
Language Support for Reliable Memory Regions

Saurabh Hukerikar, Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA
Email: {hukerikarsr, engelmann}@ornl.gov

Abstract. The path to exascale computational capabilities in high-
performance computing (HPC) systems is challenged by the inadequacy
of present software technologies to adapt to the rapid evolution of ar-
chitectures of supercomputing systems. The constraints of power have
driven system designs to include increasingly heterogeneous architectures
and diverse memory technologies and interfaces. Future systems are also
expected to experience an increased rate of errors, such that the applica-
tions will no longer be able to assume correct behavior of the underlying
machine. To enable the scientific community to succeed in scaling their
applications, and to harness the capabilities of exascale systems, we need
software strategies that provide mechanisms for explicit management of
resilience to errors in the system, in addition to locality of reference in
the complex memory hierarchies of future HPC systems.

In prior work, we introduced the concept of explicitly reliable mem-
ory regions, called havens. Memory management using havens supports
reliability management through a region-based approach to memory al-
locations. Havens enable the creation of robust memory regions, whose
resilient behavior is guaranteed by software-based protection schemes. In
this paper, we propose language support for havens through type anno-
tations that make the structure of a program’s havens more explicit and
convenient for HPC programmers to use. We describe how the extended
haven-based memory management model is implemented, and demon-
strate the use of the language-based annotations to affect the resiliency
of a conjugate gradient solver application.

This work was sponsored by the U.S. Department of Energy’s Office of Advanced
Scientific Computing Research. This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of En-
ergy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).



1 Introduction

The high-performance computing (HPC) community has their sights set on
exascale-class computers, but there remain several challenges in designing these
systems and preparing application software to harness the extreme-scale par-
allelism. Due to constraints of power, emerging HPC system architectures will
employ radically different node and system architectures. Future architectures
will emphasize increasing on-chip and node-level parallelism, in addition to scal-
ing the number of nodes in the system, in order to drive performance while
meeting the constraints of power [1]. Technology trends suggest that present
memory technologies and architectures will yield much lower memory capacity
and bandwidth per flop of compute performance. Therefore, emerging memory
architectures will be more complex, with denser memory hierarchies and utilize
more diverse memory technologies [2]. The management of resilience to the oc-
currence of frequent faults and errors in the system has also been identified as a
critical challenge [3]. HPC applications and their algorithms will need to adapt
to these evolving architectures, which will also be increasingly unreliable. These
challenges have led to suggestions that our existing approaches to programming
models must change to complement existing system-level approaches [4]. The
demands for massive concurrency and the emergence of high fault rates require
that programming model features also support the management of resilience and
data locality in order to achieve high performance.

Recent efforts in the HPC community have focused on improvements in the
scalability of numerical libraries and implementations of Message Passing In-
terface (MPI) libraries for these to be useful on future extreme-scale machines.
However, there is also a need to develop new abstractions and methods to sup-
port fault resilience. In prior work, we proposed a resilience-driven approach to
memory management using havens [5]. Havens offer an explicit method for affect-
ing resilience in the context of memory management decisions. In haven-based
memory management, each allocated object is placed in a program-specified
haven. The havens guarantee a specified level of robustness for all the program
objects contained in a memory region. However, the objects contained in havens
may not be freed individually; instead the entire haven is deallocated, leading
to the deletion of all the contained objects. Each haven is protected by a detec-
tion/correction mechanism, and different havens in a program may be protected
using different resilience schemes. The use of havens provides structure to re-
siliency management of the program memory by grouping related objects based
on the objects’ individual need for robustness and the performance overhead of
the resilience mechanism. This approach to memory management enables HPC
applications to write their own disciplines to enhance the resilience features of
arbitrary types of memory.

Traditional region-based systems were designed to statically assign program
objects to memory regions, based on compiler analysis, in order to eliminate the
need for runtime garbage collection [6]. In contrast, the primary goal of havens
is to provide a scheme for creating regions within heap-allocated memory with
various resilience features. In our initial design, we defined interfaces for the



creation and use of havens that were implemented by a library interface [5]. In
this paper, we develop language support in order to make havens clearer and
more convenient to use in HPC application programs by supporting as many
C/C++ language constructs as possible.

This paper makes the following contributions:

– We make a realistic proposal for adding language support for havens to
mainstream HPC languages.

– We develop type annotations, which enable static encoding of the decisions
for a program object’s allocation and deallocation into the robust regions.
They also provide opportunities to optimize the trade-off between the ro-
bustness and performance overhead for protecting program objects.

– We investigate how affecting the resilience of individual program objects
using these static annotations affects their fault coverage and performance
during application execution.

2 Havens: Reliable Memory Regions

Havens are designed to support resilience-driven memory management. The run-
time memory is partitioned into robust regions, called havens, into which pro-
gram objects are allocated. Various object deallocation policies may be defined
for each haven, but the default is to free all the objects in a haven at once by
deleting the entire pool of memory. Therefore, havens enable the association of
lifetime to the reliable memory regions. Each memory region is protected by a
predefined robustness scheme that provides error detection and/or correction for
all objects in the haven. Any robustness scheme used by a haven must be de-
signed to be agnostic to the algorithm features, and to the structure of the data
objects placed in havens. The concept of havens maintains a clear separation
between the memory management policies and the mechanism that provides er-
ror resilience. Different havens used by an application may be protected using
different detection/correction schemes, such as software-based parity, hashing,
replication, etc., each of which may carry a different level of performance over-
head. Therefore, havens enable the program memory to be logically partitioned
into distinct regions each of which possess a specific level of error resilience and
performance overhead.

From the perspective of an HPC application program, havens enable applica-
tions to exert fine-grained control on the resilience properties of individual pro-
gram objects. Since different havens may have varying guarantees of resilience
and performance overhead, object placement in havens may be driven by the
trade-off between criticality of the object to program correctness and the as-
sociated overhead. Havens are used to create a logical grouping of objects that
require similar resilience characteristics. Havens also enable improvements to the
locality of dynamically allocated objects by placement and aggregation of vari-
ous objects based on an application’s pattern of use. Furthermore, havens permit
HPC applications to balance the locality improvements with the resilience needs
of program objects. A runtime system may dynamically map havens onto specific



hardware units in the memory hierarchy that improves the locality of program
objects, and enables cooperation between the software-based protection scheme
of the haven and any hardware-based error detection/correction available in the
memory unit.

3 Using Havens for Resilience-driven Memory
Management

3.1 Basic Operations

While developing the concept of havens, we defined an interface for HPC pro-
grams to effectively use the reliable memory regions in their application codes [5].
The abstract interface is based on the notion of a haven manager, which provides
a set of basic operations that must be implemented to fully support the use of
havens. The operations are summarized below:

1. haven create : The request for the creation of a haven by an application
returns a handle to the memory region, but no memory is allocated. The
choice of the error protection scheme is specified during the haven create
operation.

2. haven alloc : An application requests a specified block of memory within
a haven using this interface. This operation results in the allocation of the
memory and the initialization of state related to the protection scheme.

3. haven delete : The interface indicates intent to delete an object within
the haven, but the memory is not released until the haven is destroyed.

4. haven read and haven write : These interfaces read and update the
program objects contained in the haven; the operations are performed through
these interfaces, rather than directly on the objects, to enable the haven
manager to maintain updated state about the robustness mechanism.

5. haven destroy : The interface requests that the haven be destroyed,
which results in all memory blocks allocated in the region to be deallocated.
Upon completion of this operation, no further operation on the haven are
permitted, and the memory is available for reuse. The state related to the
robustness scheme maintained by the haven manager is also destroyed.

6. haven relax and haven robust : These interfaces enable the error
protection scheme applied to a haven to be turned on and off based on the
needs of the application during program execution.

3.2 Haven Library Interface

The implementation of the havens library is similar to the one in [5], in which the
heap is divided into fixed-size pages, and each new haven creation is aligned to
a page boundary. The library maintains a linked list of these pages. We provide
the library API functions for each of the primitives that enable basic haven oper-
ations: the haven alloc() and haven new() implement the abstraction for the



allocation of objects into the associated region. With the library-based imple-
mentation of the haven interfaces, we require no changes to the representation
of pointers. Pointers may reference havens or access individual objects in the
havens. Since the implementation does not differentiate between the pointer
types, any conversions between these two kinds of pointers are potentially un-
safe, and may lead to incorrect behavior. We only support per-region allocation
and deallocation, and therefore per-object deallocation is an illegal operation.
The haven release() enables the expression of the end of object life. However,
the haven destroy() operation must be invoked to release the memory, which
is achieved by concatenating the haven’s page list to the global list of free pages.

3.3 Protection Schemes for Havens

In our initial implementation of havens, the memory regions are guaranteed
highly-reliable behavior through comprehensive error protection based on a lightweight
software-based parity protection scheme. The haven library maintains a pair of
correction signatures for each memory region, which are of word length and an
additional word length detection signature per 64 words in the memory block
in the region. The detection signature contains one parity bit per word in the
memory region. As memory is allocated for the region and initialized, the correc-
tion signature S1 retains the XOR of all words that are written to the memory
region. We apply an XOR operation on every word that is updated in the mem-
ory region and the correction signature S2. Silent data corruptions or multi-bit
errors are detected based on the state of the detection signature containing a
parity bit for each word contained in the memory region.

When the parity signature for a memory location in the haven detects a
parity violation, the location of the corrupted memory word may be identified.
The value at the corrupted memory location may be recovered using the XOR
signature words. The XOR of the two signatures S1 and S2 equals the XOR of
all the uncorrupted locations in the haven. The corrupted value in the memory
region is recovered by performing an XOR operation on the remaining words
in the haven with the XOR of the two signatures S1 and S2. The recovered
value overwrites the corrupted value, and the detection signature is recomputed.
Using this correction scheme, multibit corruptions may be recovered from unlike
hardware-based ECC, which offers single bit error detection and double bit error
correction. Each of these of detection/recovery operations are transparent to the
application. This parity-based protection is an adaptation of an erasure code
and it maintains very limited state for the detection and correction capabilities
and therefore carries very little space overhead in comparison to other software-
based schemes such as software-based ECC and checksums. The detection is a
constant time operation while the recovery is a O(n) operation based on the size
of the haven.



4 A Haven Type System

4.1 Goals

Havens express the intended relationships between locality and resilience re-
quirements of various program objects. Using havens brings structure to memory
management by grouping related program objects based on their resiliency and
locality needs. The initial prototype implementation of havens contains library
interfaces for each of the primitive haven operations [5]. The language support
for havens aims to make programming HPC applications with havens straight-
forward and productive by making the programs using havens clearer and easier
to write and to understand. Our design of the haven language support seeks to
address the following seemingly conflicting goals:

– Explicit: HPC programmers control where their program objects are allo-
cated and explicitly define their robustness characteristic and lifetime.

– Convenience: A minimal set of explicit language annotations that support
as many C/C++ idioms as possible in order to facilitate the use of havens-
based memory management in existing HPC application codes, as well as in
the development of new algorithms.

– Safety: The language annotations must prevent dangling-pointer derefer-
ences and space leaks.

– Scalability: The havens must support various object types and the perfor-
mance overhead of any resilience scheme scales well even with large number
of objects.

The language support enables HPC programmers to statically encode mem-
ory management decisions for various program objects. By making the structure
of the havens and their resilience features explicit, the number of runtime checks
and modifications to the haven structure and the resilience scheme are reduced.

4.2 Type Annotations for Havens

In the haven-based model for memory management, the heap is divided into
regions, each containing a number of program objects. Therefore, havens are
abstract entities that represent an aggregation of program objects. Pointers to
havens refer to these abstract entities in the heap, whose resilience scheme is
defined upon creation and provides protection to all program objects that are
contained within the haven. The definition of a haven pointer type provides a
statically enforceable way of specifying the resilience scheme, type and size in-
formation for the encapsulated objects inside the haven. A haven type statically
ensures that programs using this region-based model of memory management
are memory-safe, i.e., they dont permit dangling references. The haven ptr is a
new type for handles to havens. The declaration of a haven ptr typed pointer
leads to the creation of a haven, but the declaration of a haven does not allo-
cate any memory. The haven-typed pointer object is declared and the haven is
subsequently deleted as follows:



haven_ptr h1;
. . .
deletehaven h1;

The haven ptr is smart pointer object that in addition to the pointer refer-
ence of a haven maintains bookkeeping information about the objects resident to
the haven, including their sizes and a reference count. The size and count of in-
dividual objects resident to a haven enables the library to optimize the resilience
scheme that protects the memory. For example, in the parity-based protection
scheme, the haven is protected using a pair of parity signatures. The availability
of the count and sizes of the objects inside the haven enables statically cre-
ating sub-havens that are each protected by pair of signatures. We define the
deletehaven operator that provides a static mechanism to reclaim the memory
allocated for objects inside a haven, and also discards the bookkeeping informa-
tion and any state maintained by the resilience scheme (for e.g., the signatures
that provide parity protection for the haven).

The default implementation of havens permits unsafe operations, since a
haven h may be deleted even if the program contains accessible pointers to
objects in r. With the introduction of the haven ptr, we also address the issue
of safety. When the deletehaven operator is encountered, the safety of this
operation is guaranteed through the reference counts included in the haven ptr

typed object. The delete operation succeeds when the haven ptr contains all
null object pointers, and the operation results in releasing the storage space for
the haven, along with the program objects contained in the haven. When the
haven ptr typed pointer contains a non-zero count of active object references,
the delete operation fails.

4.3 Subtyping Annotations

A subtype annotation is used to constrain the membership of an object to a
specific haven. Each object type is annotated with a region expression, which
explicitly specifies the region to which values of that type point. The region
expression is always bound to the type declaration of the object.

// Declare new haven pointer h1
haven_ptr h1;

// Declare variable x as member of the haven h1
int <h1 > x;
x = 4;

// Delete haven release memory for haven and the contained variable x
deletehaven h1;

The type<haven ptr> defines a subtype for non-pointer variables that guar-
antees the allocation of the qualified object within a haven. The type annotation
enables local variables and global variables in C/C++ programs to be associated



with a haven. The haven membership of the annotated variable also guarantees
the variable with the protection offered by the haven’s specified resilience scheme.
The declaration of a single integer variable inside a haven is written as shown
above.

The type*<haven ptr> annotation defines a subtype for pointer objects. The
inclusion of the haven ptr specifies membership of the object referenced by the
annotated variable to the haven. The declaration of an array inside a haven and
the allocation of memory for the array is written as follows:

// Declare new haven pointer h2
haven_ptr h2;

// Declare vector pointer as member of the haven h2
double*<h2> vector;

// Allocate memory for vector of size N
vector = haven_alloc(N * sizeof(double));
. . .

// Set vector pointer to be null; without this deletehaven fails
vector = null;

// Delete haven release memory for haven and the contained vector
deletehaven h2;

The membership relationship between variables and havens expressed by the
subtyping annotations also enables programmers to imply locality of reference
for all program objects that are associated with a single haven.

Restrictions With the use of the type annotations for object pointers, pro-
grammers need to differentiate between traditional C/C++ pointers and point-
ers that specify haven membership. Any conversion between these two kinds
of pointers is potentially unsafe and may lead to incorrect program behavior.
Therefore, we define a null haven, which enables traditional C/C++ point-
ers to be viewed as pointers to this null region. The compiler guarantees safe
assignments of pointer variables through static analysis or runtime checks.

4.4 Defining Lifetimes

Through language support, we also define the notion of lifetimes for havens. The
basic idea is to define the scope of computation for which a haven is valid. We
define the reference lifetime for a haven as follows:

haven hx
{

// statement s
}

This syntax enables the creation of dynamic havens, whose lifetime is the
execution of the statement s; the statement s may be a compound statement.



The program objects that are allocated within the haven hx are guaranteed
error protection through the haven’s default resilience scheme. The explicit def-
inition of lifetimes for the havens enables programs to scope specific regions of
computation that must be executed with high reliability.

4.5 Example: Vector Addition

In the vector addition example, the objective is to protect the operand vectors a
and b. The declaration of the haven ptr pointer variable with identifier h1 cre-
ates the haven. Upon creation of the haven, the parity signatures are initialized,
but no memory is allocated. The example below shows the skeleton of the code,
omitting the details of vector initialization and the addition routines:

// Create a haven for vectors
haven_ptr h1;

// Declare vectors as members of the haven h1
double*<h1> a = haven_alloc(h1 , N * sizeof(double));
double*<h1> b = haven_alloc(h1 , N * sizeof(double));

// Declare traditional vector pointer as member of null haven
double*<null > c = malloc(N * sizeof(double));

// Vector addition c = a + b
vector_addition(c, a, b);

// Set vector pointers to null; without this deletehaven fails
a = null; b = null;
free(c);

deletehaven h1;

The sub-type declaration of the array pointers makes the relationship be-
tween the operand vectors and the haven h1 explicit and ensures the allocation
of the vectors inside the haven. When the haven alloc allocation requests are
made, the library initializes the resilience scheme for the haven and allocates the
vectors a and b of size N elements. The array pointer to the result vector c is a
traditional pointer that is declared as a sub-type to a double* that establishes
membership of the null haven. When the vector addition function returns, the
operand vector pointers are set to null so that the deletehaven operator is able
to release the memory associated with the haven h1 that includes vectors a and
b.

5 Application-Level Resilience Models using Havens

While a variety of algorithm-based fault tolerance (ABFT) strategies have been
extensively studied over the past decades, these methods are designed for specific
algorithms. The key barrier to the broader adoption of algorithm-based resilience
techniques in the development of HPC applications is the lack of sufficient pro-
gramming model support. Algorithm-based techniques are able to leverage the



fact that different aspects of the application state have different resilience re-
quirements, and that these needs vary during application execution of the ap-
plication.

Havens provide the means to define the resilience features of specific regions
of a program’s memory. The language-based support for havens provides simpli-
fied abstractions for defining reliability models. This enables HPC application
programmers to develop of new algorithms as well as adapt the existing appli-
cation codes to incorporate algorithm-based resilience capabilities. We explore
three application-level resilience models that may be developed using havens,
and whose construction is facilitated by the language-based annotations:

– Selective Reliability: Different variables in a HPC programs exhibit dif-
ferent vulnerabilities to errors. Havens provide specific regions of program
memory with comprehensive error protection, which provides HPC program-
mers with mechanisms to explicitly declare specific data and compute regions
to be more reliable than the default reliability of the underlying system.

– Specialized Reliability: Various protection schemes that provide error/de-
tection and correction capabilities for havens guarantee different levels of
resiliency. Also, based on the placement of havens in physical memory, hard-
warebased capabilities may also complement the software-based schemes.
Using havens, various regions in program memory resilience strategies may
be designed that seek to complement the requirements of different program
objects with the various hardware and software-based protection schemes
available.

– Phased Reliability: The vulnerability of various program objects to errors
varies during program execution, and therefore the reliability requirements
of an application also vary during program execution. Since the various re-
silience schemes incur overheads to the application performance, the protec-
tion features of specific data and compute regions may be enabled or disabled
in order to trade-off performance overhead and resilience.

6 Experimental Results

To apply the static annotations in an HPC application, we identify program
objects that must be allocated in havens, and annotate their declarations with
the type qualifiers. For these experiments that evaluate the use of haven-based
memory management using the type qualifiers, we modify a conjugate gradi-
ent code to include the qualifiers on the various application objects. We use a
pre-conditioned iterative CG algorithm and we validate the correctness of the
outcome of the solver with a solution produced using a direct solver. We compare
the evaluation with the results from our previous implementation that required
insertion of raw library interfaces. One of the key advantages of using the static
annotations is that the lines of code change is reduced significantly when com-
pared to the changes required for insertion of library calls in the same application
code.



Fig. 1. Performance overheads of havens with static annotations



In the CG algorithm, which solves a system of linear equations A.x = b in
which the algorithm allocates the matrix A, the vector b and the solution vector
x. Additionally, the conjugate vectors p and the residual vector r are referenced
during each iteration of the algorithm. We perform performance evaluation ex-
periments in which the various object in the CG are allocated using havens.
We perform two sets of experiments: (i) we allocate only one structure using
the haven static annotations, while the remaining structures are allocated using
the standard memory allocation interfaces; (ii) we strategically place the data
structures of the CG by allocating structures to havens using this classification.
We compare these strategies with allocations in which havens provide complete
coverage and with experimental runs which do not allocate any structure using
havens. We evaluate the following combinations: (i) allocation of only the static
state, i.e., the matrix A and vector B, the preconditioner M into havens, while
the dynamic state, i.e., all the solution vectors, are allocated using standard
memory allocation functions; (ii) allocation of only matrix A and vector B into
havens; (iii) only the dynamic state is provided fault coverage using havens.

The performance overhead of using havens to the convergence time of the
CG code for the above selection of program objects for allocation into havens is
shown in Figure 1. The annotation of all the program variables to be allocated
into havens provides higher fault coverage, but it results in higher overhead to the
time to solution for the CG application. When the variables are allocated using
raw library interfaces, each program object is protected by a pair of signatures.
When these objects are qualified with the static annotations in the application
code, the compiler and library have a better understanding of the size and struc-
ture of the program objects. Therefore, the larger program objects, notably the
operand matrix A and the preconditioner matrix M, are split and protected by
multiple pairs of parity signatures. This split protection is transparent to the ap-
plication programmer and the application still accesses the matrix elements as
a single data structure. The use of multiple signatures improves the read/write
overhead for the objects and the observed overhead with static annotations for
all program objects is 11% lower than with the library-based allocation, which
provides monolithic protection for the entire data structure. The operand matrix
A occupies a dominant part of the solver’s memory, occupying over 50% of the
active address space, whereas the solution vector x, the conjugate vectors p and
the residual vector r and the preconditioner matrix M account for the remaining
space. Therefore, the annotation of matrix A individually results in 9% lower
overhead than with monolithic parity protection using library interfaces. The
improvement in performance when smaller data objects are annotated is within
2% of the version using library interfaces.

The program objects in the CG application demonstrate different sensitivities
to errors. Errors in the operand matrix A or vector b fundamentally changes the
linear system being solved. For errors in these structures even if the CG solver
converges to a solution, it may be significantly different from a correct solution.
The preconditioner matrix M demonstrates lower sensitivity to the errors, as do
the vectors x, p, r. These features of the CG algorithm form the basis for the



strategic placement of the objects into havens, since the allocation of only sensi-
tive data structures into havens provides a substantially higher resilient behavior
in terms of completion rates of the CG algorithm for reasonable overheads to
performance than a naive placement strategy.

7 Related Work

Much research has been devoted to studies of algorithms for memory manage-
ment, which are based on either automatic garbage collection or explicit alloca-
tion/deallocation schemes. The concept of regions was implemented in storage
systems, which allowed objects to be allocated in specific zones [7]. While each
zone permits a different allocation policy, the deallocation is performed on a
per-object basis. The vmalloc library [8] provides programmers with an inter-
face to allocate memory and to define policies for each allocation. Region-based
systems, such as arenas [9], enable writing special-purpose memory allocators
that achieve performance by creating heap memory allocation disciplines that
are suited to the application’s needs. Implementations such as vmalloc place
the burden of determining policy of allocation of objects to regions on the pro-
grammer [8]. Other schemes have used profiling to identify allocations that are
short-lived and place such allocations in fixed-size regions [10]. Several early im-
plementations of region-based systems were unsafe; the deletion of regions often
left dangling pointers that were subsequently accessible. Such safety concerns
were addressed through reference counting schemes for the regions [11].

For dynamic heap memory management through static analysis, regions pro-
vide [6] an alternative to garbage collection methods. In this approach, the as-
signment of program objects to regions is statically directed by the compiler in
an effort to provide more predictable and lower memory space. The approach
was refined by relaxing the restriction that region lifetimes must be lexical [12].
Language support for regions is available in many declarative programming lan-
guages such as ML [13], Prolog [14]. Cyclone is a language designed to be syn-
tactically very close to C, but which provides support for regions through an
explicit typing system [15]. The Rust programming language [16] also provides
support for regions.

Recent efforts seek provide programming model support for reliability, such
as containment domains [17], which offer programming constructs that impose
transactional semantics for specific computations. Our previous work on havens
[5] provided a reliability-driven method for memory allocations. Rolex [18] offers
language-based extensions that support various resilience semantics on applica-
tion data and computations. Global View Resilience (GVR) supports reliability
of application data by providing an interface for applications to maintain version-
based snapshots of the application data [19]. In support of fault tolerance of in
explicit memory allocation/deallocation, the malloc failable interface is used
by the application to allocate memory on the heap; callback functions are used
to handle error recovery for the memory block [20].



8 Conclusion

Resilience is among the major concerns for the next generation of extreme-scale
HPC systems. With the rapid evolution of HPC architectures and the emergence
of increasingly complex memory hierarchies, applications running on future HPC
systems must manage the locality and maintain reliability of their data. Havens
provide an explicit software-based approach for HPC applications to manage
the resilience and locality of their programs. In this paper, we focused on de-
veloping language support for havens with emphasis on providing structure to
the haven-based memory management. Through type annotations, a program-
mer expresses the intended relationships between locality and resilience require-
ments of various objects in the application program. The type annotations enable
the resilience requirements of program objects to be encoded within the heap
memory-management idioms. The static typing discipline for application codes
written in C/C++ also guarantees the safety of memory operations by prevent-
ing dangling-pointer dereferences and space leaks. The structured haven-based
management facilitated by the language support provides the mechanisms for
the development of effective application-based resilience models for HPC appli-
cations.

References

1. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges. In:
Proceedings of the 9th International Conference on High Performance Computing
for Computational Science. VECPAR’10, Springer-Verlag (2011) 1–25

2. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dallya, W., Den-
neau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S., Klein,
D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T.,
Williams, R.S., Yelick, K.: Exascale Computing Study: Technology Challenges in
Achieving Exascale systems. Technical report, DARPA (September 2008)

3. DeBardeleben, N., Laros, J., Daly, J., Scott, S., Engelmann, C., Harrod, B.: High-
End Computing Resilience: Analysis of issues facing the hec community and path-
forward for research and development. Whitepaper (December 2009)

4. Amarasinghe, S., Hall, M., Lethin, R., Pingali, K., Quinlan, D., Sarkar, V., Shalf,
J., Lucas, R., Yelick, K., Balaji, P., Diniz, P.C., Koniges, A., Snir, M., Sachs, S.R.,
Yelick, K.: Exascale Programming Challenges: Report of the 2011 workshop on
exascale programming challenges. Technical report, U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research (ASCR) (July
2011)

5. Hukerikar, S., Engelmann, C.: Havens: Explicit reliable memory regions for hpc ap-
plications. In: IEEE High Performance Extreme Computing Conference (HPEC).
(September 2016) 1–6

6. Tofte, M., Talpin, J.P.: Implementation of the typed call-by-value λ-calculus using a
stack of regions. In: Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’94, New York, NY, USA, ACM
(1994) 188–201

7. Ross, D.T.: The aed free storage package. Communications of ACM 10(8) (August
1967) 481–492



8. Vo, K.P.: Vmalloc: A general and efficient memory allocator. Software: Practice
and Experience 26(3) (1996) 357–374

9. Hanson, D.R.: Fast allocation and deallocation of memory based on object life-
times. Softwre Practices & Experience 20(1) (January 1990) 5–12

10. Barrett, D.A., Zorn, B.G.: Using lifetime predictors to improve memory allocation
performance. In: Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation. PLDI ’93, New York, NY, USA
(1993) 187–196

11. Gay, D., Aiken, A.: Memory management with explicit regions. In: Proceedings
of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation. PLDI ’98, New York, NY, USA, ACM (1998) 313–323

12. Aiken, A., Fähndrich, M., Levien, R.: Better static memory management: Improv-
ing region-based analysis of higher-order languages. In: Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design and Implementa-
tion. PLDI ’95 (1995) 174–185

13. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T.H., Sestoft, P.,
Bertelsen, P.: Programming with regions in the ml kit, technical report (diku-tr-
97/12). Technical report, University of Copenhagen, Denmark (April 1997)

14. Makholm, H.: A region-based memory manager for prolog. In: Proceedings of
the 2nd International Symposium on Memory Management. ISMM ’00, New York,
NY, USA, ACM (2000) 25–34

15. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
based memory management in cyclone. In: Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation. PLDI
’02, New York, NY, USA, ACM (2002) 282–293

16. : The rust programming language http://www.rust-lang.org.
17. Chung, J., Lee, I., Sullivan, M., Ryoo, J.H., Kim, D.W., Yoon, D.H., Kaplan, L.,

Erez, M.: Containment domains: a scalable, efficient, and flexible resilience scheme
for exascale systems. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. (2012) 58:1–58:11

18. Hukerikar, S., Lucas, R.F.: Rolex: Resilience-oriented language extensions for
extreme-scale systems. The Journal of Supercomputing (2016) 1–33

19. Chien, A., Balaji, P., Beckman, P., Dun, N., Fang, A., Fujita, H., Iskra, K., Ruben-
stein, Z., Zheng, Z., Schreiber, R., Hammond, J., Dinan, J., Laguna, I., Richards,
D., Dubey, A., van Straalen, B., Hoemmen, M., Heroux, M., Teranishi, K., Siegel,
A.: Versioned distributed arrays for resilience in scientific applications: Global view
resilience. Procedia Computer Science 51 (2015) 29 – 38

20. Bridges, P.G., Hoemmen, M., Ferreira, K.B., Heroux, M.A., Soltero, P., Brightwell,
R.: Cooperative application/os dram fault recovery. In: Proceedings of the 2011
International Conference on Parallel Processing - Volume 2. Euro-Par’11, Springer-
Verlag (2011) 241–250


