_anguage Support for
Reliable Memory
Regions

Saurabh Hukerikar,
Christian Engelmann

Computer Science & Mathematics Division
Oak Ridge National Laboratory

ORNL is managed by UT-Battelle %OAK RIDGE

for the US Department of Energy - National Laboratory

Outline

* Motivation
— Trends in HPC architectures
— Challenges for future extreme-scale systems

« Concept of Havens
— Memory-management with emphasis on reliability
— Models of reliability for HPC applications through use of havens
— Abstract Interface

» Language Support for Havens

— Limitations of library interfaces & desirable features
— Syntax & Semantics

« Experimental Evaluation: Fault injection and performance
studies

%OAK RIDGE
N

- National Laboratory

ORNL’s Next Machine: Summit

ATTRIBUTE TITAN SUMMIT

Compute Nodes 18,688 ~3,400

Processor (1) 16-core AMD (Multiple) IBM POWER
Opteron per node 9s per node

Accelerator (1) NVIDIA Kepler K20x (Multiple) NVIDIA Volta ¥
per node GPUs per node

Memory per node 32GB (DDR3) >512GB (HBM+DDR4)

CPU-GPU Interconnect PCIl Gen2 NVLINK (5-12x PCle3)

System Interconnect Gemini Dual Rail EDR-IB (23

GB/s)
Peak Power 9 MW 10 MW

Consumption

Each Summit node will contain 512GB HBM + DDR4, and an
additional 800GB NVRAM

OAK RIDGE

~ National Laboratory

DOE ASCR Computing: Upcoming Systems

System attributes NERSC OLCF ALCF NERSC OLCF ALCF
Now Now Now Upgrade Upgrade Upgrade
Planned Installation Edison TITAN MIRA Cori Summit Theta Aurora
2016 2017-2018 2016 2018-2019
System peak (PF) 24 27 10 >30 >150 >8.5 >150
Peak Power (MW) 3 8.2 4.8 <3.7 10 1.7 13
System memory per 64 GB 38 GB 16 GB ~1 PB DDR4 + High >1.74 PB DDR4 + >480 TB DDR4 + > 7 PB High
node Bandwidth Memory HBM + 2.8 PB High Bandwidth Bandwidth On-
(HBM)+1.5PB persistent memory Memory (HBM) Package Memory
persistent memory Local Memory and
Persistent Memory
Node performance 0.460 1.452 0.204 >3 > 40 >3 > 17x Mira
(TF)
Intel lvy Bridge AMD Opteron PowerPC A2 Intel Knights Node processors Intel Knights Knights Hill Xeon
NVidia Kepler 64-bit Landing many core Multiple IBM Power9 Landing Xeon Phi Phi many core
CPUs Intel Haswell CPUs & multiple many core CPUs CPUs
CPU in data NVidia Voltas GPUS
partition
System size (nodes) 5,600 nodes 18,688 nodes 49,152 9,300 nodes, 1,900 ~3,500 nodes >2,500 nodes >50,000 nodes
nodes in data
partition
System Interconnect Aries Gemini 5D Torus Aries Dual Rail EDR-IB Aries 2nd Intel Omni-Path
Generation Architecture

g,OAK RIDGE

National Laboratory

Challenges for Next Generation HPC

Old Optimization Targets New Optimization Targets

Peak: clock frequency as primary limiter for Power: is first-order design constraint for future
performance improvement HPC system design

Cost: FLOPs are biggest cost for system: Cost: Data movement dominates: optimize to
optimize for compute minimize data movement

Concurrency: Modest growth of parallelism by Concurrency: Exponential growth of parallelism
adding nodes within chips

Memory Scaling: Compute growing 2x faster than
capacity or bandwidth

- ________________________________|
Locality: must reason about data locality and

possibly topology

Memory scaling: maintain byte per flop
capacity and bandwidth

Locality: MPI+X model (uniform costs within
node & between nodes)

Heterogeneity: Architectural and performance

Uniformity: Assume uniform system ; L
non-uniformity increase

performance

Reliability: Cannot count on hardware protection

Reliability: It's the hardware’s problem alone

Need for software-based techniques to navigate these
emerging challenges

g,OAK RIDGE

- National Laboratory

Havens: Reliable Memory Regions

« Memory-Management Style

« Havens represent areas of memory

« Program objects are allocated inside the havens

 Reliability of the haven implicitly guaranteed through software-based schemes
* Makes no assumptions about hardware-based protection schemes

 All-at-once deallocation; other deallocation policies possible

//Create a new haven
Haven h = new haven();

//Allocate objects ”inside” the haven
double* x = haven alloc(h, N * N * sizeof (double));

//Operate on objects inside haven
work (x) ;

//Delete haven - deletes all objects at once

delete haven();
___ ¥ OAK RIDGE

- National Laboratory

Havens: Abstract Interface

haven_create:
* request for the creation of a haven by an application
* returns a handle to the memory region, but no memory is allocated. /

* error protection for haven scheme is specified

A

Application
haven_alloc: x = =
* request for a specified block of memory “within” a haven : : :
. . new || alloc |, \move free
+ results in the allocation of the memory haven|! obj |! obj | haven

« initialization of state related to the protection scheme
haven_delete: S
+ indicates intent to delete an object within a haven

* memory is not released until the haven is destroyed

Manager

malloc free

e

haven_read, haven_write:

* read/update the program objects contained in the haven [C library ']
« state of haven’s resilience mechanism updated

brk
haven_destroy: .
* results in all memory blocks allocated in the region to be deallocated; [o5]

memory is available for reuse.
* no further operation on the haven are permitted \

haven_relax, haven_robust:
» enable the error protection scheme applied to a haven to be turned on
and off

/

Initial prototype implementation based on library-based implementation*
* Havens: Explicit Reliable Memory Regions for HPC Applications, IEEE High Performance Extreme Computing Conference 2016

(PEC 16 ¥ OAK RIDGE

- National Laboratory

Havens: Expressing Locality & Resilience

- Havens may be used to express locality:

— Allocations within a haven may be optimized for
cache/memory usage

— Aggregation of several small objects into a single haven

* Resilience Scheme for Havens

— Default: Parity-based XOR signatures (based on erasure
codes)

— Each haven may implement a separate protection mechanism
— Agnostic to data structure

— Aggregation of program objects based on their resilience
needs

%QAK RIDGE

- National Laboratory

Using Havens: Vector Addition Example

Haven h = new haven();

Haven h

%

OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h = new haven(); Haven h

double* a = haven alloc(h, 3 /..........

N * sizeof (double)); [:]/

g,OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h

doublex*

doublex*

a

b

new haven () ;

haven alloc (h,
N * sizeof (double));
haven alloc (h,
N * sizeof (double));

Ca]/
Cb]/

Haven h

=
_-iiiiiiNEEN

%OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h = new haven();
Haven h

double* a = haven alloc (h,

N * sizeof (double)) ; a = [
double* b = haven alloc(h, [::j/////

N * sizeof (double)) ;
double* ¢ = malloc (N *

sizeof (double)) ; b AR EEN

[:]/

L

%OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h = new haven(); Haven h

-A1EIENENEN

o
~AIIIRNENEN

double* a = haven alloc (h,

N * sizeof (double));
double* b = haven alloc(h,

N * sizeof (double));
double* ¢ = malloc (N *

sizeof (double));

AR

vector addition(c, a, b);

C—

%OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h

double*

double*

double*

new haven () ;

= haven alloc (h,

N * sizeof (double));

= haven alloc (h,

N * sizeof (double));

= malloc (N *
sizeof (double));

vector addition(c, a, b);

a = null;

b = null;

a

u

b

[

Haven h

o
HENEENEEEEN

g,OAK RIDGE

National Laboratory

Using Havens: Vector Addition Example

Haven h = new haven();

double* a = haven alloc(h, N *
sizeof (double)) ; a
double* b = haven alloc(h, N *
sizeof (double)) ;

double* ¢ = malloc (N *

sizeof (double)) ; b

vector addition(c, a, b);
a = null; b = null;

delete haven();

OAK RIDGE

- National Laboratory

Reliability Models for HPC Applications using
Havens

» Selective Reliability

— Havens provide specific regions of program
memory with comprehensive error protection

* Specialized Reliability

— Various havens in program memory may be
protected using different protection scheme
based on needs of application, hardware-
supported capabilities.

 Reliability v Performance Trade-off

— Reliability feature for a specific memory regions
can be enabled/disabled.

%OAK RIDGE

National Laboratory

Reliability Models for HPC Applications using

Havens

« Selective Reliability

— Havens provide specific regions of program
memory with comprehensive error protection

« Specialized Reliability

— Various havens in program memory may be
protected using different protection scheme
based on needs of application, hardware-
supported capabilities.

Parity-based
Detection/Correction

Redundancy

Data Versioning

%QAK RIDGE

- National Laboratory

Reliability Models for HPC Applications using
Havens

« Selective Reliability

— Havens provide specific regions of program Parity-based
. . . Detection/Correction
memory with comprehensive error protection

» Specialized Reliability

— Various havens in program memory may be
protected using different protection scheme
based on needs of application, hardware-
supported capabilities.

* Reliability v Performance Trade-off

— Reliability feature for a specific memory regions
can be enabled/disabled.

%QAK RIDGE

- National Laboratory

Reliability Models for HPC Applications using

Havens
« Selective Reliability

— Havens provide specific regions of program
memory with comprehensive error protection
 Specialized Reliability

— Various havens in program memory may be
protected using different protection scheme
based on needs of application, hardware-
supported capabilities.

 Reliability v Performance Trade-off

— Reliability feature for a specific memory regions
can be enabled/disabled.

%QAK RIDGE

- National Laboratory

Goals for Language-based Support

. Explicit

— HPC programmers control where their program objects are allocated
and their robustness characteristic and lifetime.

- Convenient
— The need for a minimal set of explicit programmer annotations while
supporting many C/C++ idioms.
* Sound
— The language annotations must prevent dangling-pointer
dereferences and space leaks.
- Scalable

— The havens support various object types and performance overhead
of the resilience scheme scales well.

%QAK RIDGE

- National Laboratory

Language Support: Features for Havens

* EXxpressiveness
— Structured memory management
— Limits number of code changes

« Safety

— Dangling references to objects

» Optimizations for resilience schemes
— Separation between resilience scheme and memory management

%QAK RIDGE

- National Laboratory

Haven: Static Type Annotations

» Basic Idea: specify haven names in types

- Haven-based type system:
— T => object type, haven identifier

- Type annotations make the structure of an application's
memory management more explicit

* Haven pointers:
— havenptr is a type of “smart” pointer object for a haven

— Maintains bookkeeping information about the objects resident to the
haven (sizes, reference count, etc.)

— Enables support for dynamic data structures in havens
— Dynamic optimization of error protection scheme

%QAK RIDGE

- National Laboratory

Haven Type System

» type<havenptr>

— Subtype for non-pointer variables that guarantees the allocation of
the qualified object within a haven

— Default error detection/correction scheme of haven applied to object

— Type provides a method to qualify local and global variables in C/C++
programs

e type*<havenptr>
— Subtype may be applied to pointer objects
— Permits the application to imply locality for objects
— Allows aggregation of several small objects to a single haven

%QAK RIDGE

- National Laboratory

Dynamic Regions

* haven h {s}
— his a haven handle identifier
— statement s (may be a compound statement)
— {...} may contain code blocks
— haven's lifetime is the execution of statement s

- Example Use Case: Selectively reliable computation e.g., FT-GMRES

%QAK RIDGE

- National Laboratory

Experimental Evaluation: Conjugate Gradient

Selective Reliability Model:

Key Data Structures considered for

placement in havens:

* matrix A

« vectorb

» vector x (solution, initialized to random
values)

* matrix M (preconditioner)

» vector r (auxiliary vector)

» vector p (auxiliary vector)

Fault Injection Experiments:
» Objects allocated selectively in havens
« Multiple fault injections per CG run

» Monte Carlo fault injection

b— Axo
M’

Zo

Po

k

procedure REPEAT(A, M.r, 2z, p, 1)
Qk — er e

Pk x APk

Tht1 = T + OpPr
Fet1 = T — O Apy
if 7i41 1s sufficiently small then

exit loop
end if
Zk+1 :T:’U_lzk+1

— Tri1Tki1
Br = =1
-k k

Pi+1 = 241 + BrPr
end procedure

Algorithm: Preconditioned Conjugate Gradient

%OAK RIDGE

National Laboratory

Results: Selective Placement

100%
o
£ 90%
o
2 80%
=
O 70%
o
60%
(]
S 50%
=
L 40%
o
2 30%
8
c 20%
S
o 10%
o

0%

Ab, M X,p,r none

Data Structure Placement in Havens

Higher Fault Coverage 7‘> Higher Application Resilience

Placement guided by type of
program state:
Static state, Dynamic state,
Computational environment:
« matrix A, vector B higher error
sensitivity:
 errors in the operand matrix A or
vector b fundamentally changes
the linear system being solved

Protecting the static state
(operand matrix A, vector b,
matrix M) provides higher
application resilience

« Removing M from the protection
domain of havens makes only a
small difference to application
resilience

%OAK RIDGE

- National Laboratory

Results: Performance Overhead

~o

Individual Allocation of CG objects
“ewyinsies jnto Havens

== tatic annotations

—
o

—
oo

Baseline: memory allocations using
standard malloc/free interfaces

o
~J

—
o

» The performance overhead
generally tracks the memory
footprint of the program objects

o
u

—
FN

[
w

» matrix A occupies dominant part of
the solver’s memory
» Over 50% of the active address space

o
~o

o
e

Percentage Increase in execution time to convergence

[,

N A M b * preconditioner matrix M, vectors X, p,
X p r none T
Haven Placement r demonstrate lower sensitivity to
errors

« errors typically lead to performance
degradation, but solver converges.

%OAK RIDGE

- National Laboratory

Results: Performance Overhead

19

18

1.7

16

15

Percentage increase in execution time to convergence

All

Ab,M

Ab
Strategic
Haven Placement

X,p,r

== library interfaces

== ctatic annotations

none

Placement guided by type
of variable state

* Naive placement of all objects
into havens proves very
expensive given their impact
on overall application
resilience.

* Protecting the static state
(operand matrix A, vector b,
matrix M) provides higher
application resilience

» Haven typing system enables
optimizations of software-
based resilience scheme.

OAK RIDGE

~ National Laboratory

Summary

« HPC node and system architectures are changing

* Need for software techniques to navigate heterogeneity &
complexity

- Havens: Memory management with reliability as a
prominent feature

— Allocation of program objects based on their individual error
sensitivity

— Each haven may have separate protection scheme
— Allows complementing hardware-level solutions

« Language Support:
— Region expressiveness adds structure to memory management
— Enables optimization of resilience techniques

%OAK RIDGE
N

- National Laboratory

Questions?

OAK RIDGE

National Laboratory

¥ OAK RIDGE
- National Laboratory

