Havens: Explicit Reliable Memory
Regions for HPC Applications

Saurabh Hukerikar, Christian Engelmann
Computer Science & Mathematics Division
Oak Ridge National Laboratory

ORNL is managed by UT-Battelle %OAK RIDGE
for the US Department of Energy National Laboratory

Outline

* Motivation: Trends in HPC architectures

» Challenges for future extreme-scale systems

« Havens:

— Memory-management with emphasis on reliability

— Context: region-based memory management

— Models of reliability through the use of havens

— Interfaces: Abstract and Library Implementation

— Experimental Evaluation: Fault injection and performance studies

The Changing Landscape of Supercomputing

* End of era of node scaling multicore with complex cores
— ~20% of the Top500 today are heterogeneous (GPU/Accelerator)

* Memory hierarchies are becoming more complex and diverse
— Interface Standards: HMC, HBM/2/3, LPDDR4, GDDRS5X, WIDEIO2
— Manufacturing processes: 2.5D, 3D Stacking
— New devices: ReRAM, PCRAM, STT-MRAM

» Scientific applications becoming increasingly complex

ORNL’s Next Machine: Summit

ATTRIBUTE TITAN SUMMIT

Compute Nodes 18,688 ~3,400

Processor (1) 16-core AMD (Multiple) IBM POWER
Opteron per node 9s per node

Accelerator (1) NVIDIA Kepler K20x (Multiple) NVIDIA Volta y
per node GPUs per node

Memory per node 32GB (DDR3) >512GB (HBM+DDR4)

CPU-GPU Interconnect PCI Gen2 NVLINK (5-12x PCle3)

System Interconnect Gemini Dual Rail EDR-IB (23

GB/s)
Peak Power 9 MW 10 MW
Consumption

Each Summit node will contain 512GB HBM + DDR4, and an additional 800GB NVRAM

%OAK RIDGE

National Laboratory

ASCR Computing: Upcoming Systems

System attributes NERSC OLCF ALCF NERSC OLCF ALCF
Now Now Now Upgrade Upgrade Upgrade
Planned Installation Edison TITAN MIRA Cori Summit Theta Aurora
2016 2017-2018 2016 2018-2019
System peak (PF) 24 27 10 >30 >150 >8.5 >150
Peak Power (MW) 3 8.2 4.8 <37 10 1.7 13
System memory per 64 GB 38 GB 16 GB ~1 PB DDR4 + >1.74 PB DDR4 + >480 TB DDR4 + > 7 PB High
node High Bandwidth HBM + 2.8 PB High Bandwidth Bandwidth On-
Memory persistent memory Memory (HBM) Package Memory
(HBM)+1.5PB Local Memory and
persistent memory Persistent Memory
Node performance 0.460 1.452 0.204 >3 > 40 >3 > 17x Mira
(TF)
Intel Ivy Bridge AMD Opteron PowerPC A2 Intel Knights Node processors Intel Knights Knights Hill Xeon
NVidia Kepler 64-bit Landing many core Multiple IBM Landing Xeon Phi Phi many core
CPUs Intel Haswell Power9 CPUs & many core CPUs CPUs
CPU in data multiple NVidia
partition Voltas GPUS
System size 5,600 nodes 18,688 nodes 49,152 9,300 nodes, 1,900 ~3,500 nodes >2 500 nodes >50,000 nodes
(nodes) nodes in data
partition
System Aries Gemini 5D Torus Aries Dual Rail EDR-IB Aries 2 nd Intel Omni-Path
Interconnect Generation Architecture

%OAK RIDGE

National Laboratory

Old Optimization Targets

Peak: clock frequency as primary limiter for
performance improvement

Cost: FLOPs are biggest cost for system:
optimize for compute

Concurrency: Modest growth of parallelism by
adding nodes

Memory scaling: maintain byte per flop
capacity and bandwidth

Locality: MPI+X model (uniform costs within
node & between nodes)

Uniformity: Assume uniform system
performance

Reliability: It's the hardware’s problem

Challenges for Next Generation HPC

New Optimization Targets

Power: is first-order design constraint for future
HPC system design

Cost: Data movement dominates: optimize to
minimize data movement

Concurrency: Exponential growth of parallelism
within chips

Memory Scaling: Compute growing 2x faster than
capacity or bandwidth

Locality: must reason about data locality and
possibly topology

Heterogeneity: Architectural and performance
non-uniformity increase

Reliability: Cannot count on hardware protection
alone

Need for software-based techniques to navigate these emerging challenges

%

OAK RIDGE

National Laboratory

Havens: Reliable Memory Regions

 Memory-Management Style

Havens represent areas of memory

Program objects are allocated inside the havens

Reliability of the haven implicitly guaranteed

Makes no assumptions about hardware-based protection schemes

Various deallocation policies possible

——

. Haven h = new haven();
idouble* x = haven alloc(h, N * N * sizeof (double));
iwork(x);

idelete_haven();

%OAK RIDGE

National Laboratory

Memory Management Paradigms

Explicit individual allocation/deallocation
« programmer must request each memory block allocation/deallocation
* malloc/free discipline of C, or new/delete operators in C++

Garbage Collection
* Run-time component (garbage collector) periodically deallocates memory blocks

whose addresses are not known to the executing program

Reference Counting
» Form of lightweight garbage collection scheme - memory blocks are deallocated
as soon as there are no more pointers pointing to them.

Stack Allocation
* Pre-scheduling of allocation/deallocation of memory blocks on LIFO discipline

%

OAK RIDGE

National Laboratory

Havens: Abstract Interface

haven_create:
 request for the creation of a haven by an application
* returns a handle to the memory region, but no memory is allocated. [

R

« results in the allocation of the memory
* initialization of state related to the protection scheme

: ; e lication
* error protection for haven scheme is specified App

A Y L

1 ! 1
haven_a"oc: — o new E alloc : :moye free
 request for a specified block of memory “within” a haven haven (! obj || | obj haven

Haven

haven_delete: Manager
« indicates intent to delete an object within a haven
* memory is not released until the haven is destroyed

malloc free

=

haven_read, haven_write:

 read/update the program objects contained in the haven [
« state of haven’s resilience mechanism updated

C library]

haven_destroy: sbrk
« results in all memory blocks allocated in the region to be deallocated;
memory is available for reuse.

0S
» no further operation on the haven are permitted []
haven_relax, haven_robust:
» enable the error protection scheme applied to a haven to be turned on
and off %OAK RIDGE

National Laboratory

Historical Context
» Regions [Tofte & Talpin, 1994]

— Proposed as an alternative to garbage collection

— Intended for functional languages (Implemented in MLKit Compiler for Standard ML)
— Static lifetime analysis for grouping objects into regions

* Improvements to Region-based Memory Management

— Deallocation Policies
 per object deallocation, hybrid garbage collection

— Safety
« Reference counting, Reachability (GC), Per region reference counting (RC)
« Sans stack discipline (Aiken et al.)

— Expressivity
* Prolog, Cyclone, Haskell, RC

%OAK RIDGE

National Laboratory

Havens: Allocation & Deallocation

- Basic strategy
— Resilience characteristic of the haven defined
— Reliability features apply to all objects “inside” the haven
— Individual allocations for program objects

— Per-region deallocation
» Per-object deallocation is an illegal operation
« Haven delete operation frees entire memory of the haven

%OAK RIDGE

1 Labor:

Library Implementation of Interface

» Haven-type handle
— used to create handle objects

— contains the bounds of page addresses that make up the memory region.
— passed as argument to the allocation and deallocation functions

 Heap memory divided into fixed-size pages
— Each new haven creation is alighed on a page-size boundary.
— Haven manager maintains a linked list of these pages.
— No changes on the representation of regular pointers
— Dangling-pointer dereferences - not supported (yet)

* Library functions
— haven_alloc(), haven_new() implement the allocation of objects inside a haven.
— haven_delete() operation concatenates all the haven’s page list to a global list of free pages

%OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h = new haven();

Haven h

%QAK RIDGE

ional Laboratory

Using Havens: Vector Addition Example

Haven h = new haven();

double* a = haven alloc(h, N *
sizeof (double)) ;

a

e

Haven h

p

%QAK RIDGE

ional Laboratory

Using Havens: Vector Addition Example

Haven h = new haven(); Haven h

AN ENEER

double* a = haven alloc(h, N *
sizeof (double)) ;
double* b = haven alloc(h, N *
sizeof (double)) ;

=

[f}//
[%r/’

%QAK RIDGE

ional Laboratory

Using Havens: Vector Addition Example

Haven h = new haven();

double* a = haven alloc(h, N *
sizeof (double)) ;
double* b = haven alloc(h, N *
sizeof (double)) ;
double* ¢ = malloc (N *

sizeof (double)) ;

Eb]/

Haven h

-l

- A1 NEREEN

.

%QAK RIDGE

ional Laboratory

Using Havens: Vector Addition Example

Haven h = new haven(); Haven h

double* a = haven alloc(h, N *

sizeof (double)); a /..llllllll

double* b = haven alloc(h, N *
sizeof (double)) ; +
double* ¢ = malloc (N *

sizeof (double)) ; b /..........

vector addition(c, a, b);

G R

%OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h = new haven(); Haven h

double* a = haven alloc(h, N *
sizeof (double)) ;

double* b = haven alloc(h, N *
sizeof (double)) ;

double* ¢ = malloc (N *

sizeof (double)) ;

3

-
Cb] ENEEEEEEEE

vector addition(c, a, b);

a = null;, b = null;

%OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h = new haven();

double* a = haven alloc(h, N *

sizeof (double)) ; a
double* b = haven alloc(h, N *

sizeof (double)) ;

double* ¢ = malloc (N *

sizeof (double)) ; b

vector addition(c, a, b);
a = null; b = null;

delete haven();

%OAK RIDGE

National Laboratory

Reliability Models for HPC Applications using Havens

 Selective Reliability
— Havens provide specific regions of program memory with
comprehensive error protection
» Specialized Reliability

— Various havens in program memory may be protected
using different protection scheme based on needs of
application, hardware-supported capabilities.

» Reliability v Performance Trade-off

— Reliability feature for a specific memory regions can be
enabled/disabled.

%

OAK RIDGE

National Laboratory

Reliability Models for HPC Applications using Havens

» Selective Reliability

— Havens provide specific regions of program memory with
comprehensive error protection

» Specialized Reliability

— Various havens in program memory may be protected
using different protection scheme based on needs of
application, hardware-supported capabilities.

Parity-based
Detection/Correction

Redundancy

Data Versioning

%OAK

RIDGE
1 Labor

Reliability Models for HPC Applications using Havens

» Selective Reliability

— Havens provide specific regions of program memory with
comprehensive error protection

» Specialized Reliability

— Various havens in program memory may be protected
using different protection scheme based on needs of
application, hardware-supported capabilities.

* Reliability v Performance Trade-off

— Reliability feature for a specific memory regions can be
enabled/disabled.

Parity-based
Detection/Correction

Reliability Models for HPC Applications using Havens

» Selective Reliability

— Havens provide specific regions of program memory with
comprehensive error protection

» Specialized Reliability

— Various havens in program memory may be protected
using different protection scheme based on needs of
application, hardware-supported capabilities.

* Reliability v Performance Trade-off

— Reliability feature for a specific memory regions can be
enabled/disabled.

%OAK RIDGE
Nat

ional Laboratory

Havens: Expressing Locality

- Havens may be used to express locality:
— Allocations within a haven may be optimized for cache/memory usage
— Aggregation of several small objects into a single haven

%OAK RIDGE

1 Labor:

Parity-based Detection/Correction Scheme

Default Resilience Scheme for Havens
(based on erasure codes)

» 064-bit parity detection signature
» Pair of 64-bit parity correction signatures

» Location of corrupted address within haven
determined using detection signature

« S1: XOR of all words written to the haven
memory

« S2: XOR of all word updates to the haven
memory

» Recovery of corrupted location in haven =
S1 XOR S2

Parity-based Detection Signature

o
— o
w w
o o
3 3
© 1 ®©
- - C
S > o
2 > HAVEN oy (2
K= A 4 O
© ©
L L
8 e 8
oy 0 R O

OAK RIDGE

%

National Laboratory

Experimental Evaluation: Conjugate Gradient

Selective Reliability Model: ro =b— Axo
Key Data Structures considered for placement in 20 =M 'rg
havens: Po = Zo
. trix A k=10
matrix procedure REPEAT(A, M.r, z.p, 1)
* vectorb e — TR
» vector x (solution, initialized to random values) * 7 PR Ape
: " Tht1 = T + QP
* matrix M (preconditioner) ey
s k+1 — T — QpADg
* vector r (auxiliary vector) if 741 is sufficiently small then
» vector p (auxiliary vector) exit loop
end if
-1
Fault Injection Experiments: Zet1t = M Zr4a
« Objects allocated selectively in havens By — “kiiTkil
« Multiple fault injections per CG run i Tk

Pr+1 = Zk+1 + BrPr
k=—k+ 1

end procedure

* Monte Carlo fault injection

Algorithm: Preconditioned Conjugate Gradient

%OAK RIDGE

National Laboratory

Results: Conjugate Gradient Solver

100% Individual Allocation of CG objects into Havens

90% « matrix A occupies dominant part of the solver’s

80% memory
70% « Over 50% of the active address space
60% : : e
matrix A, vector B higher error sensitivity:
50% « errors in the operand matrix A or vector b
40% fuqdamentally changes the linear system
being solved
30%
20% preconditioner matrix M, vectors x, p, r
10% demonstrate lower sensitivity to errors
 errors typically lead to performance
0%
Al A M b X p r

Percentage of Successful Outcome

degradation, but solver converges.
none

Data Structure placement in Havens

%OAK RIDGE

National Laboratory

Results: Performance Overhead

Increase in execution time to convergence

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

All

b X
Haven Placement

none

Baseline: memory allocations using
standard malloc/free interfaces

« The performance overhead
generally tracks the memory
footprint of the program objects

* Naive placement of all objects
into havens proves very
expensive given their impact on
overall application resilience.

%OAK RIDGE

National Laboratory

Results: Selective Placement

Higher Fault Coverage + Higher Application Resilience

100% Strategic Placement:
Static state: program variables initialized at

90%
S the start and remain unmodified during the

80% computation
70%
60% Dynamic state: data structures that are
50% continuously updated
40% Computational environment: program code,
30% environment variable, pointer variables, etc.
20%

10% I l » Protecting the static state (operand matrix

0% A, vector b, matrix M) provides higher

Ab, M X,p,r none application resilience
Data Structure Placement in Havens

Percentage of Successful Outcomes

 Removing M from the protection domain of
havens makes only a small difference to
application resilience

%OAK RIDGE

National Laboratory

Using Havens in CG: Performance Overhead

Baseline: memory allocations using

2 .
standard malloc/free interfaces

8 1.9
g1 3 « Based on fault injection study and
o performance overhead: Protecting the
C . .
S 1.7 operand matrix A, vector b, yields most
e — reasonable balance between application
o I.
£ resilience v increase in time to convergence.
c 15
S
3 1.4
o
>
c 13
3
8 1.2
o
211

—

All Ab, M A Db X,p,r none
Strategic Haven Placement

%OAK RIDGE

National Laboratory

Future Directions

* EXpressiveness”®
— Structured memory management
— Limits number of code changes
— Movement of objects between regions

« Safety

— Dangling references to objects

« Complement hardware-based mechanisms

— Present implementation makes no assumptions about hardware-based
resilience schemes.

* Optimizations for resilience schemes

* Language Support for Reliable Memory Regions at the International Workshop on Languages and Compilers

for Parallel Computing, Rochester, NY, September 28-30, 2016
%OAK RIDGE

National Laboratory

Summary

 HPC node and system architectures are changing

* Need for software techniques to navigate heterogeneity & complexity
* Havens: Memory management with reliability as a prominent feature
* Enables flexibility

— Allocation of program objects based on their individual error sensitivity
— Each haven may have separate protection scheme
— Allows complementing hardware-level solutions

Questions?

OAK RIDGE

National Laboratory

%

%OAK RIDGE
National Laboratory

