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Resilience to faults, errors, and failures in extreme-scale high-performance computing (HPC) systems is a critical chal-
lenge. Resilience design patterns (Figure 1) offer a new, structured hardware/software design approach for improving 
resilience by identifying and evaluating repeatedly occurring resilience problems and coordinating corresponding solu-
tions. Initial work identified and formalized these patterns and developed a proof-of-concept prototype to demonstrate 
portable resilience [1,2]. This recent work created performance, reliability, and availability models for each of the iden-
tified 15 structural resilience design patterns and a modeling tool that allows (1) exploring the performance, reliability, 
and availability of each pattern, and (2) investigating the trade-offs between patterns and pattern combinations [3,4]. 

The model for each of the 15 structural design patterns consists of a flowchart and state diagram, identifying its 
dynamic error/failure-free behavior and when handling errors/failures. It also includes mathematical models for perfor-
mance (error/failure-free execution time and under error/failure conditions), reliability (probability of not experiencing 
an error/failure) and availability (portion of time a system provides correct service). The reliability and availability mod-
els rely on exponential error/failure distribution to make a modeling approach possible. Other distributions, such as 
Weibull, would require a simulation approach. The modeling tool relies on parametrized descriptions of patterns to 
calculate and plot performance, reliability and availability. For example, Figure 2 shows the results for a 2-level check-
point/restart (CR) solution, with fine-grain CR at the compute node or accelerator level and coarse-grain CR at the job 
level. Complex horizontal and vertical pattern combinations can be modeled to understand system behavior.  

This work concludes a 6-year research and development effort in understanding the fault, error and failure charac-
teristics of extreme-scale HPC systems and in the design pattern approach for improving resilience. It created new con-
cepts, methods and proof-of-concept prototypes for understanding the resilience problem and for designing resilient HPC 
systems. The major lesson learned was that extreme-scale HPC systems often display unexpected fault/error/failure 
modes. Therefore, resilience needs to become an integral part of the HPC hardware/software ecosystem through 
codesign, such that the burden for providing resilience is on the system by design and not on the operator or user as an 
afterthought. The resilience design pattern approach offers this capability by identifying, classifying, quantifying and 
coordinating the detection, containment and mitigation properties of individual resilience solutions and their vertical and 
horizontal compositions within an extreme-scale HPC system, avoiding coverage gaps and overprotection. 

 
Figure 1: Classification of resilience design patterns 

 
Figure 2: Multi-level Rollback performance, reliability, and availability 
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Fig. 17. Multi-level Rollback performance, reliability, and availability

While the application itself is employing the Rollback pattern (level l = 0),
an additional Rollback pattern is employed for the o✏oaded computation (level
l = 1) to contain and mitigate GPGPU errors and failures using a more e�cient
strategy. The GPGPU computation is rolled back to a locally stored checkpoint
upon an error or failure. The performance, reliability, and availability are calcu-
lated based on the parameters for each pattern, making the GPGPU resilience
pattern a subsystem of the application resilience pattern.

While the application is waiting for the o✏oaded computation to finish, it
is assumed that no other computation takes place and there is no need to save
system state and progress to storage at level 0. Therefore, the application’s
failure free performance Tf=0 and performance under failure T are composed of
the corresponding performances at level 0 and 1 (Eqs. 7 and 8). The reliability
R(t) can be obtained using the performance under failure T and the failure
rate �u (or MTTF Mu) of the unprotected part of the system (Eq. 9). The
availability A can be calculated using the task’s execution time without any
resilience strategy TE and the performance under failure T (Eq. 10).

Tf=0 = Tf=0,l=0 + Tf=0,l=1 (7)

T = Tl=0 + Tl=1 (8)

R(t) = e��uT = e�T/Mu (9)

A =
TE

T
=

TE

Tl=0 + Tl=1
(10)

Fig. 17 shows the performance, reliability and availability of 2-level Rollback
using the parameters from in Fig. 7 with 80% of the task’s execution time TE

o✏oaded to a GPGPU, the time to save GPGPU state/progress to node-local
storage Ts,l=1 of 1 second and the time to load it and to roll it back the same.
Multi-level rollback provides better performance, reliability, and availability than
normal rollback pattern.

Rollback and N-modular Redundancy: The recent work OpenMP tar-
get o✏oad resilience [8] also considered employing the N-modular Redundancy
pattern. In this case, GPGPU errors and failures are detected and potentially
corrected using redundancy. The performance, reliability, and availability are
calculated similarly to the multi-level Rollback based on the parameters for each
pattern (Eqs. 7-10).

Fig. 18 shows the performance, reliability, and availability of this solution
using the parameters from Fig. 7, where 80% of TE o✏oaded to a GPGPU.
GPGPU redundancy N is 1, 2, or 3 and in time (↵ = 1), the times to replicate
the input Ti and to compare the outputs To are 0. The time to reboot a GPGPU
and use it again for redundancy Tr and the MTTR R are 1 minute. Inclusion
of redundancy further improves performance, reliability, and availability than
rollback pattern.
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