overhead, the interactions must be able to detect or predict a fault, error, or failure in the monitored
system.
• The diagnostic resolution, i.e., the degree of accuracy of the fault diagnosis, must be high to be effective.
• The ability of the system to rejuvenate subsystems or the entire system must permit system operation

that is functionally equivalent to the fault-, error-, and failure-free operation.
• The pattern requires additional persistent storage to capture system state, which increases overhead in

terms of resources required by the system.
• The creation frequency of system state snapshots determines overhead. More frequent snapshot creation

increases system execution time, but reduces the amount of lost work upon an error or failure.
• The time interval for the recovery of a system from a snapshot as well as the time interval to create a

snapshot must be less than the system’s MTBF to guarantee forward progress.

Solution: The Rejuvenation structural pattern alleviates the impact of a fault, error, or failure on system
operation by restoring the affected subsystem or system to a known correct state. It has a detection
component that is similar to the Monitoring or Prediction structural patterns and an additional
containment and mitigation component that acts upon the notification from the detection component and is
similar to the Rollback or Rollforward structural patterns.

The detection component enables the discovery of an existing or future fault, error, or failure in the system.
It enables its containment and mitigation by notifying the system about it with location and type
information. The solution requires a monitoring system, which may be a subsystem of the monitored
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system or an external independent system, to observe key parameters of the monitored system and to notify
the monitored system when these parameters deviate. This pattern does not specify the detailed method of
detection or prediction, which may be similar to the Monitoring or Prediction structural patterns.

The containment and mitigation component acts upon the notification from the detection component by
restoring the affected subsystem or system to a known correct state. The pattern relies on the creation of
system state snapshots and the maintenance of such snapshots on a persistent storage system that is not
affected by the fault, error, or failure, similar to the Rollback or Rollforward structural patterns. This
pattern does not specify the detailed method of containment and mitigation.

Upon notification, the most recent snapshot is used to recreate the last known correct state of the affected
subsystem or system. When the state is recovered, the operation of the system is resumed. Based on a
temporal view of the system’s progress, the error/failure recovery may be either backward to the time when
the snapshot occurred (rollback) or forward to the time when the event was detected or predicted
(rollforward).

Undetected (latent) errors that are either detected later or result in a different detected error or failure later
represent a problem, as the most recent or even more snapshots may contain an illegal system state. In this
case, the most recent correct snapshot may be used to recreate the last known error/failure-free state of the
system, skipping snapshots containing illegal state and going further back in time in terms of when the
snapshot was made.

The pattern may create subsystems out of the system to temporarily isolate, but not permanently exclude,
the affected subsystem. The interconnection between the subsystems is restored after subsystem or system
rejuvenation. The components of this pattern are illustrated in Figure 32.
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Figure 32. Rejuvenation pattern components

Capability: A system using this pattern is able to continue to operate in the presence of a non-permanent
fault, error, or failure with some interruption and some or no loss of progress. This pattern provides
detection/prediction, containment, and mitigation of a future or existing fault, error, or failure in the system
by restoring the affected subsystem or system to a known correct state. The flowchart and state diagram of
the pattern is shown in Figure 33 and its parameters in Table 16.

Protection Domain: The protection domain extends to the monitored system’s state that is not lost due to a
subsystem or system rejuvenation and to all of its resources that are able to be operate correctly after a
rejuvenation.

Resulting Context: A fault, error, or failure is prevented from affecting the correct operation of the system.
While functional equivalency to the original system configuration is maintained through rejuvenation,
progress in the system may be partially lost. The system is interrupted during rejuvenation in response to a
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Figure 33. Rejuvenation pattern flowchart and state diagram

Table 16. Rejuvenation pattern parameters

Parameter Definition
Te Time to execute system progress
Td Time to detect or predict a fault, error or failure
Ti Time to isolate the affected subsystem(s)
Tr Time to restore or replace the state of the affected (sub-) system(s)

detected or predicted fault, error, or failure. It is also interrupted during fault-, error-, and failure-free
operation for preserving system state. After rejuvenation, the system’s ability to prevent a fault, error, or
failure from affecting the correct operation of the system remains the same.

The Rejuvenation structural pattern may be used in conjunction with other structural patterns that
provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other structural pattern(s) and the Rejuvenation structural pattern covers for the
remaining error/failure types.

Performance: Rejuvenation pattern detection component is same as the Monitoring pattern (Eq. 33).
The containment and mitigation component impact the task total execution time same as in Rollback or
Rollforward pattern (described later). We define performance using the Rollback pattern. We calculate
performance under failure T by adding the time to detect or predict a fault, error, or failure Td with the total
number of input-execute-output cycles P in Eq. 34. Tl, Tr, and Ts represent Ti time to isolate the affected
subsystem(s) and Tr time to restore or replace the state of the affected subsystem(s). Assuming constant
times Td (td), Tl, Tr, and Ts, T can be defined by Eq. 35.
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τ
− 1

)
Ts +

TE

M
Te, f (τ + Ts) +

TE

M
(Tl + Tr) (35)

Reliability: Given that the Rejuvenation pattern enables the resumption of correct operation after an
error or failure, the reliability of a system employing it is defined by errors and failures that are not handled
by the pattern, such as failures of the persistent storage system. The reliability after applying the
Rejuvenation pattern R(t) can be obtained using the performance under failure T and the failure rate λu

(or MTTF Mu) of the unprotected part of the system (Eq. 36).

R(t) = e−λuT = e−T/Mu (36)

Availability: The availability of Rejuvenation pattern can be calculated using the task’s total execution
time without Rejuvenation pattern TE and the performance with Rejuvenation pattern T
(Equation 37). TE is PU and T is PU, SD and UD.

A =
tpu

tpu + tud + tsd
(37)

Examples: The targeted rejuvenation of data structures in system software, such as OS data structures,
permits avoidance of and recovery from errors or failures without the need to reinitialize the affected
compute node or the complete HPC system. The individual rejuvenation of HPC system services, such as
the parallel file system MDS or the system’s resource manager, allows dealing with errors or failures
without the need to reinitialize the entire HPC system.

Rationale: The Rejuvenation structural pattern prevents an existing or future fault, error, or failure from
affecting the correct operation of the system through restoring the operation of the system or the affected
subsystem. It relies on the capability to preserve system state before a detected or predicted fault, error, or
failure, often in a periodic fashion, and restore the previously preserved system state upon detection or
prediction of such an event to resume operation from a known correct state.

The pattern performs proactive actions, such as preserving system state, but mostly relies on reactive
actions after notification about a detected or predicted fault, error, or failure. Progress in the system may be
partially lost. Fault, error, or failure detection/prediction is part of the pattern, similar to the Monitoring
or Prediction structural patterns. Containment and mitigation is part of the pattern, similar to the
Rollback or Rollforward structural patterns. The containment and mitigation offered by this pattern are
independent from the type of fault, error, or failure. The pattern has very little to some design complexity
and has low dependence on a system’s architecture.
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Related Patterns: In contrast to the Monitoring and Prediction structural patterns, the Rejuvenation
structural pattern additionally offers containment and mitigation. In contrast to the Rollback and
Rollforward structural patterns, the Rejuvenation structural pattern does not necessarily restore the
preserved state of the entire system, as only the affected subsystem’s preserved state may be restored. In
contrast to the other structural patterns providing containment and mitigation, the Rejuvenation
structural pattern does not employ redundancy, or self-mask or self-correct illegal system state.

The Restructure, Rejuvenation, and Reinitialization structural patterns are derived from the
Reconfiguration architectural pattern. They provide the same detection/prediction capability, but offer
different containment and mitigation capabilities. The Restructure structural pattern reconfigures a
system of N subsystems to N − 1 functionally equivalent subsystems. The Rejuvenation structural
pattern restores the operation of the system or affected subsystem using previously preserves system state.
The Reinitialization structural pattern resets the system or affected subsystem to its initial state.

Known Uses:

• The Mini-Ckpts framework [79] enables HPC applications to survive OS errors and failures. The OS is
effectively rebooted, while the application and OS state directly relevant to the application is preserved
in persistent memory. This rejuvenates all OS state that is not directly relevant to the application.
• Individual services, such as the parallel file system MDS or the system’s resource manager, may be

rebooted to fix erroneous behavior or failures. The correct service state is maintained on persistent
storage to allow for resumption after reboot.
• OS structures may be regularly verified for correctness and rejuvenated if the correctness test fails.

Inherent redundancy, such as with doubly linked lists, or other methods, such as using the known size of
OS structures, are used to rejuvenate state, such as pointers.
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7.4.5 Reinitialization

Name: Reinitialization

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., resource underprovisioning) in an HPC environment causes a software,
such as an application, to experience an error or failure.

Context: The pattern is a derivative of the Reconfiguration architectural pattern and applies to a system
that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has well-defined parameters that enable a monitoring system to discover the presence of an

existing or future fault, error, or failure in the behavior of the monitored system.
• The interaction between the monitored and monitoring systems is bounded in terms of time.
• The monitoring system has the capability to readily analyze the behavior of the monitored system to

detect or predict a fault, error, or failure.
• The experienced fault, error, or failure must not be persistent.

Forces:

• The interactions between the monitoring and monitored systems may interfere with the operation of the
monitored system, specifically its performance.
• While the frequency and duration of these interactions must be minimized to reduce the monitoring

overhead, the interactions must be able to detect or predict a fault, error, or failure in the monitored
system.
• The diagnostic resolution, i.e., the degree of accuracy of the fault diagnosis, must be high to be effective.
• The ability of the system to reinitialize subsystems or the entire system must permit system operation

that is functionally equivalent to the fault-, error-, and failure-free operation.
• The reinitializing a subsystem or system is often a slow process and causes an interruption.

Solution: The Reinitialization structural pattern alleviates the impact of a fault, error, or failure on
system operation by restoring the affected subsystem or system to its initial state. It has a detection
component that is similar to the Monitoring or Prediction structural patterns and an additional
containment and mitigation component that acts upon the notification from the detection component.

The detection component enables the discovery of an existing or future fault, error, or failure in the system.
It enables its containment and mitigation by notifying the system about it with location and type
information. The solution requires a monitoring system, which may be a subsystem of the monitored
system or an external independent system, to observe key parameters of the monitored system and to notify
the monitored system when these parameters deviate. This pattern does not specify the detailed method of
detection or prediction, which may be similar to the Monitoring or Prediction structural patterns.

The containment and mitigation component acts upon the notification from the detection component by
restoring the affected subsystem or system to its initial state, i.e., a reset. The pattern may create
subsystems out of the system to temporarily isolate, but not permanently exclude, the affected subsystem.
The interconnection between the subsystems is restored after subsystem or system reinitialization. The
components of this pattern are illustrated in Figure 34.
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Figure 34. Reinitialization pattern components

Capability: A system using this pattern is able to continue to operate in the presence of a non-permanent
fault, error, or failure with significant interruption and all or at least some loss of progress. This pattern
provides detection/prediction, containment, and mitigation of a future or existing fault, error, or failure in
the system by restoring the affected subsystem or system to its initial state. The flowchart and state diagram
of the pattern is shown in Figure 35 and its parameters in Table 17.
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Figure 35. Reinitialization pattern flowchart and state diagram

Table 17. Reinitialization pattern parameters

Parameter Definition
Te Time to execute system progress
Td Time to detect or predict a fault, error or failure
Ti Time to isolate the affected subsystem(s)
Tr Time to reset the entire system or affected subsystem(s)

Protection Domain: The protection domain extends to the monitored system’s state that is not lost due to a
subsystem or system reinitialization and to all of its resources that are able to be operate correctly after a
reinitialization.

Resulting Context: A fault, error, or failure is prevented from affecting the correct operation of the system.
While functional equivalency to the original system configuration is maintained through reinitialization,
progress in the system is partially or completely lost. The system is interrupted during reinitialization in
response to a detected or predicted fault, error, or failure, but is not interrupted during fault-, error-, and
failure-free operation. After reinitialization, the system’s ability to prevent a fault, error, or failure from
affecting the correct operation of the system remains the same.
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The Reinitialization structural pattern may be used in conjunction with other structural patterns that
provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other structural pattern(s) and the Reinitialization structural pattern covers for the
remaining error/failure types.

Performance: Reinitialization pattern failure-free performance T f=0 is defined by the task’s total
execution time without any resilience strategy TE and the time to detect or predict a fault, error, or failure
Td with the total number of input-execute-output cycles P. The performance under failure T is defined by
T f=0, plus the time Ti to isolate the affected subsystem(s), the time Tr to remove the affected subsystem(s),
and the time for work lost (which is assumed to be half of TE), where the total time to isolate the affected
subsystem(s), to remove the affected subsystem(s), and the time for work lost is number of faults, errors, or
failures time Ti, Tr, and half of TE . Assuming constant times Td (td), Ti, and, Tr, T can be defined by Eq.
38.

T = TE + P(td) +
TE

M
(Ti + Tr + TE ∗ 0.5) (38)

Reliability: Given that the Reinitialization pattern enables the resumption of correct operation after an
error or failure, the reliability of a system employing it is defined by errors and failures that are not handled
by the pattern, such as failures of the persistent storage system. The reliability after applying the
Reinitialization pattern R(t) can be obtained using the performance under failure T and the failure rate
λu (or MTTF Mu) of the unprotected part of the system (Eq. 39).

R(t) = e−λuT = e−T/Mu (39)

Availability: The availability of Reinitialization pattern can be calculated using the task’s total
execution time without Reinitialization pattern TE and the performance with Reinitialization
pattern T (Equation 40). TE is PU and T is PU, SD and UD.

A =
tpu

tpu + tud + tsd
(40)

Examples: A malfunctioning compute node may be rebooted.

Rationale: The Reinitialization structural pattern prevents an existing or future fault, error, or failure
from affecting the correct operation of the system through restarting the operation of the system or the
affected subsystem. It relies on the ability to assume a configuration in response to a detected or predicted
fault, error, or failure that retains functional equivalency with the original system configuration. The pattern
may perform proactive actions, such as restarting the system or subsystem before a fault, error, or failure
impacts its operation, or reactive actions, such as restarting the system or subsystem upon such an event.
Progress in the system is partially or completely lost. Fault, error, or failure detection/prediction is part of
the pattern, similar to the Monitoring or Prediction structural patterns. The containment and mitigation
offered by this pattern are independent from the type of fault, error, or failure. The pattern has very little
design complexity and has low dependence on a system’s architecture.
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Related Patterns: In contrast to the Monitoring and Prediction structural patterns, the
Reinitialization structural pattern additionally offers containment and mitigation. In contrast to many
other structural patterns providing containment and mitigation, the Reinitialization structural pattern
does not restore previously preserved system state, employ redundancy, or self-mask or self-correct illegal
system state.

The Restructure, Rejuvenation, and Reinitialization structural patterns are derived from the
Reconfiguration architectural pattern. They provide the same detection/prediction capability, but offer
different containment and mitigation capabilities. The Restructure structural pattern reconfigures a
system of N subsystems to N − 1 functionally equivalent subsystems. The Rejuvenation structural
pattern restores the operation of the system or affected subsystem using previously preserves system state.
The Reinitialization structural pattern resets the system or affected subsystem to its initial state.

Known Uses:

• Various cluster management software systems, such as the Cray HSS [102], enable malfunctioning
nodes in the cluster to be reset. The HSS initiates a reboot sequence for a failing node without disrupting
the remaining nodes in the system.
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7.4.6 Rollback

Name: Rollback

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., resource underprovisioning) in an HPC environment causes a software,
such as an application, to experience an error due to loss of or corrupted state, and potentially a subsequent
failure.

Context: The pattern is a derivative of the Checkpoint Recovery architectural pattern. It applies to a
system that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The error or failure in the system that the pattern handles must be detected, as the pattern offers no error

or failure detection.
• The system is capable of compartmentalizing its state that is accurately representative of the progress of

the system since initialization at the time such state is captured.
• The system operation has well-defined intervals that enable the pattern to transition the system to a

known correct interval in response to an error or failure.
• The system is capable of saving its current state and loading a previously saved state.

Forces:

• The pattern requires additional storage to capture system state or to log messages or events, which
increases overhead in terms of resources required by the system.
• The amount of state captured during each creation of a recovery point incurs storage space and execution

time overheads.
• The creation frequency of system state snapshots determines overhead. More frequent snapshot creation

increases system execution time, but reduces the amount of lost work upon an error or failure.
• The time interval for the recovery of a system from a snapshot as well as the time interval to create a

snapshot must be less than the system’s MTBF to guarantee forward progress.

Solution: The Rollback structural pattern enables the resumption of correct operation of a system
impacted by an error or failure. It supports resilient operation by restoring the system to a known correct
state in the event of an error or failure. Rollback solutions are classified into checkpoint-based and
log-based strategies.

The checkpoint-based strategy relies on the creation of system state snapshots and the maintenance of such
checkpoints on a persistent storage system that is not affected by the error or failure. Upon detection of an
error or failure, the most recent snapshot is used to recreate the last known error/failure-free state of the
system. The log-based strategy relies on logging, i.e., storing the information of, events, such as messages
sent between different parts of the system or to the system as input, on a persistent storage system that is
not affected by the error or failure. Upon detection of an error or failure, the log is replayed to recreate the
last known error/failure-free state of the system. In contrast to the checkpoint-based strategy, the log-based
strategy is able to offer resilience in the presence of non-deterministic events and for non-deterministic
systems, as replaying the event log deterministically recreates system state.

The checkpoint and log-based strategies may be used together, where events are logged in-between
snapshots. With both strategies, the operation of the system is resumed when the system state is recovered.
Based on a temporal view of the system’s progress, the error/failure recovery is backward to the time when
the snapshot occurred. When the system is partitioned into several subsystems, the pattern must coordinate
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the process of checkpointing. The pattern may use the following checkpointing methods:

• Coordinated: The subsystems to coordinate the process of creating checkpoints. The coordination
enables a globally consistent checkpoint state, which simplifies the recovery.
• Uncoordinated: The subsystems each independently decides when to create their respective checkpoints.

This has the potential to cause a domino effect, where rollbacks propagate among system components
due to lack of consistency, potentially back to the initial state.
• Communication-based: Each subsystem creates local checkpoints, but periodically also enforces

coordinated checkpoints between all subsystems as backstop for the domino effect.

The log-based recovery is based on a piecewise deterministic assumption, in which the system identifies
nondeterministic events and the information necessary to replay the event during recovery is captured and
logged. The following logging protocols for non-deterministic events may be used by the pattern:

• Pessimistic: The protocol assumes that an error or failure occurs after a nondeterministic event in the
system. Therefore, the determinant of each nondeterministic event is immediately logged to persistent
storage. The error/failure-free overhead of this approach is high.
• Optimistic: The determinants are held in a volatile storage and written to persistent storage

asynchronously. This protocol makes the optimistic assumption that the logging is completed before the
occurrence of an error or failure. The error/failure-free overhead of this approach is low.
• Causal: The protocol provides a balanced approach by avoiding immediate writing to persistent storage

(much like the optimistic protocol to reduce error/failure-free overhead), but each subsystem commits
output independently (like the pessimistic protocol to prevent creation of orphan subsystems).

Undetected (latent) errors that are either detected later or result in a different detected error or failure later
represent a problem, as the most recent or even more snapshots may contain an illegal system state. In this
case, the most recent correct snapshot may be used to recreate the last known error/failure-free state of the
system, skipping snapshots containing illegal state and going further back in time in terms of when the
snapshot was made. The components of this pattern are illustrated in Figure 36.

Protection Domain

(Sub-)
System

(Sub-)
System...

Persistent
Storage

Checkpoint
Recovery
Manager

State

Protection Domain

(Sub-)
System

(Sub-)
System...

Persistent
Storage

Checkpoint
Recovery
Manager

StateControl

Protection Domain

(Sub-)
System

(Sub-)
System...

Checkpoint Error/Failure Rollback

Control

Figure 36. Rollback pattern components

Capability: A system using this pattern is able to continue to operate in the presence of an error or failure
with some interruption and some loss of progress. This pattern provides mitigation of an error or failure in
the system by preserving system state on a persistent storage system before an error or failure, using a
checkpoint-based and or log-based strategy, and restoring the previously preserved system state upon such
an event to resume operation from a previously preserved known correct state. The flowchart and state
diagram of the pattern is shown in Figure 37 and its parameters in Table 18.
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Figure 37. Rollback pattern flowchart and state diagram

Table 18. Rollback pattern parameters

Parameter Definition
Te Time to execute (sub-) system progress
Td Time to detect an error/failure (not part of this pattern, but shown for completeness)
Tl Time to load consistent (sub-) system state and progress from storage
Tr Time to rollback to the last known correct state (initial and/or previously saved)
Ts Time to save (sub-) system state and progress to storage

Protection Domain: The protection domain extends to the previously preserved system state that can be
recreated using the system state captured by snapshots stored on persistent storage.

Resulting Context: Correct operation is resumed after an error or failure impacted the system. Progress in
the system is lost after an error or failure, since the recovery is only able to recreate the system state to the
time when the snapshot occurred. The system is interrupted during error-/failure-free operation for creating
system state snapshots and maintaining them on a persistent storage system. The system is interrupted
upon an error or failure for recreating the last known error/failure-free state of the system.

A trade-off exists between the creation frequency of system state snapshots and/or event logging and the
corresponding execution time overhead during error-/failure-free operation vs. the amount of lost progress.
The optimal solution of this trade-off depends on the MTBF, the time it takes to save and load a system
state snapshot, the time it takes to log events, and the time it takes to recreate the system state.

The Rollback structural pattern does not provide error or failure detection and may be used in conjunction
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with the Monitoring and/or Prediction structural patterns to be fully functional. The Rollback
structural pattern may be used in conjunction with other structural patterns that provide containment and
mitigation in a complementary fashion, where some error/failure types are covered by the other structural
pattern(s) and the Rollback structural pattern covers for the remaining error/failure types.

Performance: The failure-free performance T f=0 of the Rollback pattern is defined by the task’s total
execution time without any resilience strategy TE and the time spent on saving system state and progress to
storage Ts during task execution with a total number of checkpoints N. Assuming a constant checkpoint
interval τ, the total number of checkpoints N is defined by the task’s total execution time without any
resilience strategy TE divided by τ. Td, time to detect an error/failure, is not part of this pattern.

The performance under failure T is defined by the failure-free performance T f=0, plus the total lost time to
execute system progress TEL and the total time to load consistent system state and progress from storage
and to rollback to the last known correct state TR (Eq. 41). Assuming constant times Ts, Tl, and Tr, the
performance under failure T can be further simplified with a total number of failures (Eq. 42). T can be
calculated [52] using a first-order (Eq. 43) and a higher-order (Eq. 44) approximation for an optimal
checkpoint interval τ.

T = TE + TS + TEL + TR (41)
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Reliability: Given that the Rollback pattern enables the resumption of correct operation after an error or
failure, the reliability of a system employing it is defined by errors and failures that are not handled by the
pattern, such as failures of the persistent storage system. The reliability after applying the Rollback
pattern R(t) can be obtained using the performance under failure T and the failure rate λu (or MTTF Mu) of
the unprotected part of the system (Eq. 45).

R(t) = e−λuT = e−T/Mu (45)

Availability: The availability of Rollback pattern can be calculated using the task’s total execution time
without Rollback pattern TE and the performance with Rollback pattern T (Equation 46). TE is PU and
T is PU, SD and UD.

A =
tpu

tpu + tud + tsd
(46)
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Examples: Many HPC applications implement application-level rollback by regularly saving intermediate
results to stable storage as checkpoints and supporting the capability to load such a checkpoint in addition
to some or all of the original data upon restart to recreate the last known correct state. Library-based
solutions, such as FTI [27], permit tracking of state that needs to be saved and restored. System-level
solutions, such asDMTCP [18], support transparent state saving and restoration using OS support.

Rationale: The Rollback structural pattern enables a system to tolerate an error or failure through
resumption of correct operation after impact. It relies on the capability to preserve system state before an
error or failure, often in a periodic fashion, and restore the previously preserved system state upon such an
event to resume operation from a known correct state. The pattern performs proactive actions, such as
preserving system state, but mostly relies on reactive actions after an error or failure impacted the system.

Progress in the system is lost after an error or failure, as the recovery is only able to recreate the system
state to the time when the snapshot occurred. Error or failure detection is not part of the pattern. The
preserved system state is managed on persistent storage, which is not part of the protection domain. The
containment and mitigation offered by this pattern are independent from the type of error or failure. The
pattern has very little design complexity and has low dependence on a system’s architecture, which makes
it appealing as a general and portable solution.

Related Patterns: The Rollback and Rollforward structural patterns are both derived from the
Checkpoint Recovery architecture pattern. While the Rollback structural pattern’s error/failure
recovery is backward to the time when the snapshot occurred, the Rollforward structural pattern’s
error/failure recovery is forward to the time when the error/failure event occurred.

Known Uses:

• Many HPC applications implement application-level rollback by regularly saving intermediate results to
stable storage as checkpoints and supporting the capability to load such a checkpoint in addition to some
or all of the original data upon restart to recreate the last known correct state.
• FTI [27] is a library-based checkpoint/restart solution that supports rollback recovery by tracking, saving

and restoring data structures in multilevel checkpoint storage.
• The libckpt [148] is a user-level, library-based checkpointing solution for rollback recovery that supports

explicit directives to determine the scope of an application’s checkpointed state.
• The SCR [130] library uses multilevel checkpointing for rollback recovery; it creates frequent

inexpensive checkpoints that can recover the loss of a few nodes to the local node-level storage and
writes complete checkpoints that can withstand an entire system failure to the parallel file system.
• The CoCheck checkpoint/restart supports rollback recovery for an MPI implementation; for the

coordination of the checkpoints, CoCheck uses a special process [172]. The Condor checkpoint/restart
facility is enabled by the user by linking the program source code with the condor library [121].
• BLCR is a process-level checkpoint/restart module for the Linus OS. It has been used in conjunction

with LAM/MPI to permit OS-level checkpoint/restart for MPI applications [184].
• Improvements to system-level rollback solutions, such as BLCR, include incremental checkpoint/restart,

where only changes between two checkpoints are being saved and the rollback performs a reconstruction
of correct state from multiple incremental checkpoints [185].
• DMTCP [18] is a transparent checkpoint/restart solution for multi-threaded and MPI applications.
• The local failure local recovery protocol uses rollback of only some processes with locally stored

checkpoints to create correct state [177].
• Message logging protocols have been implemented in OpenMPI to support faster failure recovery using

rollback with message replay [35].
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7.4.7 Rollforward

Name: Rollforward

Problem: A hardware or software error or subsystem failure due to a physical fault (e.g., wear-out or
destruction) or a design fault (e.g., resource underprovisioning) in an HPC environment causes a software,
such as an application, to experience an error due to loss of or corrupted state, and potentially a subsequent
failure.

Context: The pattern is a derivative of the Checkpoint Recovery architectural pattern. It applies to a
system that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The error or failure in the system that the pattern handles must be detected, as the pattern offers no error

or failure detection.
• The system is capable of compartmentalizing its state that is accurately representative of the progress of

the system since initialization at the time such state is captured.
• The system operation has well-defined intervals that enable the pattern to transition the system to a

known correct interval in response to an error or failure.
• The system is capable of saving its current state and loading a previously saved state.

Forces:

• The pattern requires additional storage to capture system state or to log messages or events, which
increases overhead in terms of resources required by the system.
• The amount of state captured during each creation of a recovery point incurs storage space and execution

time overheads.
• The creation frequency of system state snapshots determines overhead. More frequent snapshot creation

increases system execution time, but reduces the amount of lost work upon an error or failure.
• The time interval for the recovery of a system from a snapshot as well as the time interval to create a

snapshot must be less than the system’s MTBF to guarantee forward progress.

Solution: The Rollforward structural pattern enables the resumption of correct operation of a system
impacted by an error or failure. It supports resilient operation by restoring the system to a known correct
state in the event of an error or failure. Rollback solutions are classified into checkpoint-based and
log-based strategies.

The checkpoint-based strategy relies on the creation of system state snapshots and the maintenance of such
checkpoints on a persistent storage system that is not affected by the error or failure. Upon detection of an
error or failure, the most recent snapshot is used to recreate the last known error/failure-free state of the
system. The log-based strategy relies on logging, i.e., storing the information of, events, such as messages
sent between different parts of the system or to the system as input, on a persistent storage system that is
not affected by the error or failure. Upon detection of an error or failure, the log is replayed to recreate the
last known error/failure-free state of the system. In contrast to the checkpoint-based strategy, the log-based
strategy is able to offer resilience in the presence of non-deterministic events and for non-deterministic
systems, as replaying the event log deterministically recreates system state.

The checkpoint and log-based strategies may be used together, where events are logged in-between
snapshots. With both strategies, the operation of the system is resumed when the system state is recovered.
Based on a temporal view of the system’s progress, the error/failure recovery is forward to the time when
the error/failure occurred. The pattern must include a mechanism to facilitate restoring the system state
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from the last snapshot up to the point of the error or failure. This mechanism may be based on either:

• Log-based protocols that are based on the piecewise deterministic assumption, in which the system
identifies nondeterministic events and the information necessary to replay the event during recovery is
captured and logged. The following logging protocols for non-deterministic events may be used:
– Pessimistic: The protocol assumes that an error or failure occurs after a nondeterministic event in the

system. Therefore, the determinant of each nondeterministic event is immediately logged to persistent
storage. The error/failure-free overhead of this approach is high.

– Optimistic: The determinants are held in a volatile storage and written to persistent storage
asynchronously. This protocol makes the optimistic assumption that the logging is completed before
the occurrence of an error or failure. The error/failure-free overhead of this approach is low.

– Causal: The protocol provides a balanced approach by avoiding immediate writing to persistent
storage (much like the optimistic protocol to reduce error/failure-free overhead), but each subsystem
commits output independently (like the pessimistic protocol to prevent creation of orphan
subsystems).

• Online recovery protocols, which do not rely on event logging for rollforward of the system. These
protocols may rely on inference to recreate state or on self-correction.

Undetected (latent) errors that are either detected later or result in a different detected error or failure later
represent a problem, as the most recent or even more snapshots may contain an illegal system state. In this
case, the most recent correct snapshot may be used to recreate the last known error/failure-free state of the
system, skipping snapshots containing illegal state and going further back in time in terms of when the
snapshot was made. The components of this pattern are illustrated in Figure 38.
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Figure 38. Rollforward pattern components

Capability: A system using this pattern is able to continue to operate in the presence of an error or failure
with some interruption. This pattern provides mitigation of an error or failure in the system by preserving
system state on a persistent storage system before an error or failure, using a checkpoint-based and or
log-based strategy, and restoring the previously preserved system state upon such an event and rolling it
forward to resume operation from the known correct state right before the event. The flowchart and state
diagram of the pattern is shown in Figure 39 and its parameters in Table 19.

Protection Domain: The protection domain extends to the system state before an error or failure that can
be recreated using the system state captured by snapshots stored on persistent storage.

Resulting Context: Correct operation is resumed after an error or failure impacted the system. Progress in
the system is not lost, since the recovery is able to recreate the system state to the time when the
error/failure occurred. The system is interrupted during error-/failure-free operation for creating system
state snapshots and maintaining them on a persistent storage system. The system is interrupted upon an
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Figure 39. Rollforward pattern flowchart and state diagram

Table 19. Rollforward pattern parameters

Parameter Definition
Te Time to execute (sub-) system progress
Td Time to detect an error/failure (not part of this pattern, but shown for completeness)
Tl Time to load consistent (sub-) system state and progress from storage
Tr Time to rollforward to the correct state before the event
Ts Time to save (sub-) system state and progress to storage

error or failure for recreating the last known error/failure-free state of the system.

A trade-off exists between the creation frequency of system state snapshots and/or event logging and the
corresponding execution time overhead during error-/failure-free operation vs. the amount of work
required to recreate the state in the case. The optimal solution of this trade-off depends on the MTBF, the
time it takes to save and load a system state snapshot, the time it takes to log events, and the time it takes to
recreate the system state.

The Rollforward structural pattern does not provide error or failure detection and may be used in
conjunction with the Monitoring and/or Prediction structural patterns to be fully functional. The
Rollforward structural pattern may be used in conjunction with other structural patterns that provide
containment and mitigation in a complementary fashion, where some error/failure types are covered by the
other structural pattern(s) and the Rollforward structural pattern covers for the remaining error/failure
types.
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Performance: The Rollforward pattern avoids losing any work as it recovers the system to stable state
immediately before the error or failure event. Assuming constant times Ts, Tl, and Tr, the performance T
can be calculated by getting rid of lost work TEL in Eq. 47 (Eq. 48).
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Reliability: Given that the Rollforward pattern enables the resumption of correct operation after an error
or failure, the reliability of a system employing it is defined by errors and failures that are not handled by
the pattern, such as failures of the persistent storage system. The reliability after applying the
Rollforward pattern R(t) can be obtained using the performance under failure T and the failure rate λu (or
MTTF Mu) of the unprotected part of the system (Eq. 49).

R(t) = e−λuT = e−T/Mu (49)

Availability: The availability of Rollforward pattern can be calculated using the task’s total execution
time without Rollforward pattern TE and the performance with Rollforward pattern T (Equation 50).
TE is PU and T is PU, SD and UD.

A =
tpu

tpu + tud + tsd
(50)

Examples: GVR [47] is a runtime system that provides fault tolerance to applications by versioning
distributed arrays for rollforward recovery, while the checkpoint-on-failure protocol [18] for MPI
applications leverages the features of a high-quality fault-tolerant MPI implementation. In either case,
algorithm-specific knowledge is needed to perform rollforward recovery, Some ABFT solutions [122] can
utilize the original or previously saved data as a replacement for lost or erroneous data and rollforward
recover their state to the point at which the error/failure event occurred.

Rationale: The Rollforward structural pattern enables a system to tolerate an error or failure through
resumption of correct operation after impact. It relies on the capability to preserve system state before an
error or failure, often in a periodic fashion, and restore the previously preserved system state upon such an
event to resume operation from a known correct state. The pattern performs proactive actions, such as
preserving system state, but mostly relies on reactive actions after an error or failure impacted the system.

Progress in the system is not lost, since the recovery is able to recreate the system state to the time when
the error/failure occurred. Error or failure detection is not part of the pattern. The preserved system state is
managed on persistent storage, which is not part of the protection domain. The containment and mitigation
offered by this pattern are independent from the type of error or failure. The pattern has some design
complexity, as a mechanism to restore the system state from the last snapshot up to the point of the error or
failure is needed. The pattern has low dependence on a system’s architecture.
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Related Patterns: The Rollback and Rollforward structural patterns are both derived from the
Checkpoint Recovery architecture pattern. While the Rollback structural pattern’s error/failure
recovery is backward to the time when the snapshot occurred, the Rollforward structural pattern’s
error/failure recovery is forward to the time when the error/failure event occurred.

Known Uses:

• GVR [47] is a runtime system that provides fault tolerance to applications by versioning distributed
arrays. It supports rollforward recovery based on application-specified mechanisms. Past versions of lost
or erroneous data can be retrieved and used for computing the state at which the error/failure event
occurred.
• The checkpoint-on-failure protocol [18] for MPI applications leverages the features of a high-quality

fault-tolerant MPI implementation and algorithm-based rollforward recovery. It provides the ability for
all healthy processes to continue to operate and perform rollforward recovery using message passing.
• Some ABFT solutions [122] can utilize the original or previously saved data as a replacement for lost or

erroneous data and rollforward recover their state to the point at which the error/failure event occurred.
This is especially true for any reversible algorithms, where parts of the algorithm would temporarily
perform rollback computation to allow the rollforward computation to catch up and maintain correctness.
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7.4.8 Forward Error Correction Code

Name: Forward Error Correction Code

Problem: A hardware error or subsystem failure due to a physical fault (e.g., wear-out or destruction) in an
HPC environment causes a software, such as a system service or an application, to experience an error and
potentially a subsequent failure.

Context: The pattern is a derivative of the Redundancy architectural pattern and applies to a system that
has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system state is represented using a sequence of symbols.

Forces:

• The pattern introduces an execution time and/or resource requirement (storage space, computational
capability, etc.) penalty independent of whether an error or failure occurs during system operation or not.
• The scope and strength of the redundancy employed by the pattern determine its execution time and

resource requirement overhead.
• The number of errors and failures that are detectable and correctable is limited by the amount of

redundant information contained in the forward error correction code.

Solution: The Forward Error Correction Code structural pattern enables the continuous correct
operation of a system impacted by an error or failure. It supports resilient operation by applying
redundancy to system state and optionally to system resources. This redundancy is in the form of encoded
system state. The pattern requires very well defined input and output to permit input encoding and output
decoding. Input is encoded, processed redundantly in an encoded fashion by the system, and the output is
then decoded. The decoding corrects an error or failure. The scope and strength of the redundancy are
defined by the encoding/decoding.

Redundancy can be in time, meaning the same system resources process the encoded input in time.
Redundancy can also be in space, meaning additional (redundant) system resources are used, such that the
different system resources process the encoded input in space. Redundancy in time saves system resources,
while redundancy in space offers more error/failure coverage. A mix between redundancy in time and space
is possible as well, where there is more encoded system state than additional (redundant) system resources.

Encoding in its simplest form may be just repeating the input for redundancy in time, where the decoding
just compares subsequent outputs. More involved encoding/processing/decoding schemes involve k
information symbols and r redundant information symbols, where there may be less than, equal to or more
than r symbols than k symbols. In the previously mentioned simplest form, the k and r symbols are the
same and there may be 1 or more r symbols. The components of this pattern are illustrated in Figure 40.

Capability: A system using this pattern is able to continue to operate in the presence of an error or failure
with no interruption. This pattern provides error and/or failure detection in the system by applying
redundancy to system state in the form of encoded system state. The pattern provides mitigation of an error
or failure in the system by applying redundancy to system state and optionally to system resources, such
that the system continues to operate correctly in the presence of such an event. The flowchart and state
diagram of the pattern is shown in Figure 41 and its parameters in Table 20.

Protection Domain: The protection domain extends to the encoded system state and to the system
resources processing it.
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Table 20. Forward Error Correction Code pattern parameters

Parameter Definition
Ta Time to activate the redundant information storage
Ten Time to encode the input for the (sub-) system
Tex Time to execute (sub-) system progress
Td Time to decode the output from the (sub-) system and detect
Tc Time to correct using redundant information

Resulting Context: Correct operation is performed despite an error or failure impacting the system.
Progress in the system is not lost due to an error or failure. The system is not interrupted during
error-/failure-free operation or when encountering an error or failure. Resource usage in time or space is
increased according to the amount of redundancy employed in the form of encoded system state and due to
the encoding of input and decoding and correction of output.

A trade-off exists between the amount of redundancy employed and the number of errors and/or failures
that can be tolerated at the same time and/or in time. More redundancy tolerates generally more errors
and/or failures, but requires either more resources or more execution time.

The Forward Error Correction Code structural pattern may be used in conjunction with other
structural patterns that provide containment and mitigation in a complementary fashion, where some
error/failure types are covered by the other structural pattern(s) and the Forward Error Correction
Code structural pattern covers for the remaining error/failure types.

Performance: The failure free performance T f=0 of the Forward Error Correction Code pattern is
defined by the task total execution time without any resilience strategy TE , the total time to activate the
redundant information storage Ta, the time to encode Ten, and the time to decode and detect Td with the
total number of input-execute-output cycles P. The performance under failure T is defined by T f=0 plus the
time Tc to correct using redundant information, where total time to correct using redundant information is
number of error or failure times Tc. Assuming constant times Ta, Ten (ten), Td (td), and Tc, T can be defined
by Eq. 51.

T = TE + Ta + P(ten + td) +
TE

M
(Tc) (51)
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Figure 41. Forward Error Correction Code pattern flowchart and state diagram

Reliability: Given that the Forward Error Correction Code pattern enables the resumption of correct
operation after an error or failure, the reliability of a system employing it is defined by errors and failures
that are not handled by the pattern, such as failures of the persistent storage system. The reliability after
applying the Forward Error Correction Code pattern R(t) can be obtained using the performance
under failure T and the failure rate λu (or MTTF Mu) of the unprotected part of the system (Eq. 52).

R(t) = e−λuT = e−T/Mu (52)

Availability: The availability of Forward Error Correction Code pattern can be calculated using the
task’s total execution time without Forward Error Correction Code pattern TE and the performance
with Forward Error Correction Code pattern T (Equation 53). TE is PU and T is PU, SD and UD.

A =
tpu

tpu + tud + tsd
(53)

Examples: There are various schemes that enable forward error correction in memory devices, storage
systems as well as communication channels. Based on time and space overhead constraints, schemes of
different detection and correction capabilities are used. Popular examples include parity bits, checksums,
Hamming codes, hash function codes. More elaborate schemes such as systematic cyclic block codes
include binary BCH, Reed-Solomon and CRC. Forward error correction can be found in HPC storage
systems with RAID, the InfiniBand interconnect [9], the memory hierarchy [131, 59], ABFT solutions [95]
and coded computing [106].
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Rationale: The Forward Error Correction Code structural pattern enables a system to tolerate an
error or failure through continuation of correct operation after impact. It relies on system state redundancy
in the form of encoded system state. The pattern performs mostly proactive actions, such as maintaining
redundancy. Error or failure detection is part of the pattern in the form of output decoding. The pattern has
high design complexity due to the need for encoding input, decoding output, and processing encoded
system state.

Related Patterns: The Forward Error Correction Code, Active/Standby, N-modular
Redundancy, N-version Design, and Recovery Block structural patterns are based on similar
inclusion of redundancy to compensate for errors or failures. The Active/Standby structural pattern
offers a lower degree of redundancy using N functionally identical replicas. The N-modular Redundancy
structural pattern offers a higher degree of redundancy than the Active/Standby structural pattern, also
using N functionally identical replicas. It is sometimes referred to as Active/Active. The N-version
Design structural pattern provides a different type of redundancy using N functionally equivalent alternate
system implementations in an Active/Active fashion. The Recovery Block structural pattern offers a
different type of redundancy with a functionally equivalent alternate system implementation encapsulated
in a recovery block that is executed after an error or failure of the system.

Known Uses:

• HPC storage systems use forward error correction in the form of RAID.
• InfiniBand, which is among the most widely deployed high-speed interconnect employs forward error

correction in the InfiniBand devices, including adapters and switches, to fix bit errors throughout the
network [9]. The forward error correction allows reduction in data re-transmission between the
end-nodes.
• HPC systems use memory DIMMs that employ ECC, which is based on forward error correction by

maintaining redundant bits per memory line to support SECDED for bit flips [131].
• Chipkill [59] uses forward error correction across memory chips atop ECC to perform SECDED at a

symbol-level granularity.
• Some ABFT methods use schemes, such as checksums, that perform forward error correction at the

application-level [95].
• Coded computing uses algorithmic forward error correction. A recent solution used coded computing for

parallel matrix-matrix multiplication [106].
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7.4.9 Active/Standby

Name: Active/Standby

Problem: A hardware error or subsystem failure due to a physical fault (e.g., wear-out or destruction) in an
HPC environment causes a software, such as a system service or an application, to experience an error and
potentially a subsequent failure.

Context: The pattern is a derivative of the Redundancy and Fault Diagnosis architectural patterns and
it applies to a system that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has a modular design that has a well-defined scope and a set of inputs and outputs.

Forces:

• The pattern introduces a resource requirement (storage space, computational capability, etc.) penalty
independent of whether an error or failure occurs during system operation or not.
• The pattern may introduce an execution time penalty when an error or failure occurs during system

operation.
• The scope and strength of the redundancy employed by the pattern determine its execution time and

resource requirement overhead.

Solution: The Active/Standby structural pattern enables the continuous correct operation of a system
impacted by an error or failure. It supports resilient operation by applying redundancy to system state and
to system resources. This redundancy is in the form of N functionally identical replicas, using redundancy
in space and potentially in time. The pattern requires very well defined input and output to permit
replication. The pattern can operate in the following modes:

• Active/Hot-Standby: One active system performs the system’s operations, while one or more standby
replica systems perform the same operations or obtain an instant and consistent copy of the system state
from the active system on change. If the standby systems perform the same operations, input is
replicated to and processed by all standby systems. If the standby systems obtain an instant and
consistent copy of the system state, the active system processes the input and system state is replicated
upon change to all standby systems. This may be performed using a reliable communication protocol,
such as a total order broadcast, or a shared stable storage, such as a shared hard disk or a replicated block
device. The output is provided only by the active system. The standby systems monitor the active system
for any error or failure, such as using a heartbeat. Upon a detected error or failure, a fail-over is
performed from the active system to one of the standby systems, making that standby system to become
the active system. The fail-over causes only very minimal interruption and no loss of system progress.
• Active/Warm-Standby: One active system performs the system’s operations, while one or more standby

replica systems obtain a consistent copy of the system state from the active system in regular intervals.
The active system processes the input and system state is replicated in regular intervals to all standby
systems. This may be performed using a reliable communication protocol, such as a total order
broadcast, or a shared stable storage, such as a shared hard disk or a replicated block device. The output
is provided only by the active system. The standby systems monitor the active system for any error or
failure, such as using a heartbeat. Upon a detected error or failure, a fail-over is performed from the
active system to one of the standby systems, making that standby system to become the active system.
The fail-over causes only very minimal interruption. However, system progress between the last system
state replication and the error or failure is lost.
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• Active/Cold-Standby: One active system performs the system’s operations, while one or more standby
replica systems are not operating at all. The active system processes the input and provides the output.
The active system is monitored for any error or failure bey either an external system, such as using a
heartbeat, or by a human. Upon a detected error or failure, a fail-over is performed from the active
system to one of the standby systems, making that standby system to become the active system. The
fail-over can cause substantial interruption, as it may be performed by a human and not automatically by
the external monitoring system. Since there is no state replication, all system progress is lost.

The components of this pattern are illustrated in Figure 42.
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Figure 42. Active/Standby pattern components

Capability: A system using this pattern is able to continue to operate in the presence of an error or failure
with none to significant interruption and loss of progress, depending on the active/standby mode. This
pattern provides error and/or failure detection and containment in the system by monitoring the active
system. The pattern provides mitigation of an error or failure in the system by applying redundancy to
system state and system resources, such that the system continues to operate correctly in the presence of
such an event. The flowchart and state diagram of the pattern is shown in Figure 43 and its parameters in
Table 21.

Table 21. Active/Standby pattern parameters

Parameter Definition
Ta Time to activate the active and standby (sub-) systems
Ti Time to replicate the input to the active and standby (sub-) systems
Te Time to execute progress on the active (sub-) system
Td Time to detect an error in or failure of the active (sub-) system
T f Time to isolate the active (sub-) system and fail-over to a standby (sub-) system
Tr Time to replicate system state from the active (sub-) system to the standby (sub-) systems

Protection Domain: The protection domain extends to the system state and the system resources that
implement the N functionally identical replica systems.

Resulting Context: Correct operation is performed despite an error or failure impacting the system.
Progress in the system may be lost due to an error or failure, depending on the active/standby mode. The
system is not interrupted during error-/failure-free operation. It is interrupted when encountering an error
or failure. Resource usage in space is increased according to the amount of redundancy employed in the
form of N functionally identical replicas and due to the replication of input and or system state.
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Figure 43. Active/Standby pattern flowchart and state diagram

A trade-off exists between the amount of redundancy employed and the number of errors and/or failures
that can be tolerated at the same time and/or in time. More redundancy tolerates generally more errors
and/or failures, but requires either more resources or more execution time.

The Active/Standby structural pattern may be used in conjunction with other structural patterns that
provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other structural pattern(s) and the Active/Standby structural pattern covers for the
remaining error/failure types.

Performance: The failure-free performance T f=0 of the Active/Standby pattern is defined by the task
total execution time without any resilience strategy TE , the total time to activate the active and (sub-)
standby systems Ta, the time to replicate the input to the active and standby (sub-) systems Ti, the time to
detect an error in or failure of the active (sub-) system Td, and the time to replicate system state from the
active (sub-) system to the standby (sub-) systems Tr with the total number of input-execute-output cycles
P. The performance under failure T is defined by T f=0 plus the time T f to isolate the active (sub-) system
and fail-over to a standby (sub-) system, where total time to isolate is number of error or failure times T f .
Assuming constant times Ta, Ti (ti), Td (td), Tr (tr), and T f , T can be defined by Eq. 54. When the
redundancy is in space, using a ratio for replication in space vs. in time α, T (Eq. 55) can be reformulated.

T = TE + Ta + P(ti + td + tr) +
TE

M

(
T f

)
(54)

T = αTE + (1 − α)NTE + Ta + P(ti + td + tr) +
TE

M

(
T f

)
(55)
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Reliability: Reliability is defined by the parallel reliability of the N-redundant execution and the
performance under failure T (Eq. 56). It can be simplified for redundancy of identical systems (Eq. 57).

R(t) = 1 −
N∏

n=1

(1 − e−λnT ) (56) Ri(t) = 1 − (1 − e−λT )N (57)

Availability: The availability A of the Active/Standby pattern is defined by N-parallel availability and
the performance under failure T (Eq. 58). It can be simplified for redundancy of identical systems (Eq. 59).
If Ta, Ti, Td, Tr, and T f are small enough, non-identical and identical availability can be simplified further
(Eqs. 60 and 61), where Mn (or M) is the MTTF and Rn (or R) is the MTTR of each individual system (T f ).

A = 1 −
N∏

n=1

(1 − An)

= 1 −
N∏

n=1

(
1 −

TE,n

Tn

)
(58)

Ai = 1 − (1 − A)N

= 1 −
(
1 −

TE

T

)N
(59)

A = 1 −
N∏

n=1

(
1 −

Mn

Mn + Rn

)
(60) Ai = 1 −

(
1 −

M
M + R

)N
(61)

Examples: The Active/Standby structural pattern is typically used for critical hardware or software
systems in HPC environments. For example, power supplies, voltage regulators, the parallel file system
MDS in Lustre [194] and the SLURM [192] job and resource manager are often implemented in an
active/standby fashion.

Rationale: The Active/Standby structural pattern enables a system to tolerate an error or failure through
continuation of correct operation after impact. It relies on system state and on system resource redundancy
in the form of functionally identical replicas. The pattern performs mostly proactive actions, such as
maintaining redundancy. Error or failure detection is part of the pattern in the form of monitoring. The
pattern has some design complexity, as input or system state needs to be replicated and the fail-over needs
to isolate the previous active system.

Related Patterns: The Forward Error Correction Code, Active/Standby, N-modular
Redundancy, N-version Design, and Recovery Block structural patterns are based on similar
inclusion of redundancy to compensate for errors or failures. The Forward Error Correction Code
structural pattern provides redundancy using encoded system state. The N-modular Redundancy
structural pattern offers a higher degree of redundancy also using N functionally identical replicas and is
sometimes referred to as Active/Active. The N-version Design structural pattern provides a different
type of redundancy using N functionally equivalent alternate system implementations in an Active/Active
fashion. The Recovery Block structural pattern offers a different type of redundancy with a functionally
equivalent alternate system implementation encapsulated in a recovery block that is executed after an error
or failure of the system, somewhat similar to the Active/Hot-Standby mode of the Active/Standby
structural pattern.

Known Uses:

• Production HPC systems such as the Cray XC40 series [103] include active/standby power supplies and
voltage regulator modules to ensure continuous operation in the event that one of these units experiences
malfunction or failure.
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• Active/standby (cold, warm and hot) using shared storage between active and standby systems is a
common technique. The shared storage may be a dual-hosted hard drive, a networked storage using
RAID, or a DRBD [154]. Such solutions have been extensively used in HPC environments for critical
system services, such as the job and resource manager (e.g., SLURM [192] and SGE [175]) and the
parallel file system MDS (e.g., PVFS [146] and Lustre [194]).
• Active/hot-standby using a commit protocol for state replication has been implemented for some HPC

job and resource managers as part of high availability cluster solutions, such as HA-OSCAR [119] with
its commit protocol for OpenPBS [16].
• High availability clustering is a form of active/hot-standby with n active systems and m standby systems

that are set up in an n +m configuration. It targets high throughput processing of a large number of small
service requests with no or minimal state changes, where the active systems respond to service requests.
High availability clustering may use shared storage, state replication or state separation. In contrast to
shared storage and state replication, where systems have the same state, state separation splits the state
space among active systems, such as two parallel file system MDSs serving two different file system
directories. An implementation of HA-OSCAR supported high availability clustering for two job and
resource managers, OpenPBS [16] and SGE [175]). Parallel file system MDSs, such as Lustre [194],
support high availability clustering as well.
• Active/standby also plays a role in resilience for parallel applications in HPC environments. Starting a

parallel application with additional spare compute nodes enables its reconfiguration and the replacement
of a failed compute node without completely restarting the application [21].
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7.4.10 N-modular Redundancy

Name: N-modular Redundancy

Problem: A hardware error or subsystem failure due to a physical fault (e.g., wear-out or destruction) in an
HPC environment causes a software, such as a system service or an application, to experience an error and
potentially a subsequent failure.

Context: The pattern is a derivative of the Redundancy architectural pattern and applies to a system that
has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has a modular design that has a well-defined scope and a set of inputs and outputs.

Forces:

• The pattern introduces an execution time and/or resource requirement (storage space, computational
capability, etc.) penalty independent of whether an error or failure occurs during system operation or not.
• The scope and strength of the redundancy employed by the pattern determine its execution time and

resource requirement overhead.

Solution: The N-modular Redundancy structural pattern enables the continuous correct operation of a
system impacted by an error or failure. It supports resilient operation by applying redundancy to system
state and optionally to system resources. This redundancy is in the form of N functionally identical
replicas. The pattern requires very well defined input and output to permit input replication and output
comparison. Input is replicated to identical instances of the system, processed by each replica system, and
the output is then compared. The comparison corrects an error or failure of a replica system. The scope and
strength of the redundancy are defined by the number of functionally identical replicas N.

Redundancy can be in time, meaning the same system resources are used for redundancy and execute the N
functionally identical replicas in time. Redundancy can also be in space, meaning additional (redundant)
system resources are used and execute the N functionally identical replicas in space. Redundancy in time
saves system resources, while redundancy in space offers more error/failure coverage. A mix between
redundancy in time and space is possible as well, where there are more functionally identical replicas than
additional (redundant) system resources. The components of this pattern are illustrated in Figure 44.
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Figure 44. N-modular Redundancy pattern components
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Capability: A system using this pattern is able to continue to operate in the presence of an error or failure
with no interruption. This pattern provides error and/or failure detection in the system by applying
redundancy to system state in the form of N functionally identical replicas. The pattern provides mitigation
of an error or failure in the system by applying redundancy to system state and optionally to system
resources, such that the system continues to operate correctly in the presence of such an event. The
flowchart and state diagram of the pattern is shown in Figure 45 and its parameters in Table 22.
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Figure 45. N-modular Redundancy pattern flowchart and state diagram

Table 22. N-modular Redundancy pattern parameters

Parameter Definition
Ta Time to activate N replicas of the (sub-) system
Ti Time to replicate the input to the N replicas of the (sub-) system
Te Time to execute (sub-) system progress in the N replicas of the (sub-) system
To Time to compare the outputs from the N replicas of the (sub-) system
Tr Time to remove, replace, or discount the affected redundant (sub) system replica(s)

Protection Domain: The protection domain extends to the system state and the system resources that
implement the N functionally identical replica systems.

Resulting Context: Correct operation is performed despite an error or failure impacting the system.
Progress in the system is not lost due to an error or failure. The system is not interrupted during
error-/failure-free operation or when encountering an error or failure. Resource usage in time or space is
increased according to the amount of redundancy employed in the form of N functionally identical replicas
and due to the replication of input and comparison and correction of output.

A trade-off exists between the amount of redundancy employed and the number of errors and/or failures
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that can be tolerated at the same time and/or in time. More redundancy tolerates generally more errors
and/or failures, but requires either more resources or more execution time.

The N-modular Redundancy structural pattern may be used in conjunction with other structural patterns
that provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other structural pattern(s) and the N-modular Redundancy structural pattern covers for the
remaining error/failure types.

Performance: The failure-free performance T f=0 of the N-modular Redundancy pattern is defined by the
task’s total execution time without any resilience strategy TE , the total time to activate N replicas of the
system Ta, the time to replicate the input Ti and the time to compare the outputs To with the total number
of input-execute-output cycles P. The performance under failure T is defined by T f=0, plus the total time
Tr to remove, replace, or discount the replica(s) where total time to remove, replace, or discount is number
of error or failure times T f . Assuming constant times Ta, Ti (ti), To (to), and Tr, T can be simplified
(Eq. 62). Using a ratio for replication in space vs. in time α, T (Eq. 63) can be reformulated.

T = TE + Ta + P(ti + to) +
TE

M
(Tr) (62)

T = αTE + (1 − α)NTE + Ta + P(ti + to) +
TE

M
(Tr) (63)

Reliability: Reliability is defined by the parallel reliability of the N-redundant execution and the
performance under failure T (Eq. 64).

Ri(t) = 1 − (1 − e−λT )N (64)

Availability: The availability A of N-parallel syaytems is defined by Mn (or M) and Rn (or R) where M is
the MTTF and R is the MTTR of each individual system (Eq. 65).

Ai = 1 −
(
1 −

M
M + R

)N
(65)

Examples: The use of the N-modular redundancy structural pattern in various hardware and software
systems enables detection and correction of errors, or the compensation of failures. Dual-modular
redundancy for error detection and failure compensation and triple-modular redundancy for error detection
and correction and failure compensation are used forms of this pattern in HPC environments. Examples
include dual-redundant cooling fans, dual- and triple–modular redundant MPI implementations [78],
dual-redundant parallel file system MDS solutions [92] and dual-redundant mission-critical HPC systems
(e.g., weather forecast).

Rationale: The N-modular redundancy structural pattern enables a system to tolerate an error or failure
through continuation of correct operation after impact. It relies on system state redundancy in the form of
functionally identical replicas. The pattern performs mostly proactive actions, such as maintaining
redundancy. Error or failure detection is part of the pattern in the form of output comparison. The pattern
has some design complexity, as input needs to be replicated and output needs to be compared.
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Related Patterns: The Forward Error Correction Code, Active/Standby, N-modular
Redundancy, N-version Design, and Recovery Block structural patterns are based on similar
inclusion of redundancy to compensate for errors or failures. The Forward Error Correction Code
structural pattern provides redundancy using encoded system state. The Active/Standby structural
pattern offers a lower degree of redundancy also using N functionally identical replicas, where the
N-modular Redundancy structural pattern is sometimes referred to as Active/Active. The N-version
Design structural pattern provides a different type of redundancy using N functionally equivalent alternate
system implementations. The Recovery Block structural pattern offers a different type of redundancy
with a functionally equivalent alternate system implementation encapsulated in a recovery block that is
executed after an error or failure of the system.

Known Uses:

• Production HPC systems such as the Cray XC40 series [103] include n-modular redundant cooling fans
to ensure continuous operation in the event that one of these units experiences malfunction or failure.
• Some implementations of the MPI standard use n-modular redundancy for detection and correction of

errors by replicating the MPI messages, or even by replicating MPI processes. The MR-MPI [70],
rMPI [76], and RedMPI [78] prototypes are known examples for this n-modular redundancy approach.
N-modular redundancy for compute nodes in a system have been evaluated and shown to improve the
overall availability of a HPC system [71].
• Some n-modular redundancy implementations for service nodes in HPC systems exist as well, such as

for the MDS of PVFS [92] and for HPC job and resource managers that are compliant with the
PBS [178].
• N-modular redundancy at the whole system level is often implemented for mission critical HPC systems,

such as for weather forecast. In this case, two completely redundant HPC systems perform exactly the
same computation.
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7.4.11 N-version Design

Name: N-version Design

Problem: A hardware or software error or subsystem failure due to a design fault (e.g., human mistake or
defective design tool) in an HPC environment causes a software, such as a system service or an application,
to experience an error and potentially a subsequent failure.

Context: The pattern is a derivative of the Design Diversity architectural pattern and applies to a
system that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has a well-defined specification for which multiple implementation variants may be created.
• There is an implicit assumption of independence between multiple variants of the implementation.

Forces:

• The pattern introduces an execution time and/or resource requirement (storage space, computational
capability, etc.) penalty independent of whether an error or failure occurs during system operation or not.
• The scope and strength of the diversity employed by the pattern determine its execution time and

resource requirement overhead.
• The pattern requires distinct implementations of the same design specification, which may need to be

created by different individuals.
• The pattern increases design complexity due to the need of additional design and verification effort

required to create multiple implementations.
• The pattern may introduce a performance penalty during error/failure-free operation due to disparity in

the implementation variants.

Solution: The N-version Design structural pattern enables the continuous correct operation of a system
impacted by an error or failure. It supports resilient operation by applying redundancy to system state and
optionally to system resources. This redundancy is in the form of N functionally equivalent alternate
system implementations. This pattern designs different implementations of the system that are functionally
equivalent to enable error and failure resilience through design diversity. Different implementations of the
system are less likely to experience the same error or failure.

The pattern requires very well defined input and output to permit input replication and output validation.
Input is replicated to functionally equivalent alternate system implementations, processed by each
implementation of the system, and the output is then validated. The validation corrects an error or failure of
a system implementation. The scope and strength of the redundancy are defined by the number of
functionally equivalent alternate system implementations N and by their implementation design diversity.

Redundancy can be in time, meaning the same system resources execute the N equivalent alternate system
implementations in time. Redundancy can also be in space, meaning additional (redundant/diverse) system
resources execute the N equivalent alternate system implementations in space. Redundancy in time saves
system resources, while redundancy in space offers more error/failure coverage. A mix between
redundancy in time and space is possible as well, where there are more equivalent alternate system
implementations than additional (redundant/diverse) system resources. The components of this pattern are
illustrated in Figure 46.
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Figure 46. N-version Design pattern components

Capability: A system using this pattern is able to continue to operate in the presence of an error or failure
with no or minimal interruption. This pattern provides error and/or failure detection in the system by
applying redundancy to system state in the form of N functionally equivalent alternate system
implementations. The pattern provides mitigation of an error or failure in the system by applying
redundancy to system state and optionally to system resources, such that the system continues to operate
correctly in the presence of such an event. The flowchart and state diagram of the pattern is shown in
Figure 47 and its parameters in Table 23.

Table 23. N-version Design pattern parameters

Parameter Definition
Ta Time to activate N versions of the (sub-) system
Ti Time to replicate the input to the N versions of the (sub-) system
Te Time to execute (sub-) system progress in the N versions of the (sub-) system
To Time to validate the output from the N versions of the (sub-) system
Tr Time to remove, replace, or discount the affected redundant (sub) system version(s)

Protection Domain: The protection domain extends to the system state and the system resources described
by the design specification that implement the N functionally equivalent alternate systems.

Resulting Context: Correct operation is performed despite an error or failure impacting the system.
Progress in the system is not lost due to an error or failure. The system is not interrupted during
error-/failure-free operation or when encountering an error or failure. Resource usage in time or space is
increased according to the amount of redundancy employed in the form of N functionally equivalent
alternate system implementations and due to the difference in resource usage and execution time of the N
functionally equivalent alternate system implementations.

A trade-off exists between the amount of redundancy employed and the number of errors and/or failures
that can be tolerated at the same time and/or in time. More redundancy tolerates generally more errors
and/or failures, but requires either more resources or more execution time.

The N-version Design structural pattern may be used in conjunction with other structural patterns that
provide containment and mitigation in a complementary fashion, where some error/failure types are
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Figure 47. N-version Design pattern flowchart and state diagram

covered by the other structural pattern(s) and the N-version Design structural pattern covers for the
remaining error/failure types.

Performance: The failure-free performance T f=0 of the N-version Design pattern is defined by the task
total execution time without any resilience strategy TE (the worst case execution time of N versions of the
(sub-) system), the total time to activate N versions of the (sub-) system Ta, the time to replicate the input
to the N versions of the (sub-) system Ti, and the time to validate the output from the N versions of the
(sub-) system To with the total number of input-execute-output cycles P. The performance under failure T
is defined by T f=0 plus the time Tr to remove, replace, or discount the affected redundant (sub-) system
version(s), where total time to remove, replace, or discount is number of error or failure times Tr.
Assuming constant times Ta, Ti (ti), To (to), and Tr, T can be defined by Eq. 66. When the redundancy is in
space, using a ratio for replication in space vs. in time α, T (Eq. 67) can be reformulated.

T = TE + Ta + P(ti + to) +
TE

M
(Tr) (66)

T = αTE + (1 − α)NTE + Ta + P(ti + to) +
TE

M
(Tr) (67)

Reliability: Reliability is defined by the parallel reliability of the N-redundant execution and the
performance under failure T (Eq. 68).

Ri(t) = 1 − (1 − e−λT )N (68)
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Availability: The availability A of N-parallel syaytems is defined by Mn (or M) and Rn (or R) where M is
the MTTF and R is the MTTR of each individual system (Eq. 69).

Ai = 1 −
(
1 −

M
M + R

)N
(69)

Examples: In HPC environments, various versions of the same software are used for the detection of
implementation errors. This applies to completely different implementations of the MPI standard and to
numerical libraries as well as to different versions of the same implementation. Regression and comparison
tests are performed to identify incorrect behavior, missing features and performance problems.

Rationale: The N-version Design structural pattern enables a system to tolerate an error or failure
through continuation of correct operation after impact. It relies on system state redundancy in the form of
functionally equivalent alternate system implementations. The pattern performs mostly proactive actions,
such as maintaining redundancy. Error or failure detection is part of the pattern in the form of output
validation. The pattern has high design complexity due to the need for functionally equivalent alternate
system implementations.

Related Patterns: The Forward Error Correction Code, Active/Standby, N-modular
Redundancy, N-version Design, and Recovery Block structural patterns are based on similar
inclusion of redundancy to compensate for errors or failures. The Forward Error Correction Code
structural pattern provides redundancy using encoded system state. The Active/Standby structural
pattern offers a lower degree of redundancy using N functionally identical replicas. The N-modular
Redundancy structural pattern offers a higher degree of redundancy than the Active/Standby structural
pattern, also using N functionally identical replicas. It is sometimes referred to as Active/Active. The
Recovery Block structural pattern offers a similar type of redundancy with a functionally equivalent
alternate system implementation encapsulated in a recovery block that is executed after an error or failure
of the system.

Known Uses:

• HPC centers often provide various MPI library implementations, such as the MVAPICH2 [3],
OpenMPI [5], MPICH2 [2], and Intel MPI [1], all of which are based on the MPI standard. Running
large-scale applications with these separate implementations of MPI potentially exposes implementation
errors in the MPI libraries. Similarly, different versions of numerical libraries are often provided as well.
Regression and comparison tests are performed to identify incorrect behavior, missing features and
performance problems.
• The DIVA processor architecture [23] includes an out-of-order core as well as a simple in-order

pipelined core. The in-order pipeline is functionally equivalent to the primary processor core (it
implements the same instruction set architecture) and is used to detect errors in the design of the
out-of-order processor core.
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7.4.12 Recovery Block

Name: Recovery Block

Problem: A hardware or software error or subsystem failure due to a design fault (e.g., human mistake or
defective design tool) in an HPC environment causes a software, such as a system service or an application,
to experience an error and potentially a subsequent failure.

Context: The pattern is a derivative of the Design Diversity architectural pattern and applies to a
system that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has a well-defined specification for which multiple implementation variants may be created.
• There is an implicit assumption of independence between multiple variants of the implementation.

Forces:

• The pattern introduces an execution time and/or resource requirement (storage space, computational
capability, etc.) penalty independent of whether an error or failure occurs during system operation or not.
• The scope and strength of the diversity employed by the pattern determine its execution time and

resource requirement overhead.
• The pattern requires distinct implementations of the same design specification, which may need to be

created by different individuals.
• The pattern increases design complexity due to the need of additional design and verification effort

required to create multiple implementations.
• The pattern introduces a performance penalty upon an error or failure, as the recovery block processes

the input and validates its output after error/failure discovery.

Solution: The Recovery Block structural pattern enables the continuous correct operation of a system
impacted by an error or failure. It supports resilient operation by applying redundancy to system state and
optionally to system resources. This redundancy is in the form of a functionally equivalent alternate system
implementation encapsulated in a recovery block. This pattern designs a different implementation of the
system that is functionally equivalent to enable error and failure resilience through design diversity. The
two different implementations of the system are less likely to experience the same error or failure.

The pattern requires very well defined input and output to permit input replication and output validation.
Input is replicated to the functionally equivalent alternate system implementations. The original system
processes the input and validates its output. Upon discovery of an error or failure, the recovery block
implementation processes the input, validates its output, and corrects the output of the original system. The
scope and strength of the redundancy is defined by the implementation design diversity.

Redundancy is in time, as the recovery block processes the input and validates its output after error/failure
discovery. It may be additionally in space, if the recovery block is executed on different resources than the
system. The components of this pattern are illustrated in Figure 48.

Capability: A system using this pattern is able to continue to operate in the presence of an error or failure
with some interruption for the execution of the recovery block. This pattern provides error and/or failure
detection in the system by output validation. The pattern provides mitigation of an error or failure in the
system by applying redundancy to system state and optionally to system resources, such that the system
continues to operate correctly in the presence of such an event. The flowchart and state diagram of the
pattern is shown in Figure 49 and its parameters in Table 24.
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Figure 48. Recovery Block pattern components

Table 24. Recovery Block pattern parameters

Parameter Definition
Ta Time to activate the recovery block of the (sub-) system
Ti Time to replicate the input to the (sub-) system and the recovery block of the (sub-) system
Te Time to execute (sub-) system progress
To Time to validate the output from the (sub-) system
Tr Time to execute the recovery block of the (sub-) system

Protection Domain: The protection domain extends to the system state and the system resources described
by the design specification that implement the recovery block.

Resulting Context: Correct operation is performed despite an error or failure impacting the system.
Progress in the system is not lost due to an error or failure. The system is not interrupted during
error-/failure-free operation. It is interrupted when encountering an error or failure for the execution of the
recovery block. Resource usage in time or space is increased according to the additional resource usage
and execution time of the recovery block that employs the redundancy in the form of the functionally
equivalent alternate system implementation.

The Recovery block structural pattern may be used in conjunction with other structural patterns that
provide containment and mitigation in a complementary fashion, where some error/failure types are
covered by the other structural pattern(s) and the Recovery block structural pattern covers for the
remaining error/failure types.

Performance: The failure-free performance T f=0 of the Recovery block pattern is defined by the task
total execution time without any resilience strategy TE , the total time to activate the recovery block of the
(sub-) system Ta, the time to replicate the input to the (sub-) system and the recovery block of the (sub-)
system Ti, and the time to validate the output from the (sub-) system To with the total number of
input-execute-output cycles P. The performance under failure T is defined by T f=0 plus the time Tr to
execute the recovery block of the (sub-) system, where total time to execute the recovery block of the (sub-)
system is number of error or failure times Tr. Assuming constant times Ta, Ti (ti), To (to), and Tr, T can be
defined by Eq. 70. When the redundancy is in space, using a ratio for replication in space vs. in time α, T
(Eq. 71) can be reformulated.
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Figure 49. Recovery Block pattern flowchart and state diagram

T = TE + Ta + P(ti + to) +
TE

M
(Tr) (70)

T = αTE + (1 − α)NTE + Ta + P(ti + to) +
TE

M
(Tr) (71)

Reliability: Reliability is defined by the parallel reliability of the N-redundant execution and the
performance under failure T (Eq. 72).

Ri(t) = 1 − (1 − e−λT )N (72)

Availability: The availability A of N-parallel syaytems is defined by Mn (or M) and Rn (or R) where M is
the MTTF and R is the MTTR of each individual system (Eq. 73).

Ai = 1 −
(
1 −

M
M + R

)N
(73)

Examples: Containment Domains [48] and the SWIFT library [97] provide language-based approaches for
recovery blocks. Applications also often contain verification routines that check for the validity of a
computation and correct any detected errors using application-specific knowledge.
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Rationale: The Recovery Block structural pattern enables a system to tolerate an error or failure through
continuation of correct operation after impact. It relies on system state redundancy in the form of a
functionally equivalent alternate system implementation encapsulated in a recovery block. The pattern
performs some proactive actions, such as maintaining redundancy, but mainly relies on reactive actions,
such as the execution of a recovery block after an error or failure was detected. Error or failure detection is
part of the pattern in the form of output validation. The pattern has high design complexity due to the need
for a functionally equivalent alternate system implementation encapsulated in a recovery block.

Related Patterns: The Forward Error Correction Code, Active/Standby, N-modular
Redundancy, N-version Design, and Recovery Block structural patterns are based on similar
inclusion of redundancy to compensate for errors or failures. The Forward Error Correction Code
structural pattern provides redundancy using encoded system state. The Active/Standby structural
pattern offers redundancy using N functionally identical replicas. The N-modular Redundancy structural
pattern offers a higher degree of redundancy than the Active/Standby structural pattern, also using N
functionally identical replicas. It is sometimes referred to as Active/Active. The N-version Design
structural pattern provides a similar type of redundancy using N functionally equivalent alternate system
implementations.

Known Uses:

• Containment Domains [48] provide a recover routine that is initiated upon detection of an error in the
execution of the block of code encapsulated by the domain. This enables the containment domain to
constrain the detection and correction of errors to the boundary of the domain.
• The SWIFT library [97] provides language-based implementation of the recovery block for use in C

language programs.
• Applications often contain verification routines that check for the validity of a computation.

Application-specific knowledge is used in a recovery block to correct any detected errors.
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7.4.13 Natural Tolerance

Name: Natural Tolerance

Problem: A hardware or software error or subsystem failure in an HPC environment causes a software,
such as a numerical library or application, to experience an error and potentially a subsequent failure.

Context: The pattern is a derivative of the Self-Masking architectural pattern and is often used in
conjunction with the Redundancy architectural pattern. It applies to a system that has the following
characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.

Forces:

• System performance in the presence of errors and failures is determined by the efficiency in reaching a
correct system state from an illegal system state, which may differ for different illegal system states.
• Self-masking through redundancy may reduce error/failure-free performance.
• A correct state may not be reached from all illegal system states, which limits the scope of this pattern.

Solution: The Natural Tolerance pattern relies on the capability of reaching a correct system state
from an illegal system state after a finite number of execution steps using implicit error/failure detection
and self-masking. Forward progress is guaranteed by design as a correct system state can be reached in a
finite number of steps. Self-masking may be as simple as approximation of a correct state. The correct state
reached after self-masking is not necessarily the same state that would have been reached without an error
or failure. The Redundancy pattern is often employed to aid in the process of self-masking and to extend
the pattern’s protection domain. Self-masking is performed passively, i.e., without special treatment of the
error or failure. However, self-masking may still impact performance, as the correct state reached after an
error or failure may be different from an error/failure-free execution. The scope of this pattern extends to
the system state space that is either correct or incorrect but self-maskable to a correct state. The
components of the pattern are illustrated in Figure 50.

Illegal State

Redundancy or
Design Diversity State

System State

Self-Maskable
State

Correct State

Protection Domain

Specification

Figure 50. Natural Tolerance pattern components

Capability: A system using this pattern becomes naturally tolerant to an error or failure. The pattern
supports the handling of such events with detection, containment, and mitigation using self-masking, i.e.,
dynamic adaptation through masking. Error/failure detection is implicit by providing the capability to
self-mask an illegal system state. Self-masking is an architectural feature inherited from the
Self-Masking architectural pattern and optionally aided by the application of the Redundancy
architectural pattern. The flowchart and state diagram of the pattern is shown in Figure 51 and its
parameters in Table 25.
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Figure 51. Natural Tolerance pattern flowchart and state diagram

Table 25. Natural Tolerance pattern parameters

Parameter Definition
Ta Time to activate redundancy (if any)
Te Time to execute system progress
Td Time to detect illegal system state
Tm Time to self-mask illegal system state

Protection Domain: The protection domain of this pattern extends to the system state space that is either
correct or incorrect but self-maskable to a correct state.

Resulting Context: An error or failure is tolerated through natural tolerance. The Natural Tolerance
pattern requires the capability of reaching a correct system state from an illegal system state by optionally
employing the Redundancy architectural pattern, which may reduce error/failure-free performance. The
efficiency of self-masking determines performance in the presence of errors and failures. A high
performing solution reduces the impact on error/failure-free performance, while at the same time providing
efficient self-masking.

A trade-off exists between both, performance in the presence of errors and failures and error/failure-free
performance, especially in systems with high error/failure rates. Self-masking is a passive approach, where
the system is designed with self-maskable illegal system state. Self-masking becomes a natural property of
the system. The implicit detection may reduce error/failure-free performance. The pattern’s protection
domain does not cover illegal system state that is not self-maskable.

The Natural Tolerance pattern may be used in conjunction with other structural patterns that provide
containment and mitigation in a complementary fashion, where some error/failure types are covered by the
other structural pattern(s) and the Natural Tolerance pattern covers for the remaining error/failure
types.
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Performance: The failure-free performance T f=0 of the Natural Tolerance pattern is defined by the task
total execution time without any resilience strategy TE , the total time to activate redundancy Ta, and the
time to detect illegal system state Td with the total number of input-execute-output cycles P. The
performance under failure T is defined by T f=0 plus the time Tm to self-mask illegal system state, where
total time to self-mask illegal system state is number of error or failure times Tm. Assuming constant times
Ta, Td (td) and Tm, T can be defined by Eq. 74. When the redundancy is in space, using a ratio for
replication in space vs. in time α, T (Eq. 75) can be reformulated.

T = TE + Ta + P(td) +
TE

M
(Tm) (74)

T = αTE + (1 − α)NTE + Ta + P(td) +
TE

M
(Tm) (75)

Reliability: Reliability is defined by the parallel reliability of the N-redundant execution and the
performance under failure T (Eq. 76).

Ri(t) = 1 − (1 − e−λT )N (76)

Availability: The availability A of N-parallel syaytems is defined by Mn (or M) and Rn (or R) where M is
the MTTF and R is the MTTR of each individual system (Eq. 77).

Ai = 1 −
(
1 −

M
M + R

)N
(77)

Examples:

• Gossip-based algorithms have the natural ability to create data and algorithmic redundancy through
communication, such that errors and failures are tolerated using self-masking and redundancy patterns.
Data is communicated to multiple parts of the system participating in the Gossip-based algorithm, such
that it is received redundantly and processed using self-masking. Errors or failures occurring before data
has been communicated to multiple parts of the system may not necessarily be tolerated as the
self-masking may be defeated. Too many errors or failures within a short period of time may also may
not necessarily be tolerated for the same reason. The efficiency and performance of self-masking in the
presence of errors and failures and the error/failure-free performance depend on the communication
pattern (e.g., reach and frequency).
• Iterative solvers or solvers using sampling have the natural ability to create data and algorithmic

redundancy through either an iterative process that progresses toward a correct solution in the presence
of errors or a probabilistic sampling process that generates enough correct samples over incorrect
samples to calculate a correct solution. In both cases, the employed error tolerance though convergence
is highly dependent on the problem being solved and the amount of data and algorithmic redundancy.
High error rates or high error magnitudes (in terms of impact) may not necessarily be tolerated. The
efficiency and performance of self-masking in the presence of errors and failures and the
error/failure-free performance depend on the algorithmic capabilities of the iterative process (e.g., step
size) or the probabilistic sampling process (e.g., oversampling).
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Rationale: The Natural Tolerance pattern enables a system to tolerate errors or subsystem errors or
failures through adaptation. It relies on the capability of reaching a correct system state from an illegal
system state in a finite number of execution steps. It uses implicit error/failure detection and self-masking
to passively transition from an illegal to a correct system state. Self-masking is aided by redundancy and
intrinsic to the design of the system when this pattern is applied. The pattern has high design complexity
and has low dependence on a system’s architecture.

Related Patterns: The Self-Healing structural pattern uses the same Self-Stabilization strategy
pattern, but with a different architectural pattern (Self-Correction). It also optionally employs the
Redundancy architectural pattern, but for self-correction.

The Self-Aware structural pattern uses the same Self-Stabilization strategy pattern, but with a
different architectural pattern (Self-Correction). It additionally employs the Fault Diagnosis
architectural pattern and an OODA loop control for error/failure detection and self-correction.

Patterns using the Self-Stabilization strategy pattern are a unique class, as self-masking or
self-correction may result the system to be in a different correct state after an error or failure than in an
error/failure-free execution.

Known Uses:

• Gossip-based algorithms create data and algorithmic redundancy through communication, such that
errors and failures are tolerated using the Natural Tolerance pattern in conjunction with the
Redundancy pattern. This includes gossip-based aggregation and reduction algorithms [43, 140, 83],
orthogonalization methods [84, 83], eigensolvers [174], and least squares solvers [151].
• Fixed point methods that converge globally when certain conditions are satisfied are able to tolerate

certain errors using the Natural Tolerance pattern with the Redundancy pattern [20, 19], such as a
Jacobi iterative scheme that will converge for any initial guess if the matrix is diagonally dominant.
Convergence in the presence of errors is aided by data and algorithmic redundancy.
• Certain domain decomposition methods are tolerant to errors using the Natural Tolerance pattern in

conjunction with the Redundancy pattern as they converge in the presence of errors, such as the
classical overlapping Schwarz algorithm [86], asynchronous domain decomposition methods [85] and
task-based domain decomposition approaches that use sampling and a regression-based solution
update [157, 156, 132]. Data and algorithmic redundancy are employed.
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7.4.14 Self-Healing

Name: Self-Healing

Problem: A hardware or software error or subsystem failure in an HPC environment causes a software,
such as a numerical library or application, to experience an error and potentially a subsequent failure.

Context: The pattern is a derivative of the Self-Correction architectural pattern and is often used in
conjunction with the Redundancy architectural pattern. It applies to a system that has the following
characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.

Forces:

• System performance in the presence of errors and failures is determined by the efficiency in reaching a
correct system state from an illegal system state, which may differ for different illegal system states.
• Self-correction through redundancy may reduce error/failure-free performance.
• A correct state may not be reached from all illegal system states, which limits the scope of this pattern.

Solution: The Self-Healing pattern relies on the capability of reaching a correct system state from an
illegal system state after a finite number of execution steps using explicit error/failure detection and
self-correction. Forward progress is guaranteed by design as a correct system state can be reached in a
finite number of steps. Self-correction may be as simple as discarding, recomputing, or estimating a wrong
value in the system or a wrong or missing output from a subsystem. The correct state reached after
self-correction is not necessarily the same state that would have been reached without an error or failure.
The Redundancy architectural pattern is often employed to aid in the process of self-correction and to
extend the pattern’s protection domain. Self-correction is performed actively, i.e., through special treatment
of the error or failure. The scope of this pattern extends to the system state space that is either correct or
incorrect but self-correctable to a correct state. The components of the pattern are illustrated in Figure 52.
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Self-Correctable
State

Correct State

Protection Domain

Specification

Figure 52. Self-Healing pattern components

Capability: A system using this pattern is able to self-heal an error or failure. This pattern supports the
handling of such events with detection, containment, and mitigation using self-correction, i.e., dynamic
adaptation through correction. Error/failure detection is explicit by providing the capability to self-correct
an illegal system state. Self-correction is an architectural feature inherited from the Self-Correction
architectural pattern and optionally aided by the application of the Redundancy architectural pattern. The
flowchart and state diagram of the pattern is shown in Figure 53 and its parameters in Table 26.

Protection Domain: The protection domain of this pattern extends to the system state space that is either
correct or incorrect but self-correctable to a correct state.
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Figure 53. Self-Healing pattern flowchart and state diagram

Table 26. Self-Healing pattern parameters

Parameter Definition
Ta Time to activate redundancy (if any)
Te Time to execute system progress
Td Time to detect illegal system state
Tc Time to self-correct illegal system state

Resulting Context: An error or failure is tolerated through self-healing. The Self-Healing pattern
requires the capability of reaching a correct system state from an illegal system state by optionally
employing the Redundancy architectural pattern, which may reduce error/failure-free performance. The
efficiency of self-correction determines performance in the presence of errors and failures. A high
performing solution reduces the impact on error/failure-free performance, while at the same time providing
efficient self-correction.

A trade-off exists between both, performance in the presence of errors and failures and error/failure-free
performance, especially in systems with high error/failure rates. Self-correction is an active approach,
where the system is designed with self-correctable illegal system state. Self-correction becomes an
intrinsic property of the system. The explicit detection may reduce error/failure-free performance. The
pattern’s protection domain does not cover illegal system state that is not self-correctable.

The Self-Healing pattern may be used in conjunction with other structural patterns that provide
containment and mitigation in a complementary fashion, where some error/failure types are covered by the
other structural pattern(s) and the Self-Healing pattern covers for the remaining error/failure types.

Performance: The failure-free performance T f=0 of the Self-Healing pattern is defined by the task total
execution time without any resilience strategy TE , the total time to activate redundancy Ta, and the total
time to detect illegal system state Td with the total number of input-execute-output cycles P. The
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performance under failure T is defined by T f=0 plus the time Tc to self-correct illegal system state, where
total time to self-correct illegal system state is number of error or failure times Tc. Assuming constant
times Ta, Td (td) and Tc, T can be defined by Eq. 78. When the redundancy is in space, using a ratio for
replication in space vs. in time α, T (Eq. 79) can be reformulated.

T = TE + Ta + P(td) +
TE

M
(Tc) (78)

T = αTE + (1 − α)NTE + Ta + P(td) +
TE

M
(Tc) (79)

Reliability: Reliability is defined by the parallel reliability of the N-redundant execution and the
performance under failure T (Eq. 80).

Ri(t) = 1 − (1 − e−λT )N (80)

Availability: The availability A of N-parallel syaytems is defined by Mn (or M) and Rn (or R) where M is
the MTTF and R is the MTTR of each individual system (Eq. 81).

Ai = 1 −
(
1 −

M
M + R

)N
(81)

Examples:

• Self-stabilizing solvers use selective reliability to perform progress in an unreliable mode and detection
and self-correction in a reliable mode that uses redundancy. While the unreliable progress may produce
an illegal state, the reliable detection and self-correction are able to reach a correct state using
redundancy. The reliable detection and self-correction itself are not error tolerant. The protection
domain of the redundancy only applies to the unreliable progress. Additional patterns may be employed
error tolerance of the detection and self-correction. The efficiency and performance of self-correction in
the presence of errors and failures and the error/failure-free performance depend on the overhead of the
redundancy (e.g., redundant data structures) and the self-correction (e.g., successive approximation
toward a correct state).

Rationale: The Self-Healing pattern enables a system to tolerate errors or subsystem errors or failures
through adaptation. It relies on the capability of reaching a correct system state from an illegal system state
in a finite number of execution steps. It uses explicit error/failure detection and self-correction to actively
transition from an illegal to a correct system state. Self-correction is aided by redundancy and intrinsic to
the design of the system when this pattern is applied. The pattern has high design complexity and has low
dependence on a system’s architecture.

Related Patterns: The Natural Tolerance structural pattern uses the same Self-Stabilization
strategy pattern, but with a different architectural pattern (Self-Masking). It also optionally employs the
Redundancy architectural pattern, but for self-masking.

The Self-Aware structural pattern uses the same Self-Stabilization strategy and Self-Correction
architectural patterns. It additionally employs the Fault Diagnosis architectural pattern and an OODA
loop control for error/failure detection and self-correction.
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Patterns using the Self-Stabilization strategy pattern are a unique class, as self-masking or
self-correction may result the system to be in a different correct state after an error or failure than in an
error/failure-free execution.

Known Uses:

• A self-stabilizing label-propagation algorithm that computes the connected components in a graph while
being tolerant to errors [161] uses the Self-Healing pattern, employing the Self-Correction and
Redundancy patterns. This solution leverages selective reliability, where progress is performed in an
unreliable mode, and detection and self-stabilization is performed in reliable mode using the
Redundancy pattern. The reliable mode itself is not error tolerant, as the protection domain of the
Redundancy pattern only extends to the unreliable mode.
• Two self-stabilizing iterative linear solvers [161], one for the steepest descent and one for conjugate

gradient, are tolerant to errors and use the Self-Healing pattern with the Self-Correction and
Redundancy patterns. These solvers also leverage selective reliability, with progress in an unreliable
mode, and detection and self-stabilization in reliable mode using the Redundancy pattern. The reliable
mode itself is not error tolerant, as the protection domain of the Redundancy pattern only extends to the
unreliable mode.
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7.4.15 Self-Aware

Name: Self-Aware

Problem: A hardware or software error or subsystem failure in an HPC environment causes a software,
such as a numerical library or application, to experience an error and potentially a subsequent failure.

Context: The pattern is a derivative of the Self-Correction and Fault Diagnosis architectural
patterns. It applies to a system that has the following characteristics:

• The system is deterministic, i.e. forward progress of the system is defined in terms of the input state to
the system and the execution steps completed since system initialization.
• The system has well-defined parameters that enable a monitoring system to discover the presence of a

defect or anomaly in the behavior of the monitored system.
• The interaction between the monitored and monitoring systems is bounded in terms of time.
• The monitoring system has the capability to analyze the behavior of the monitored system.

Forces:

• System performance in the presence of errors and failures is determined by the efficiency in reaching a
correct system state from an illegal system state, which may differ for different illegal system states.
• Fault diagnosis for explicit error and/or failure detection may reduce error/failure-free performance.
• Self-correction through an OODA loop control may reduce performance in the presence of errors and

failures.
• A correct state may not be reached from all illegal system states, which limits the scope of this pattern.

Solution: The Self-Aware pattern relies on the capability of reaching a correct system state from an
illegal system state after a finite number of execution steps using explicit error/failure detection and
self-correction. Forward progress is guaranteed by design as a correct system state can be reached in a
finite number of steps. Self-correction may be as simple as discarding, recomputing, or estimating a wrong
value in the system or a wrong or missing output from a subsystem. The correct state reached after
self-correction is not necessarily the same state that would have been reached without an error or failure.

The Fault Diagnosis pattern is employed to aid in the process of error/failure detection and
self-correction in the form of an OODA loop control. Self-correction is performed actively, i.e., through
special treatment of the error or failure. The OODA loop control observes errors and failures through
system state monitoring, reasons about them through root cause analysis, decides on how to handle them
by weighing options and trade-offs, and handles them using self-correction. Since the monitored and the
monitoring system may be the same, the OODA loop control may be part of the system state. The scope of
this pattern extends to the system state space that is monitored and is either correct or incorrect but
self-correctable to a correct state. The entire OODA loop control or parts of it may be a subsystem that
does not monitor itself and therefore outside the protection domain. The components of the pattern are
illustrated in Figure 54.

Capability: A system using this pattern is self-aware about an error or failure and self-corrects it. This
pattern supports the handling of such events with detection, containment, and mitigation using fault
diagnosis and self-correction, i.e., dynamic adaptation through observation, analysis, and correction.
Error/failure detection is explicit by providing the capability to diagnose faults in the illegal system state.
While fault diagnosis is an architectural feature inherited from the Fault Diagnosis architectural pattern,
self-correction is an architectural feature inherited from the Self-Correction architectural pattern. The
flowchart and state diagram of the pattern is shown in Figure 55 and its parameters in Table 27.
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Figure 54. Self-Aware pattern components

Table 27. Self-Aware pattern parameters

Parameter Definition
Te Time to execute system progress
Tm Time to monitor (sub-) system parameters, including wait and probe times
Ta Time to perform the cause/effect or effect/cause analysis
To Time to perform the option/trade-off decision making
Tc Time to self-correct illegal system state

Protection Domain: The protection domain of this pattern extends to the system state space that is
monitored and is either correct or incorrect but self-correctable to a correct state. The entire OODA loop
control or parts of it may be a subsystem that does not monitor itself and therefore outside the protection
domain.

Resulting Context: An error or failure is tolerated through self-awareness. The Self-Aware pattern
requires the capability of reaching a correct system state from an illegal system state by system state
monitoring, reasoning about errors or failures through root cause analysis, deciding on how to handle them
by weighing options and trade-offs, and handling them using self-correction.

The employed Fault Diagnosis architectural pattern for explicit error and/or failure detection may
reduce error/failure-free performance. Self-correction through an OODA loop control may reduce
performance in the presence of errors and failures. The efficiency of fault diagnosis and self-correction
determines performance in the presence of errors and failures. A high performing solution reduces the
impact on error/failure-free performance, while at the same time providing efficient self-correction.

A trade-off exists between both, performance in the presence of errors and failures and error/failure-free
performance, especially in systems with high error/failure rates. Self-correction is an active approach,
where the system is designed with self-correctable illegal system state. Self-correction becomes an
intrinsic property of the system. The pattern’s protection domain does not cover illegal system state that is
not monitored or not self-correcting.

The Self-Aware pattern may be used in conjunction with other structural patterns that provide
containment and mitigation in a complementary fashion, where some error/failure types are covered by the
other structural pattern(s) and the Self-Aware pattern covers for the remaining error/failure types.

Performance: The failure-free performance T f=0 of the Self-Aware pattern is defined by the task total
execution time without any resilience strategy TE and the time to monitor (sub-) system parameters,
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Figure 55. Self-Aware pattern flowchart and state diagram

including wait and probe times Tm with the total number of input-execute-output cycles P. The
performance under failure T is defined by T f=0 plus the time to perform the cause/effect or effect/cause
analysis Ta, the time To to perform the option/trade-off decision making and the time Tc to self-correct
illegal system state, where total time to perform the cause/effect or effect/cause analysis, to perform the
option/trade-off decision making and to self-correct illegal system state is number of error or failure times
Ta, To, and Tc. Assuming constant times Tm (tm), Ta, To, and Tc, T can be defined by Eq. 82. When the
redundancy is in space, using a ratio for replication in space vs. in time α, T (Eq.83) can be reformulated.

T = TE + P(tm) +
TE

M
(Ta + To + Tc) (82)

T = αTE + (1 − α)NTE + P(tm) +
TE

M
(Ta + To + Tc) (83)

Reliability: Reliability is defined by the parallel reliability of the N-redundant execution and the
performance under failure T (Eq. 84).

Ri(t) = 1 − (1 − e−λT )N (84)

Availability: The availability A of N-parallel syaytems is defined by Mn (or M) and Rn (or R) where M is
the MTTF and R is the MTTR of each individual system (Eq. 85).
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Examples: In proactive fault tolerance, an OODA loop control is employed that utilizes monitoring tools
for collecting sensor data (e.g., temperature, fan speeds, voltages, computational load, memory and storage
usage, etc.). It leverages the warning thresholds of these sensors as early fault indicators to migrate
computation away from compute nodes that are about to fail [72]. The mitigation may use
process-level [187] or VM level [134] migration.

Rationale: The Self-Aware pattern enables a system to tolerate errors or subsystem errors or failures
through adaptation. It relies on the capability of reaching a correct system state from an illegal system state
in a finite number of execution steps. It uses explicit error/failure detection and self-correction to actively
transition from an illegal to a correct system state. Self-correction is aided by fault diagnosis and intrinsic
to the design of the system when this pattern is applied. The pattern has high design complexity and has
low dependence on a system’s architecture.

Related Patterns: The Self-Healing structural pattern uses the same Self-Stabilization strategy
and Self-Correction architectural patterns, but does not employ the Fault Diagnosis architectural
pattern or an OODA loop control. It optionally uses the Redundancy architectural pattern for
self-correction.

The Natural Tolerance structural pattern uses the same Self-Stabilization strategy pattern, but
with a different architectural pattern (Self-Masking). It optionally employs the Redundancy architectural
pattern for self-masking.

Patterns using the Self-Stabilization strategy pattern are a unique class, as self-masking or
self-correction may result the system to be in a different correct state after an error or failure than in an
error/failure-free execution.

Known Uses: Self-awareness is heavily used in autonomous systems. In HPC, however, it is mostly a
research area and less used in practice. Known uses include:

• Leveraging warning thresholds of sensors as early fault indicators to migrate computation away from
compute nodes that are about to fail [72].
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7.5 STATE PATTERNS

7.5.1 Static State

Name: Static State

Problem: The scope of the system state that remains unchanged for the entire duration of system operation
has unique resilience properties and needs that are different from other aspects of the system state.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by the
input state and the sequence of operations since initialization.
• The notion of lifetime can be associated with the various parts of a system’s state.

Forces:

• The state patterns expose an intrinsic property of the system. The precise definition of aspects of the
system state requires a detailed understanding of the system structure and operation.
• The facility in identifying the state patterns depends on the layer of system abstraction at which the

behavioral patterns associated with the state pattern are instantiated.

Solution: The Static State pattern encapsulates the portion of the system state that remains unchanged
for the entire duration of system operation. The static state refers to all aspects of a system’s state that is
computed when the system is initialized, but is not modified during the system operation. From the
perspective of an HPC application, the static state is persistent; it includes program instructions and
variable state that is computed upon application initialization. Figure 56 shows how the scope of the pattern
relates to other state patterns. The encapsulation of such persistent state enables a behavioral resilience
pattern to leverage the unchanging nature of the state when performing detection or recovery actions.

Application

Static State Dynamic State

Environment State

Figure 56. Static State pattern relations

Capability: The static state outlives the process that creates/initializes it. The identification of this pattern
follows the steps outlined in Figure 57. In the context of HPC programs, the Static state pattern presents
an application-centric view of a system. The correctness of the static state at all times is essential to the
correct execution and outcome of a program.

Protection Domain: The Static State pattern defines the scope of the system state that remains
unchanged after initialization.

Resulting Context: The persistent state pattern defines the scope of the static program state. The presence
of any errors in the persistent state may not necessarily lead to immediate catastrophic failure of an
application program’s execution, but might lead the program on divergent paths that cause a failure at a
future point in the program’s execution. Therefore, the integrity of this aspect of a program’s state is
essential for correct execution.
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Examples: Various algorithm-based fault tolerance methods leverage the property of invariance in the
persistent state. These methods maintain redundant information about the application variables in the static
state that enables recovery to their default data values at any time during application execution.

Rationale: The isolation of the state that is persistent throughout an HPC application program execution is
supported by this pattern. The invariance property of the state encapsulated by this pattern enables the use
of a resilience behavioral pattern that leverage this property to detect and recover errors/failure of such
state.

Related Patterns: Together with the Dynamic State pattern and Environment State pattern, the
Static State pattern defines the overall state of a system.

Known Uses:

• In the design of iterative methods, the static data structures such as the operand matrix A, the right-hand
side B, or the preconditioner are computed once in the initialization phase of the application and are
unchanged after. Errors in these structures are recovered by maintaining checksums [95].
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7.5.2 Dynamic State

Name: Dynamic State

Problem: The scope of the system state that changes as a result of the system operation has unique
resilience needs from other aspects of the system state.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by the
input state and the sequence of operations since initialization.
• The notion of lifetime can be associated with the various parts of a system’s state.

Forces:

• The state patterns expose an intrinsic property of the system. The precise definition of aspects of the
system state requires a detailed understanding of the system structure and operation.
• The facility in identifying the state patterns depends on the layer of system abstraction at which the

associated behavioral patterns are instantiated.

Solution: The Dynamic State Pattern encapsulates the system state that changes as the system makes
forward progress. In an HPC application, the dynamic state includes the variables that are modified by the
algorithm. This scope with respect to other state patterns is shown in Figure 58. The encapsulation of the
dynamic state enables the identification of the appropriate behavioral resilience patterns to detect and
correct fault/errors in such state. Often the behavioral pattern cannot rely on the current error-affected
version of the state to perform recovery; the detection/recovery entails the use of a previously preserved
version of the dynamic state, or repeating operations from a known stable point. Alternatively, the
resilience solution must accept limited loss of information when the behavioral patterns do not completely
recreate an error-free version of the dynamic state pattern.

Application

Static State Dynamic State

Environment State

Figure 58. Dynamic State pattern relations

Capability: The state refers to all aspects of the program state that continuously changes as an application
program executes. This includes the data values that are computed during system operation, or the
control-flow variables that enable forward progress of the system. The correctness of the dynamic state is
essential for a correct outcome of a program, but certain algorithms permit faults in the dynamic state to be
tolerated. The identification of the dynamic state pattern is illustrated in Figure 59.

Protection Domain: The Dynamic State pattern defines the scope of the system state that changes
during system operation as the system makes forward progress.

Resulting Context: From the perspective of an HPC program, the encapsulation of the dynamic state
enables definition of resilience behaviors, i.e., detection and correction techniques, which must not rely on
the specific structure or intrinsic properties of the data contained by the pattern.
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Examples: Algorithm-based fault tolerance strategies that guarantee resilience of the dynamic state
actively track changes to state. Redundancy methods maintain copies of the change to the dynamic state to
compensate for the version that is impacted by an error or failure.

Rationale: The isolation of the dynamic state that is updated throughout an application program execution
is supported by this pattern. The dynamic feature of this state pattern implies that any errors/failure in such
state amounts to lost work. Therefore, the isolation of the dynamic state enables the use of resilience
behavioral patterns that explicitly seek to recover the dynamic state. Alternatively, a behavioral pattern may
recover an error in the dynamic state without the need to abort and restart an application program using
lossy techniques.

Related Patterns: Together with the Dynamic State pattern and Environment State pattern, the
Persistent State pattern defines the overall state of a system.

Known Uses:

• The most widely used method for protecting dynamic state is using checkpointing-based roll-back
recovery methods.
• Algorithm-specific techniques that support recovery of dynamic state without the need for recovery use

lossy methods [113]

142



7.5.3 Environment State

Name: Environment State

Problem: The scope of the system state that provides a common set of services that support the primary
function of the system has unique resilience properties and needs from other aspects of the system state.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by the
input state and the sequence of operations since initialization.
• The complete system state may be described in terms of state relevant to the core function of the system,

called the primary state and the system state that serves to support its function, called the environment.

Forces:

• The state patterns expose an intrinsic property of the system. The precise definition of aspects of the
system state requires a detailed understanding of the system structure and operation.
• The facility in identifying the state patterns depends on the layer of system abstraction at which the

associated behavioral patterns are instantiated.

Solution: The Environment State Pattern encapsulates the system state that supports the operation
of the system. The pattern defines the scope of the system state that provides a common set of services in
support of the primary function of the system. The environment also facilitates and coordinates the
operation of various subsystems in a system. Figure 60 illustrates the relation between the state pattern and
the static and dynamic patterns. In general, HPC systems navigate complexity through the definition of
abstractions that hide the details of specific functions behind well-defined interfaces. From the perspective
of an HPC application, the overall system state may be partitioned into the aspects that serve the primary
function of the system and those that provide access to the system resources and services that enable the
application to fulfill its function. The encapsulation of the environment state enables designers to instantiate
behavioral patterns that are independent of the design of the HPC applications and their algorithms.

Application

Static State Dynamic State

Environment State

Figure 60. Environment State pattern relations

Capability: An error/failure in the environment state is often immediately catastrophic to the operation of
the primary system. The encapsulation of the environment state follows the steps in Figure 61 and enables
the development of resilience strategies for the system environment separately from the resilience
capabilities of an application program.

Protection Domain: The Environment State pattern defines the scope of the components in the
environment that support the operation of the primary system. For an HPC system, this scope includes
productivity tools and libraries, the runtime system, the operating system, file systems, communication
channels, etc.
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Figure 61. Environment State pattern flowchart

Resulting Context: The pattern defines the scope of the state that support resource sharing, coordination,
and communication between the various subsystems. While an application program does not normally
have complete control over its environment, it may exert partial control to affect the environment through
well-defined interfaces.

Examples: Operating-system based resilience mechanisms focus on the correctness of the data structures
within the kernel. These mechanisms are independent of the resilience features of the application program.

Rationale: Any changes in the environment due to an error or failure event directly affects the application
program operating within the environment. The encapsulation of the environment enables the resilience
behavior of the environment state to be reasoned about separately from the resilience behavior of the
primary system state, i.e., an HPC application’s state.

Related Patterns: Together with the Persistent State pattern and Dynamic State pattern, the
Environment State pattern defines the overall state of a system.

Known Uses:

• The failure of the operating system environment on the compute node of HPC system is often fatal for
the application. The Mini-Ckpts framework emphasizes the recovery of the OS environment by
preserving kernel structures in persistent memory [79].
• The ULFM MPI provides recovery of the communication environment from the failure of processes by

reconstructing the MPI communicator [31].
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7.5.4 Stateless

Name: Stateless

Problem: Several resilience strategies operate without the need for defining a specific protection domain.
However, behavioral patterns expect a complementary state pattern for completeness.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by the
input state and the sequence of operations since initialization.

Forces:

• The state patterns expose an intrinsic property of the system. The precise definition of aspects of the
system state requires a detailed understanding of the system structure and operation.
• The facility in identifying the stateless pattern depends on the layer of system abstraction at which the

associated behavioral patterns are instantiated.

Solution: The Stateless Pattern facilitates the creation of resilience strategies that are independent of
system state. It provides the construct of null state in order to create solutions that have a well-defined
notion of behavior but need not define a scope for the behavior. From the perspective of an HPC
application, the definition of the Stateless pattern permits defining the scope of operations that perform
fault/error/failure detection or recovery without explicitly defining the variable state of the program that is
affected by the operations.

Capability: In the context of HPC programs, solutions that are based on a Stateless pattern may
include: (i) applications that consist of predominantly memory load operations and rarely contain
state-modifying memory and I/O operations; these applications typically perform reductions operations
over large number of data elements, and (ii) applications that yield imperfect results since their algorithms
are based on approximation and iterative refinement, or use noisy input data to begin with.

Protection Domain: The Stateless pattern defines the notion of null system state when defining a
resilience solution.

Resulting Context: The stateless pattern is utilized together with behavioral resilience patterns whose
actions do not necessitate modifying any aspect of the system state during the detection or recovery. The
resilience solution that uses a stateless pattern must select and instantiate a behavioral pattern that can deal
with any additional side-effects due to the inclusion of the stateless pattern.

Examples: The use of the transaction model to provide resilient behavior is an example of the Stateless
pattern. Transactions support execution of a sequence of operations that may complete as a unit, or fail; the
notion of partial execution is not supported. While the transaction may entail performing computation on
data variables, the resilience of the data is independently managed; the resilience solution may be defined
with a Stateless pattern.

Rationale: The pattern is the equivalent of a null pattern that enables resilience solutions to be constructed
without the requirement for the behavioral patterns to operate on the program state.

Related Patterns: While the Persistent State pattern, Dynamic State pattern, and the Environment
State pattern define the complement of the overall state of a system, the Stateless pattern offers the
notion of Null state.
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Known Uses:

• The idempotence property guarantees that any region can be freely re-executed, even after partial
execution, and still produce the same result. Language-level constructs as well as compiler-based
techniques enable definition of idempotent regions of execution; the recovery of such regions is
stateless [56].
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8. BUILDING RESILIENCE SOLUTIONS USING RESILIENCE DESIGN PATTERNS

8.1 COMPONENTS OF RESILIENCE SOLUTIONS

The resilience design patterns presented in the catalog offer solutions to problems that repeatedly occur in
the design of resilience capabilities for HPC. Each pattern in the catalog presents a solution to a specific
problem in dealing with fault, error and failure events. Complete resilience solutions must seek to ensure
that an HPC application executes to a correct solution despite the presence of events in the systems.
However, architecting a HPC system and its software environment is a complex process. To incorporate
resilience into the system design and software development efforts, the interaction between the resilience
patterns and the distribution of responsibility between the patterns is as important as identifying the
appropriate pattern for a solution based on its characteristics.

Figure 62. Elements of a resilience solution for HPC systems and applications

The artifacts of a design process that uses the resilience design patterns are complete resilience solutions
that provide fault/error/failure detection, containment and mitigation capabilities for a specific fault model.
Additionally, the resilience capability must protect a well-defined domain. These key constituents of a
complete solutions are shown in Figure 62. The design patterns may be instantiated at multiple layers of
system abstraction, and are relevant to various application and system scales. However, many of the
patterns in the catalog individually provide partial solutions by supporting only one or two out of the
detection, containment and mitigation solutions. For system and application designers to use these patterns
in the construction of resilient versions of their designs, these patterns must be organized into a
well-defined system of patterns.

8.2 DESIGN SPACES

During the design of a complete resilience solution, there are various factors that must be considered in the
selection of patterns besides their detection, containment and mitigation capabilities, including the layer of
abstraction for their implementation, scalability of the solution, portability to other architectures,
dependencies on any hardware/software features, flexibility to adapt the solution to accelerated fault rates,
capability to handle alternative fault and error events, the performance and performance overheads.

We define a framework that enables the composition of the resilience design patterns. A pattern framework
enables the creation of the outline of the resilience solution that captures the dimensions and capabilities of
the patterns, reveals and clarifies the relationships between the patterns. The combination of these patterns
based on the guidelines offered by the hierarchical classification scheme enables the complete solutions for
resilience to specific fault models in HPC systems. However, there is sufficient flexibility to adapt the
solution to specific situations. The framework also enables the designer to navigate the various issues that
must be addressed in the process of developing practical resilience solutions.
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Figure 63. Design Spaces for construction of resilience solutions using patterns

In order to articulate a systematic method for customized designs, the framework is based on design spaces
(Figure 63). These design spaces provide guidelines for the decision making in the design process, which
consists of selection of the appropriate patterns based on the requirements of protection and the cost of
using specific patterns. The framework consists of the following design spaces:

• Capability: The patterns must support capabilities that enable the detection, containment, mitigation
of faults/errors/failure events.

• Fault model: The identification of the root causes of fault events and their impact and propagation
through the system must be well-understood to provide effective solutions.

• Protection domain: The definition of the protection domain enables clear encapsulation of the
system scope over which the resilience patterns operate.

• Interfaces: The identification and implementation of the activation and response interfaces for
behavioral patterns affect the propagation of fault/error/failure event information.

• Implementation mechanisms: The implementation design space is concerned with constraints
imposed by specific features of hardware, execution or programming models, software ecosystems.

These design spaces represent the important aspects of the design process that a designer must contemplate
in order to create effective and efficient resilience solutions. The design spaces provide a structured flow to
the design process since each design space presents one or more key decision points that shapes the
resilience solution, as well as the overall design of the system. Design spaces also provide a framework to
guide the creation of cross-layered resilience solutions that leverage capabilities from multiple layers of the
system abstraction. With the use of resilience patterns in the context of the framework provided by the
design spaces, HPC system designers, users and application developers may evaluate the feasibility and
effectiveness of novel resilience techniques, as well as analyze and evaluate existing solutions.

The design spaces are ordered from the abstract to concrete, and they cover the important structural and
behavioral design considerations. As a designer advances through these design spaces, they are able to
develop a clearer understanding of the solution profile and the general constraints, which enables them to
select the appropriate patterns from the catalog and decide on implementation alternatives. Designers may
use various approaches to navigate the design spaces, including a strictly top-down approach, in which the
design is driven by the event type and model that a system must be protected against, and the
implementation of the system is adapted to enable the system to survive the different ways in which the
event may impact the reliability of the system. Alternatively, in a bottom-up approach, the resilience
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capability must be woven into the existing hardware or software component designs and interfaces, and
additional components are included to enhance the protection coverage, or to handle specific fault model
behaviors. Often, designers may be required to take a hybrid approach, in which the design spaces are
revisited in an effort to refine a design, to optimize the features of a solution, and to enable designers to
overcome constraints imposed by any hardware or software system features.
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9. A PATTERN LANGUAGE FOR HPC RESILIENCE

A pattern language is considered as a system of patterns that are related with each other in a hierarchy or
network. The structure of the network helps designers makes sense of the individual patterns, as well as
helps anchor them in various combinations to provide complete solutions. Our pattern language for HPC
resilience explains the discipline to use the various design patterns to create effective and efficient
resilience solutions. The elements of the language are the patterns detailed in Section 7. The language
guides a designer from the beginning of a design problem to the realization of its solution.

9.1 TYPES OF PATTERN RELATIONS

In general, a pattern language has the structure of a network such that patterns that are related by some
measure of relevance are linked together. The definition of the linkage between patterns is the key for a set
of patterns to become a language rather than be seen as a collection of isolated, standalone ideas for design.

In contrast to a pattern classification, which provides the means to group patterns based on a set of rules or
pattern properties, a pattern language explicitly interweaves the patterns in the catalog based on every
possible (but at least one) type of pattern interrelation. Based on the interrelations between the patterns, the
complete set of the resilience patterns in the catalog forms a language. Therefore, making these relations
explicit is essential to the process of developing a pattern language.

Table 28. Types of pattern relations

Relation Description Inverse Relation
abstraction Pattern x describes an abstract form of pattern y specialization
specialization Pattern x provides specific details about pattern y abstraction

used with
Pattern x is used to address different problem than y; may be used
together

conflict

conflict
Pattern x and y are not suitable to be applied together for a specific
problem

used with

similarity
Pattern x and y have some similar features, but address different prob-
lems

-

domain Pattern x specifies the protection domain for the behavioral pattern y -

Highlighting these relationships between patterns enables designers to grasp the entire collection of
patterns. Therefore, the pattern language also serves as an index to the catalog of resilience design patterns.
For the resilience design patterns, various types of pattern relations may be used to express kinds of
relatedness between the patterns. Table 28 provides an overview of the types of relationships between the
resilience patterns. These interrelations between the patterns form the links between patterns in the
network, thereby defining the order in which the patterns should be applied to a HPC resilience design.

9.2 STRUCTURE OF THE PATTERN LANGUAGE

Forming a pattern language requires establishing rules for linking each of the patterns in the catalog. This
is a particularly complex task for resilience design patterns due to their large number and the various design
considerations and optimizations that must be accounted for. To enable designers to understand the
language and for rapid analysis of the relationships between the various resilience design patterns, we have
represented the pattern language using a graph. Each pattern is represented as a vertex and every relation
between any two patterns is represented by an edge in the graph network. Based on the type of relation
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between the patterns, the edges may be directed or undirected. This representation of our pattern language
is shown in Figure 64.

The pattern graph represents the language since it captures all the interrelations between the resilience
patterns. This representation of the language is intended to make these patterns useful for a broad target
audience. System architects may use the language to understand the scope of the problem and develop a
high-level layout of the pattern-based solution, while the designers of individual component may use the
language to understand the pattern relationships that directly impacts their part of the design.

The use of the graph representation of the pattern language also enables structured analysis of resilience
solutions. For example, a simulator may use the graph representation of the pattern language for design
space exploration to evaluate alternative combinations of patterns that may have different complexity and
performance characteristics. Similarly, the graph representation of the language may enable a runtime
system or scheduler to make dynamic decisions about the suitability of instantiating a specific combination
of patterns.

The graph representation of the language highlights the pattern relations (listed in Table 28) between all the
resilience patterns in the catalog. The vertices representing the patterns are clustered to align with the
classification scheme described in Section 6. The state patterns and the three categories of the strategy
patterns are represented in different colors. The derivative patterns of each of these classes are represented
in the same color as their parents. The patterns are ordered from abstract to concrete to enable designers to
focus on the contours of a solution before delving into implementation specifics. Additionally, most of the
relations are directed from one pattern to another, but they often also imply an inverse relation in the
opposite direction. Therefore, every edge in the graph may be treated as a directed connection between
patterns that highlights a specific relation between the two patterns. From the designers’ perspective, this
representation of the pattern language provides the methodology for selecting patterns from the catalog.
The language outlines the ordering of the critical decisions that must be considered when designing and
implementing a resilience solution.

9.3 USING THE PATTERN LANGUAGE

Our pattern language spans all the way from the initial architecture of a resilience solution down to the
lowest level details of the implementation for a specific architecture and software environment. Defining
which patterns to use and how to combine them is the very essence of the pattern language. However, an
emphasis of a pattern language is often not represented in the inherent structure of the pattern language.
Since our pattern language is in the form of a network, there is no one sequence that perfectly captures the
pattern relationships. Therefore, when selecting a suitable combination of patterns for constructing a
resilience solution, there are numerous ways in which the network of patterns may be traversed.

9.3.1 Structured Design of HPC Resilience Solutions

The pattern language outlines the intended flow of information when reading or browsing the pattern
catalog. Using the pattern language, solutions are designed incrementally by exploring the links of the
network that represents the pattern language. This yields an order in which the patterns should be applied
to a design problem, which is called a pattern language sequence. However, the pattern sequence is not
strictly linear. Various stakeholders, including system HPC system architects, hardware and software
designers, application developers and users can construct solutions by discovering a sequence that fits their
design objectives and constraints. For the following key aspects of a resilience design process, the pattern
language enables the discovery of pattern-based solutions:
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Figure 64. Resilience pattern language representation

• Protection Domain: Based on the scope of the system that the solution intends to protect, the
language may traverse the network starting from the state pattern vertices, and then identify the
behavioral patterns to protect the selected domain.

• Fault Model: The type of event that a solution is designed for forces the designer to consider one of
the strategy pattern vertices, before exploring the network links that will enable the identification of
derivative patterns that are capable of handling the consequences of a specific fault, error or failure
type.

• Fault Management Capabilities: Based on whether the pattern offers detection, containment,
recovery or masking semantics, or a combination of these capabilities, the traversal may commence
at specific cluster in the graph representing the language.

• Implementation-Driven: Often the design of a resilience solution may be constrained by the
idiosyncrasies of a hardware architecture or software environment, or by the availability of specific
technologies for supporting a resilience solution. In this case, the pattern language may be used to
identify the structural patterns first, and traverse the links of the network towards the more abstract
behavioral patterns and the state patterns to evaluate the effective protection domain and capabilities.

9.3.2 Other Design Considerations for Resilience Solutions

While the pattern language for designing resilience solutions for HPC systems is intended to provide
designers with a roadmap to create solutions, there are various other critical decisions that must be
considered in addition to the fundamental choices of protection domain, fault model, capability and
implementation mechanisms. These include:
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• Design complexity of the solution: The effort necessary to incorporate the patterned solution in the
overall design of a system.

• Time overhead in the absence of fault, error, or failure events: The impact of the pattern (in
terms of time to solution) on the fault-free operation of a system.

• Time overhead to manage fault, error, or failure events: The impact on time to solution on
account of the actions required to manage an event.

• Space overhead of the solution: The number of additional components or subsystems that the
solution requires.

• Power overhead of the solution: The impact of applying the pattern on the system’s power
consumption.

For each optimization objective, the graph edges may be annotated with relations that express the
implications of selecting a pattern when traversing the network. Using these additional relations, the
pattern language may be used to discover an ordering of patterns that meets these design considerations as
well as the functional requirements of a solution for confronting a specific type of fault, error or failure.
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10. CASE STUDIES

10.1 CHECKPOINT AND ROLLBACK SOLUTION FOR PROCESS FAILURES

This section explores use cases for the application of resilience design patterns to the systematic design and
analysis of resilience solutions. We use the pattern-based approach for understanding existing solutions
with the view to adapt the solution to future generations of HPC systems. The case study describes the
pattern-based design process for the fault model of process/task failure on a notional architecture and
software environment of a HPC system.

Figure 65. Resilience solution case study: Checkpoint& restart using BLCR

For this case study, we aim to develop a resilience solution that enables an HPC application to survive a
process failure. In an HPC environment, the diagnosis of the precise root cause of these failures is difficult
due to the lack of sufficient hardware-level debugging information. For designing a purely software-based
solution, the fault model is a process crash or hang whose cause is unknown. This type of failure results
from the presence of a fault in the processor or memory that activates to cause an error in the form of an
illegal instruction or an invalid address in the program state. When the program execution encounters the
address in the program state that is in error state, the process may crash or hang.

C/R solutions are the often used to support resilience to process failures in HPC systems. We reexamine
this well-known software-based solution using the structured pattern-based approach to analyze
composition of the constituent patterns needed to design this solution. Such analysis will be useful for
adapting C/R solutions to future systems and evaluate their performance characteristics. The goal of a
complete C/R solution is to recover a failed process such that the application may resume from an
error-free state. This requires that the solution capture the image, or snapshot, of a running process and
preserves it for later recovery. The checkpoint is typically committed to parallel file system on disk storage.
For parallel applications, the C/R framework’s coordination protocols produce a global snapshot of the
application by combining the state of all the processes and their communications in a parallel application.
Since most parallel applications using the message passing interface (MPI) define a MPI process to be a
Portable Operating System Interface (POSIX) process, the protection domain of the solution must cover the
complete POSIX process state and the point-to-point and collective messages exchanged between the
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processes.

The protection domain for the solution must cover the global process state. Therefore, we fuse the
Persistent and Dynamic and Environment state patterns, which extends the domain of our system-level
checkpointing solution to the entire memory associated with a process; in a Linux-based environment, the
protection domain extends over the virtual address space of a Linux process.

For the detection of a process failure, we require instantiation of the Fault Treatment strategy pattern.
Specifically, our solution requires a Fault Diagnosis architecture pattern to discover the location of the
failure and the type of event, which is enabled by a Monitoring structural pattern. The instantiation of the
Monitoring pattern is a kernel-level heartbeat monitor, which is deployed in the system to detect whether
the process is alive.

For the selection of a recovery pattern, there are key two considerations: (i) the frequency of node failures;
and (ii) the performance and resource overhead of applying the pattern. The space overhead incurred by
instantiating a Compensation strategy pattern for recovery is substantial due to the need to replicate the
protection domain. For systems that experience process failures infrequently, the use of a
compensation-based solution proves prohibitively expensive. Therefore, for the failure recovery we select
the Recovery strategy pattern. The Checkpoint Recovery architectural pattern is appropriate since
Linux provides the capability for a running process to be interrupted and its context to be written to disk.
Also, the process state is deterministic and defined by the state of the program counter and the registers;
therefore, the Rollback structure pattern is suitable for implementation at the operating system level. With
the selection of this pattern, protection domain of the failure is to be limited to a single process context,
which implicitly defines the containment pattern. The implementation of the recovery pattern requires a
disk storage system, to which the checkpoint, i.e., the process state captured during failure-free operation is
exported. The performance overhead of these patterns during failure-free operation and the recovery time
are dependent on bandwidth available between memory and the disk system.

The implementation of the patterns, which is illustrated in Figure 65, is implemented using the BLCR [65]
framework. Since BLCR does not provide a failure detection mechanism, the Monitoring pattern is
implemented by a kernel-level module that uses heartbeat monitoring to check for process liveness. BLCR
provides a completely transparent checkpoint of the process, which saves the current state of a Linux
process. The framework uses a coarse-grain locking mechanism to momentarily interrupt the execution of
all the threads of the process, giving them a global view of its current state. The entire state is saved,
including the CPU registers, the virtual memory map as well as the function call stack. From the
perspective of an application programmer, the checkpoint routine returns with a different error code, to let
the caller know if this function call returns from a successful checkpoint or from a successful restart. The
Rollback pattern handles recovery after the detection of a process failure by restoring the context file set
from the stable storage, and recreating the process on the same hardware, with the same software
environment. BLCR also provides an API for applications programmers to manage pattern behavior
through hooks that allow the application to block off code sections where checkpoints are not permitted.
These hooks also give applications a chance to respond to checkpoint/requests and take appropriate action,
which provides an application programmer with explicit control over the pattern’s activation and response
interfaces.
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10.2 PROACTIVE PROCESS MIGRATION FOR FAILURE AVOIDANCE

In HPC environments, various fault indicators indicate the imminence of error or failure events. The goal
of this case study is to design and implement a proactive resilience solution using the structured design
pattern-based approach. Various resilience strategies are inherently reactive, i.e., they respond to the
occurrence of an error or a failure event and seek to prevent the event from affecting the correct execution of
an HPC application. In contrast to a reactive solution that seeks to recover from an error or a failure event
after the fact, the notion of proactive fault tolerance responds to faults in a system and seeks to prevent their
activation into errors/failures. This analysis of an error or failure avoidance solution is intended to identify
the patterns that must instantiated for a proactive design approach, and to articulate the protection domain,
capabilities and implementation specifics of the solution. The case study describes the pattern-based design
process for faults that have the potential to result in future failure events in an HPC environment.

Figure 66. Resilience solution case study: Process migration

The key to designing a proactive strategy is the identification of fault indicators that can sufficiently predict
the activation of an error or failure. The fault model for this case study is a defect in the system that has the
potential to result in an error or failure. We consider faults that are known to cause errors, which result in
application crashes. Using design patterns, we seek to develop a software-based solution that can
preemptively migrate parts of an application away from system resources that are about to fail. In a HPC
system, the failure of a compute node causes termination of the application processes running on that node.
Since the presence of a fault does not impact the correctness of an application program until it activates, the
solution supports proactive failure avoidance from the application’s perspective. We select the protection
domain by fusing the Persistent and Dynamic and Environment state patterns. Much like the C/R
solution, the protection domain covered by these patterns includes the complete POSIX process state in a
Linux environment. The ultimate objective of the solution is to preemptively migrate the application
processes from compute nodes where a failure is likely to cause them to crash to another node in the
system.

To anticipate the occurrence of a failure, the solution must observe critical indicators that will predict the
likelihood of a failure. We apply the Fault Treatment strategy pattern, which is instantiated as a Fault
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Diagnosis pattern in every node of the HPC system. This pattern is instantiated as a Prediction
structural pattern, which enables estimating the possibility of an imminent error or failure event. Its
activation interface reads health monitoring data for the various components in each compute node and its
response interface signals the possibility of a node failure. The prediction pattern creates a control
feedback-loop such that a mitigation pattern can take preventive action to avoid failure of the processes
running on the node. Since the solution addresses faults in the computes nodes, it requires the instantiation
of another Fault Treatment pattern for mitigation rather than a Recovery strategy pattern. For this
solution, we assume that the number of nodes allocated for an application run are determined during startup
and are fixed for the lifetime of the application run. If the application uses all nodes in the allocation at
initialization and leaves no spare nodes, the inclusion of a Compensation strategy pattern is not a suitable
alternative. The Reconfiguration architectural pattern is applied, which is instantiated in the form of a
Restructure structural pattern that isolates a failing node and migrates the application processes to an
alternative compute node in the system. The containment is implemented by a kernel level module provides
containment for the fault by identifying the process that is executing on the node which the Prediction
pattern has assessed vulnerable due to a specific set of changes in operating conditions of the node.

The overall structure of the pattern-based design is illustrated in Figure 66. The implementation of the
Prediction pattern is realized as a per-node health monitoring mechanism that uses various
platform-level indicators in the system. It uses platform data available through the IPMI interface, which
relies on the baseboard management controller (BMC) to collect sensors readings for health monitoring,
including the data on temperature, fan speed, and voltage. The response interface of the pattern notifies the
scheduler when the sensors indicate deterioration of a node’s health. Since the behavior of the Recovery
strategy pattern used by this solution entails performing a live migration of a POSIX process in the context
of the MPI execution environment, the implementation of the Restructure pattern is realized within the
system’s job scheduler. The pattern identifies healthy nodes in the system as potential destinations for the
process migration. Once a destination node has been identified, the pattern initiates the migration of the
process from source to destination node. It is imperative the entire context of a process be migrated when
the presence of a fault is inferred on a compute node. Therefore, the migration entails transfer of the
process image, which occurs by a page-by-page copy of the address space. The implementation then
synchronizes all the MPI processes to a consistent state, after which the in-flight data in the MPI
communication channels is drained. Once all the MPI processes reach a consistent global state, the
remaining dirty pages, which includes the registers, signal information, pid, files, etc. to the destination
node. Once the mapping of the processes to nodes in the system has been restructured, the communication
channels and the previously saved in-flight messages are restored. The migrated processes resume
execution on the destination node. The implementation of the patterns in this solution ensure the
transparency of the proactive migration to the HPC application.
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10.3 CROSS-LAYER HARDWARE/SOFTWARE SOLUTION FOR SOFT ERROR
RESILIENCE

Among the major challenges for future hardware and software design is the requirement of solutions to
balance the performance and power efficiency with the robustness offered by a solution. Resilience
solutions that are implemented across multiple layers of the system stack, where partial solutions work
together to achieve required degrees of resilience in a highly performance and power-efficient manner.
While design patterns provide a systematic framework to re-evaluate and refine existing resilience
solutions, they are also a valuable tool to design novel solutions. This section demonstrates the use of
resilience design patterns for the exploration and assessment of such novel cross-layered solutions. The
case study describes the pattern-based design process for the fault model of transient errors on a notional
architecture and software environment of a HPC system.

Figure 67. Resilience solution case study: Cross-layer design using ECC with ABFT

In this case study, we use design patterns as building blocks to explore novel resilience solutions that
leverage capabilities from various layers of the system stack. By navigating the design spaces of the
resilience design pattern framework, we can evaluate the effectiveness of instantiating a detection,
containment or mitigation pattern at a specific level in the system stack and systematically construct a
cross-layer resilience solution that connects patterns from multiple layers. The structured approach
supported by the framework also enables refining the cross-layered solution. The aim of this case study is
to develop a solution that provides soft error detection and correction for HPC application data structures.
The fault model that we consider is transient errors in memory structures that cause multiple bit flips in the
application’s data or control variables, which may result in outcomes ranging from incorrect results to fatal
program crashes.

The DRAM memory chips used in HPC systems use ECC to detect and correct bit flip errors. Similarly,
algorithm-based fault tolerance techniques are available that maintain checksums for data structures to
detect and correct data value errors at the application level. However, the lack of formal methods to
combine these solutions often precludes cross-layer hardware-software designs that cooperative protect the
application data. Our proposed solution is designed to support transient error resilience for a scientific
application that uses an iterative linear solver method. In general, these methods solve a system of linear
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equations represented as A.x = B, where x is the solution vector, A is the operand matrix and b is a known
vector. The iterative algorithm begins with an initial approximation of the solution x, and refines this
solution until the residual norm is below a certain error bound. Therefore, the matrix A and vector b are
scoped within Static state patterns, the solution vector x in a Dynamic state pattern, and the remaining
variable state is contained within an Environment pattern. While the solution vector is often tolerant to
perturbations due to the iterative nature of the algorithm, any transient errors within the scope of the two
Static state patterns affects the correctness of the solver. Therefore, we define the protection domain of
our cross-layer solution to include only these static patterns.

For achieving error detection and correction in digital data, the general approach is to add redundant
information to discover errors and reconstruct the original data. This approach fits the Compensation
strategy pattern, which may be instantiated in the form of a Forward Error Correction pattern. For the
detection of the transient errors, we assume that this pattern is implemented in the form of ECC in the
DRAM modules, which supports single-bit error correction and double-bit error detection. Therefore, the
instantiation of this structural pattern handles both detection and mitigation for single-bit errors. Double-bit
errors result in an ECC violation on the memory line, which is asynchronously communicated by the
Forward Error Correction pattern to the operating system via its response interface by raising a
machine check exception. For the containment of the double-bit error, we deploy a Fault Treatment
pattern in the operating system, since the OS views the double-bit corruption as a fault. Since the pattern
must discover whether the double-bit corruption maps to the protection domain specified by the state
patterns, it is instantiated as a Fault Diagnosis pattern, specifically as a Monitoring structural pattern.
For recovery of variable state scoped by the Static state pattern, the solution instantiates the
Compensation strategy pattern. It uses the Redundancy architecture pattern and structures the solution
based on the Forward Error Correction pattern.

The instantiation of the patterns across the system stack is illustrated in Figure 67. The Monitoring
pattern for containment is implemented as a kernel-level module that maps the physical address to the
virtual address space to discover whether the fault may be contained within the Static state pattern. The
pattern’s response interface treats the presence of the fault in the state pattern as an application error and
notifies the numerical library. When the error is outside the scope of the Static state pattern, the response
interfaces indicates to the kernel module that the error is unrecoverable, which results in the OS killing the
application. Besides the Forward Error Correction pattern in ECC for single-bit error recovery,
another instance of this pattern type is implemented in the numerical library to handle double-bit errors.
The implementation maintains a set of checksums for the matrix A and vector b. The checksums enable the
identification of the element of the matrix affected by the error, and substitution of that element with a
correct value using the remaining uncorrupted elements in the row/column and the checksum values. The
instantiation of the Forward Error Correction pattern at the application library level provides context
about the significance of the error to the overall application, and is able to employ an algorithm-specific
fault tolerance detection and correction method, which is more cost effective for double-bit error mitigation
than system-level bulk reliability provided by hardware-level solution such as an enhanced ECC that
supports double-bit correction. Therefore, the cooperation between patterns across system layers supports a
flexible memory protection mechanism to single and double-bit memory errors, which allows the
application to resume operation towards completion rather than experience a fatal crash with higher
performance and energy efficiency.
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11. SUMMARY

In this document, we presented an updated and revised specification of the concept of resilience design
patterns, which support a systematic approach to designing and implementing resilience solutions. The
structured approach to designing and implementing HPC resilience solutions is useful to reduce the
complexity of the design process, and is particularly relevant for the future generations of extreme-scale
parallel systems and their applications. The patterns are based on well-known and well-understood
solutions that have been applied in HPC systems and provide solutions to specific problems encountered in
the management of resilience. We have formatted each of these solutions in the template of design patterns
such that they may be used by designers as reusable templates when building and refining resilience
solutions. The resilience design patterns presented in this document support detection, containment,
masking and recovery capabilities. This revision contains additional patterns as well as improvements to
the textual descriptions of the patterns from the previous version of the specification and the inclusion of
graphical representations of each pattern. We modified the classification scheme, which organizes the
resilience patterns in a layered hierarchy, to highlight the important relationship between the state and
behavioral patterns, and to accommodate the new patterns introduced in this version. The new
classification is designed to expose the relationships between the various patterns in the catalog and their
capabilities, which enables system architects to approach the solution abstractly while allowing individual
component designers and developers to restrict their work to the level that directly impacts their portion of
the solution. In this version, we have also made minor changes to the design framework that simplifies the
construction of complete resilience solutions through the composition of design patterns. The framework is
intended to be useful in creating portable solutions, whose implementation may be customized to specific
architectures and software stacks. The resilience patterns and the pattern-oriented framework facilitates the
exploration of a variety of alternative solutions, the refinement and optimization of individual solutions,
and the investigation of the effectiveness and efficiency of solutions. This structured approach aims to
address the resilience challenge for extreme-scale HPC systems through a systematic design of solutions
with an emphasis on optimizing the trade-off, at design time or runtime, between the key system design
factors: performance, resilience, and power consumption.
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