
A Highly Available Cluster Storage System Using Scavenging∗

Xubin (Ben) He, Li Ou
Department of Electrical and Computer Engineering

Tennessee Technological University, Cookeville, TN 38505, USA
{hexb,lou21}@tntech.edu

Stephen L. Scott, Christian Engelmann
Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
{scottsl,engelmannc}@ornl.gov

Abstract

Highly available data storage for high-performance
computing is becoming increasingly more critical as high-
end computing systems scale up in size and storage sys-
tems are developed around network-centered architectures.
A promising solution is to harness the collective storage po-
tential of individual workstations much as we harness idle
CPU cycles due to the excellent price/performance ratio
and low storage usage of most commodity workstations. For
such a storage system, metadata consistency is a key issue
assuring storage system availability as well as data reliabil-
ity. In this paper, we present a decentralized metadata man-
agement scheme that improves storage availability without
sacrificing performance.

1 Introduction

Data intensive scientific applications, such as simula-
tions for climate, fusion or biology research, constitute an
essential part of high performance computing. The increas-
ing demand to deploy distributed storage systems has led
to high performance storage [13], wide area mass storage
[21, 22], and cluster-based storage [10, 11, 14, 18, 23].
These high-end storage solutions offer an excellent perfor-
mance and sufficient parallel support, while they also have

∗This work was supported in part by Research Office under Faculty Re-
search Award and Center for Manufacturing Research at Tennessee Tech-
nological University, ORAU under the Ralph E. Powe Junior Faculty En-
hancement Award, and the Mathematics, Information and Computational
Sciences Office, Office of Advanced Scientific Computing Research, Of-
fice of Science, U. S. Department of Energy, under contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

issues in increasing administration costs, specialized soft-
ware, and central points of failures and control.

To address this issue, Vazhkudai [20] proposes to har-
ness the collective storage potential of individual worksta-
tions in the same way we harness the idle CPU cycles for
distributed computing. This solution constructs aggregate
storage from numerous commodity workstations as shown
in figure 1. Individual workstation users volunteer to con-
tribute an amount of their storage space for a certain dura-
tion of time to a manager (server) using a scavenging pro-
cess. Each benefactor workstation participates by register-
ing itself with the manager and by constantly updating the
manager with keep-alive messages using a soft-state reg-
istration protocol. Instead of a centralized single manager
server, this system employs a group of servers that collec-
tively takes on the responsibility of managing the system.
This group handles benefactor registrations, client requests,
and maintains different kinds of metadata including regis-
tration information, directory metadata, mapping informa-
tion, and so on. The group itself can use various replica-
tion strategies to provide high-availability. This scavenging
storage system provides a solution for scalable, reliable and
highly available distributed storage. However, certain issues
regarding metadata consistency [1, 4, 9, 12] and handling
Byzantine failures [6] need to be addressed efficiently.

Any I/O request handled by a computer system can be
classified into user data request and metadata request. A
study by Roselli et al. [17] shows that requests targeting at
the metadata can account for up to 83 percent of the total
amount of I/O requests in some typical applications. For a
scavenged storage system [20], where multiple servers are
employed to manage all metadata, including file/directory
attributes, data block addresses, consistency control, access
control, and registration information, the efficiency of meta-



Figure 1. Architecture for a Scavenging Stor-
age System

data management is critical for its overall performance.
With this paper, we continue the effort to develop stor-

age solutions that can take advantage of scavenging tech-
niques. We propose a decentralized, scalable, highly avail-
able metadata management scheme with multiple manager
servers and Bloom filter algorithms [5].

2 Highly Available Metadata Management

In our design, we focus on a generic heterogeneous clus-
ter consisting of a number of commodity workstations con-
nected by a TCP/IP network. All workstations form a scav-
enged system as shown in figure 2. They come in all flavors
ranging from operating system diversity to machine char-
acteristics. Each node has its own storage device(s) while
there are no functional differences among all participating
nodes. The role of clients, storage scavengers, and scavenge
managers can be carried out by any node.

Regarding the scavenged storage system design, Vazhku-
dai [20] has highlighted many positioning aspects, such as
soft-state registration, space reclaim, relocation, availabil-
ity, and so on. In this study, we concentrate on the nec-
essary distributed metadata management for multiple man-
ager servers in multiple domains.

To avoid single point of failure and provide fault toler-
ance as well as high availability, we employ a group of
scavenge manager servers to collectively take on the respon-
sibility of managing the system and its respective state in-
formation. There are a number of problems that must be
considered when having more than one manager with data
coherency being one of the more difficult issues to resolve.
We envision four potential manager schemes.

In the first scheme, all managers are equivalent peers.

Figure 2. Distributed Metadata Management
for a Scavenging Storage System

In this model, each manager maintains its own local copy
of the metadata representing the entire scavenged storage
state. All managers are organized using a distributed peer-
to-peer approach [7, 11]. Since coherency is guaranteed,
any manager may service a request without consulting the
others. While this is relatively straightforward in the case of
read accesses, it becomes significantly more complex in the
case of updates or writes. To address inconsistency prob-
lems of potential conflicting accesses, we propose the use of
a global ordering technique already known from distributed
databases [3]. Distributed transactions alter tables on sev-
eral servers simultaneously while allowing concurrent ac-
cesses. To ensure data consistency, all transactions are glob-
ally ordered and processed in this order at all servers. This
order can be determined using timestamps [19] or more
complex message numbering algorithms [7]. We apply such
an ordering technique for transaction operations to our man-
ager group, thus providing coherency for simultaneous ac-
cesses. The read, update and write operations are ordered in
a similar manner. Essentially a group manager state change
is performed using an atomic transaction, which results in
a modified local state that is simultaneously propagated to
the other managers using any number of techniques includ-
ing point-to-point and multicast. A significant drawback of
this technique is that the network traffic necessary to main-
tain data coherency may negatively impact performance.

A second strategy is to actively replicate changes only
to a subset of the manager group in an active/hot-standby



fashion [15], leaving all other manager members to re-
trieve a copy of the new state on demand or scheduled at
a time when the network is less loaded. While this system
will gain in availability as the number of active managers
increases, it will likewise jeopardize performance. This
tradeoff may be ”tuned” by adjusting the number of active
nodes. Ultimately, consistency must be enforced when any
update/write transaction is performed so that any manager
may service a request. In this scheme, when an active server
fails any hot-standby server may become active as needed
to satisfy a specific level of high availability. An added ben-
efit of peer-to-peer active/hot-standby schemes is that read
performance improves, since read requests may be serviced
by a nearby hot-standby server that acts as a local cache.

A third approach is, instead of replicating all of the in-
formation, we partition the entire system into several sub-
domains. In this scheme, each manager (or group of man-
agers) is responsible for only its respective sub-domain.
This results in a hierarchical manager structure with a mas-
ter manager group as root. Furthermore, in this scheme,
no single manager has the knowledge of the entire system.
This approach is completely orthogonal to the prior two ap-
proaches in this manner. A failure in this method will then
be confined to a sub-domain and high availability will be
addressed via the master manager group.

A fourth solution is to nominate a leading manager
(leader) that has a complete view of all metadata, while sev-
eral help managers (helpers) have only the metadata of their
respective sub-domain. To improve availability, the leader
may be replicated via mirroring. Here a failure will result in
a mirror being activated as the active leader manager (fail-
over). Each helper must maintain contact with the leader in
some manner. Should a helper fail, a new one may be easily
added and its data reconstructed via the leader.

All of the aforementioned schemes provide fault toler-
ance using replication and some level of high availability.
However, there is always a trade-off between performance
and availability. Our work is currently exploring the first
solution but we plan to spend time considering all of the
above alternatives and any others we may discover.

Group communication services [2, 7, 16] are critical to
achieve high availability and reliability. For the three dis-
cussed management schemes, we may use different algo-
rithms and network topologies. In this study, we concen-
trate on the peer-to-peer distributed control [7] for the first
solution, where each manager has a complete and consistent
copy of all the metadata information.

We use group communication services, such as Reli-
able Broadcast and Atomic Broadcast, to simplify the main-
tenance of consistently replicated state. Atomic transac-
tion operations guarantee metadata integrity despite random
communication delays, failures, and recoveries. The man-
ager group consistently maintains a global state using asyn-

Figure 3. Scheme of Bloom Filter Array

chronous peer-to-peer communication.

3 Metadata Management using Bloom Filter
Arrays

A Bloom filter is a fast and efficient method for repre-
senting a set A = {a1, a2, ..., an} of n elements to sup-
port membership queries. It was invented by Burton Bloom
in 1970 [5] and was proposed for use in the web context
by Marais and Bharat [15] as a mechanism for identify-
ing which pages have associated comments stored within a
web server, and thereafter used by many researchers [23].
The basic idea of a Bloom filter is to allocate a vector
v of m bits, initially all set to 0, and then choose k in-
dependent hash functions, {h1, h2, ..., hn}, each with the
range {1, ...m}. For each element a, the bits at positions
h1(a), h2(a), ..., hk(a) in v are set to 1. To find out whether
a given element x belongs to the set A, one simply tests
whether the k bits addressed by hi(x), are all set to 1.

A Bloom filter is very efficient since it reduces the mem-
ory requirement of representing a set of elements at the
nominal cost of a very small probability of false hits [8].

We use an array of Bloom filters (BFA) on each scavenge
manager to efficiently manage the metadata. Each manager
builds a bloom filter that represents all files whose metadata
is stored locally and the replicates this filter to all the other
scavenge managers. A manager stores all Bloom filters in-
cluding the replicas of the Bloom filters from all the other
managers in an array. When a client has a meta data re-
quest through the unified interface, the client’s request will
directed to one of the managers and this manager will per-
form the membership query against this array.

To speed up the search, a LRU cache can be used to ex-
plore the locality before the Bloom filter array. In a typi-
cal workload, many files are written again and again, which
means same metadata information may be accessed fre-
quently. The design of this scheme is shown in figure 3.



4 Conclusions

We have discussed the distributed metadata management
for a scavenging storage system that harnesses the collec-
tive storage potential of individual workstations. We have
presented four varying solutions that use multiple metadata
managers to provide high availability. We also proposed a
decentralized metadata management scheme using Bloom
filters to speed up the metadata search. It is our desire to
use this workshop paper and talk to open a dialogue regard-
ing the various techniques outlined in this paper in order
to solicit feedback from both the high-availability and the
storage community.

References

[1] M. Ahamad and R. Kordale. Scalable consistency protocols
for distributed services. IEEE Transactions on Parallel and
Distributed Systems, 10:888, 1999.

[2] K. Berket, D. A. Agarwal, P. M. Melliar-Smith, and L. E.
Moser. Overview of the InterGroup protocols. Lecture
Notes in Computer Science: Proceedings of ICCS 2001,
2073:316–325, 2001.

[3] P. Bernstein, V. Hadzilacos, and N. Goldman. Concurrency
control and recovery in database systems. Addison Wesley,
1987.

[4] E. Bilir, R. Dickson, Y. Hu, M. Plakal, D. Sorin, M. Hill, and
D. Wood. Multicast Snooping: A new coherence method
using a multicast address network. Proceedings of ICSA,
pages 294–304, 1999.

[5] B. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM, 13(7):422–426,
1970.

[6] M. Castrol and B. Liskov. Practical byzantine fault toler-
ance. Proceedings of the 3rd Symposium on Operating Sys-
tems Design and Implementation, 1999.

[7] C. Engelmann, S. L. Scott, and G. A. Geist. Distributed
peer-to-peer control in Harness. Lecture Notes in Computer
Science: Proceedings of ICCS 2002, 2330:720–728, 2002.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-
mary cache: A scalable wide-area Web cache sharing proto-
col. IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[9] M. Feeley et al. Implementing global memory management
in a workstation cluster. Proceedings of perating Systems
Principles, 1999.

[10] Gabber et al. StarFish: Highly-available block storage. Pro-
ceedings of the FREENIX track of the 2003 USENIX Annual
Technical Conference, pages 151–163, 2003.

[11] X. He, M. Zhang, and Q. Yang. DRALIC: A peer-to-peer
storage architecture. Proceedings of PDPTA, II:908–913,
2001.

[12] X. He, M. Zhang, and Q. Yang. STICS: SCSI-to-IP cache for
storage area networks. Parallel and Distributed Computing,
64(9):1069–1085, 2004.

[13] H. Hulen et al. Storage area networks and the high perfor-
mance storage system. Proceedings of Tenth NASA Goddard
Conference on Mass Storage Systems, 2002.

[14] M. Lauria, K. Bell, and A. Chien. A high-performance clus-
ter storage server. Proceedings of HPDC-10, pages 311–
320, 2002.

[15] H. Marais and K. Bharat. Supporting cooperative and per-
sonal surfing with a desktop assistant. ACM Symposium on
User Interface Software and Technology, pages 129–138,
1997.

[16] S. Mishra and L. Wu. An evaluation of flow control in group
communication. IEEE/ACM Transactions on Networking,
6(5):571–587, 1998.

[17] D. Roselli, J. Lorch, and T. Anderson. A comparison of file
system workloads. Proceedings of USENIX Annual Techni-
cal Conference, pages 41–54, 2000.

[18] F. Schmuch and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. Proceedings of FAST, 2002.

[19] P. Sobe. Data consistency up- and downstreaming in a dis-
tributed storage system. Proceedings of International Work-
shop on Storage Network Architecture and Parallel I/Os,
2003.

[20] S. Vazhkudai. On-demand grid storage using scavenging.
New Trends in Distributed Data Access, 2004.

[21] R. Wang and T. Anderson. xFS: A wide area mass storage
file system. Proceedings of 4th Workshop on Workstation
Operating Systems, pages 71–78, 1993.

[22] D. Zhou, L. Ou, X. He, and S. Scott. Online remote data
backup for iSCSI-based storage systems. Proceedings of the
Internet Computing Workshop, 2004.

[23] Y. Zhu, H. Jiang, and J. Wang. Hierarchical Bloom Fil-
ter (HBA): A novel, scalable metadata management system
for large cluster-based storage. Proceedings of International
Conference on Cluster Computing, 2004.


