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ABSTRACT

Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems.
Projections based on the current generation of HPC systems and technology roadmaps suggest the
prevalence of very high fault rates in future systems. The errors resulting from these faults will propagate
and generate various kinds of failures, which may result in outcomes ranging from result corruptions to
catastrophic application crashes. Therefore, the resilience challenge for extreme-scale HPC systems
requires coordination between various hardware and software technologies that are capable of handling a
broad set of fault models at accelerated fault rates. Also, due to practical limits on power consumption in
future HPC systems, they are likely to embrace innovative architectures, increasing the levels of hardware
and software complexities. Therefore, the techniques that seek to improve resilience must navigate the
complex trade-off space between resilience and the overheads to power consumption and performance.
While the HPC community has developed various resilience solutions, application-level techniques as well
as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are
no formal methods to integrate the various HPC resilience techniques into composite solutions, nor are
there methods to holistically evaluate the adequacy and efficacy of such solutions in terms of their
protection coverage, and their performance & power efficiency characteristics. Additionally, few
implementations of current resilience solutions are portable to newer architectures and software
environments that will be deployed on future systems.

We developed a new structured approach to the management of HPC resilience using the concept of
resilience-based design patterns. In general, a design pattern is a repeatable solution to a commonly
occurring problem. We identified the well-known solutions that are commonly used to deal with faults,
errors and failures in HPC systems. In the initial design patterns specification (version 1.0), we described
the various solutions, which address specific problems in the design of resilient HPC environments, in the
form of patterns. Each pattern describes a problem caused by a fault, error or failure event in an HPC
environment, and then describes the core of the solution of the problem in such a way that this solution
may be adapted to different systems and implemented at different layers of the system stack. The catalog of
these resilience design patterns provides designers with a collection of design elements. To construct
complete resilience solutions using combinations of various patterns, we defined a framework that
enhances HPC designers’ understanding of the important constraints and the opportunities for the design
patterns to be implemented and deployed at various layers of the system stack. The design framework is
also useful for establishing interfaces and mechanisms to coordinate flexible fault management across
hardware and software components, as well as to consider the trade-off between performance, resilience,
and power consumption when constructing a solution. The resilience design patterns specification version
1.1 included more detailed explanations of the pattern solutions, the context in which the patterns are
applicable, and the implications for hardware or software design. It also provided several additional
examples and detailed case studies to demonstrate the use of patterns to build realistic solutions.

In this version 1.2 of the specification document, we have improved the pattern descriptions, including
graphical representations of the pattern components. These improvements are largely based on critical
comments, feedback and suggestions received from pattern experts and readers of the previous versions of
the specification. The pattern classification has been modified to further clarify the relationships between
pattern categories. This version of the specification also introduces a pattern language for resilience design
patterns. The pattern language presents the patterns in the catalog as a network, revealing the relations
among the resilience patterns. The language provides designers with the means to explore alternative
techniques for handling a specific fault model that may have different efficiency and complexity
characteristics. Using the pattern language also enables the design and implementation of comprehensive
resilience solutions as a set of interconnected resilience patterns that can be instantiated across layers of the
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system stack. The overall goal of this work is to provide hardware and software designers, as well as the
users and operators of HPC systems, a systematic methodology for the design and evaluation of resilience
technologies in HPC systems that keep scientific applications running to a correct solution in a timely and
cost-efficient manner despite frequent faults, errors, and failures of various types.

1. Introduction

High-performance computing (HPC) systems enable transformative scientific research and discovery in
various areas of national importance through computational modeling, simulation, data analysis and
prediction. The opportunities to address complex emerging challenges that are important for environmental
issues and national security, and to drive fundamental scientific research, are the key motivators behind the
HPC community’s drive towards extreme-scale HPC systems. Future systems will enable computing at
scales in the hundreds of petaflops, exaflops, and beyond, which will provide computing capability for
rapid design and prototyping as well as big data analysis for a variety of scientific and engineering
disciplines. However, to build and effectively operate extreme-scale HPC systems, there are several key
challenges, including management of power, massive concurrency and resilience to the occurrence of faults
and failures in system components [53].

In the pursuit of greater computational capabilities, the architectures of HPC systems are expected to
change radically. These emerging HPC systems will be innovative systems designed to communicate and
compute at unprecedented rates, and will require novel technologies and architectures. Traditional HPC
system design methodologies have not had to account for power constraints, or parallelism on the level
designers must contemplate for future extreme-scale systems [136]. The evolution of the architectures will
also require substantial changes to the programming models and the system software stacks to ensure
application scalability. In the midst of these rapid changes, the resilience to faults or defects in system
components, which can cause errors and failures, will be critical. While many of the innovations in the
architectures will be driven by the continued scaling of transistors made possible by Moore’s law, the
reliability of these systems will be threatened by a decrease in individual device reliability due to
manufacturing defects prevalent at deeply scaled technology nodes, device aging related effects, etc. [25].
The chips built using these devices will also be increasingly susceptible to errors due to the effects of
operational and environmental conditions on the reduced noise margins arising from the near-threshold
voltage (NTV) operation [55] (necessary to meet the limits on system power consumption). These effects
are expected to increase the rate of transient and permanent errors in the system, such that applications
running on these systems will no longer be able to assume correct behavior from the underlying machine.
Due to the complexity of the system environment and the interactions between the numerous hardware and
software components, these errors will propagate and generate various other kinds of errors and failures,
which may result in HPC application execution outcomes ranging from data corruptions to catastrophic
crashes.

Managing the resilience of future extreme-scale systems is a multidimensional challenge. As HPC systems
approach exaflops scale, the sheer frequency of faults and errors in these systems will render many of the
existing resilience solutions ineffective. Newer modes of failures due to faults and errors, which will only
emerge in advanced process technologies and complex multicomponent system environments, will require
novel resilience solutions. To remain viable the adaptations of existing solutions, as well as the designs of
new solutions, must also navigate the complexity of the hardware and software environments of future
systems. Additionally, HPC resilience methodologies, both hardware and software, must optimize for some
combination of performance, power consumption and cost while providing effective protection against
faults, errors and failures. Therefore, addressing the resilience challenge in extreme-scale HPC systems
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will require integration and coordination between various hardware and software technologies that are
collectively capable of handling a broad set of fault models at accelerated fault rates.

The HPC research community and vendors have developed a number of hardware and software resilience
solutions over the years to confront faults and their consequences in a HPC system and to limit their impact
on the applications. Most of these solutions are based on a limited set of underlying detection, containment
and mitigation techniques that have persisted through generations of systems and will remain important in
the future. Therefore, the key to the design and implementation of HPC resilience solutions is no longer the
invention of novel methodologies for dealing with the various fault types that may occur, or to manage the
extreme fault rates; rather, it is based on the selection and combination of the most appropriate solutions
among the fundamental resilience techniques and adapting them to the design concerns and constraints of
the emerging extreme-scale systems. However, there are no systematized methods to adapt the existing
solutions to future architectures and software environments, nor are there formalized methods to integrate
multiple solutions into composite solutions. There is also a lack of standardized methods to investigate and
evaluate the effectiveness and efficiency of such solutions. Therefore, the designers of HPC hardware and
software components have a compelling need for a systematic methodology for designing, assessing and
optimizing resilience solutions.

In this work, we develop a structured approach for constructing resilience solutions for HPC systems and
their applications based on the concept of design patterns. Design patterns are descriptions of well-known
solutions to specific, repeatedly occurring problems that are encountered in a specific domain. In an effort
to develop resilience design patterns, we identify well-known techniques to handle faults and their
consequences in various hardware and software components throughout the HPC system stack. In general,
resilience solutions provide techniques for the detection of faults, errors or failures in a system,
mechanisms to ensure that their propagation is limited, and for masking of error or failure and recovery of
the system. This specification document presents a complete catalog of patterns that capture the solutions
for each of these three aspects. Each pattern provides a solution to a recurring HPC resilience problem
under a set of clearly defined assumptions about the type of the fault, error or failure it deals with and the
constraints about the system behavior it guarantees. The resilience design patterns are specified at a high
level of abstraction and describe solutions that are free of implementation details. The patterns have the
potential to shape the design of HPC applications’ algorithms, numerical libraries, system software, and
hardware architectures, as well as the interfaces between layers of system abstraction. Therefore, they are
intended to be useful for HPC application, library and tool developers, hardware architects and system
software designers, as well as system users and operators.

We codify the resilience design patterns in a layered hierarchy, which classifies the patterns in the catalog,
and clearly conveys the relationships among them. The hierarchical scheme enables individual
hardware/software component designers to focus on problems and constraints related to detection,
containment and mitigation/recovery of specific fault types in specific contexts, while system architects
contemplate role of the individual patterns within the context of the overall system architecture and
software environment and issues related to stitching the various patterns together and refinement of their
interactions. Combining these patterns according to the guidelines given by the classification scheme
provides a systematic way to design and implement new resilience solutions, port existing solutions to
future architectures and software environments, and to holistically evaluate the scope and efficiency of the
solutions. Therefore, using the design patterns as building blocks enables:

• Systematic design and refinement of resilience solutions by using patterns to outline the overall structure
of the solution (independent of a specific implementation approach), and incrementally converging
towards a detailed implementation.

• Design of solutions with a clear understanding of their protection coverage and performance efficiency.
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• Evaluation and comparison of alternative resilience solutions through qualitative and quantitative
evaluation of the coverage and handling efficiency of each solution.

• Design of flexible solutions through integration of multiple patterns into complete resilience solutions.
The individual patterns may be independently evolved and developed for portability to different HPC
system architectures and software environments.

• Design of cross-layered resilience solutions that combine capabilities from different layers of the system
stack.

• Optimization of the trade-off space, at design time or at runtime, between the key system design factors:
performance, resilience, and power consumption.

We also develop a systematic methodology to combine an essential set of patterns into productive and
efficient resilience solutions. We present a conceptual framework based on the notion of design spaces that
enables HPC designers to use the patterns as reusable design elements. The framework enables designers
to navigate the complexities of composing patterns into complete solutions within the constraints of
performance and power overheads, the fault model and its impact on the system, hardware and software
implementation challenges, etc. The overall goal of this work is to enable a systematic methodology for the
design and evaluation of resilience technologies in HPC systems that keep applications running to a correct
solution in a timely and cost-efficient manner despite frequent faults, errors, and failures of various types.

The rest of this document is organized as follows:

• Section 2. provides a summary of the terminology used in fault tolerance and the basic concepts of
resilience to enable designers, system operators and users, whether experts in resilience or not, to
understand the essence of the patterns and use them in their designs, whether in hardware or in
software.

• Section 3. describes the challenges in managing the resilience of future extreme-scale HPC systems.

• Section 4. surveys the various HPC resilience solutions, including those used in production HPC
systems, as well as research proposals. The aim of this section is to provide a comprehensive
overview of the various HPC resilience techniques.

• Section 5. introduces the design pattern concept and discusses the potential for capturing the HPC
resilience techniques in the form of patterns.

• Section 6. describes a classification scheme to organize the various resilience techniques in a layered
hierarchy to enable designers to understand the capabilities of each solution and the relationships
between patterns.

• Section 7. presents the catalog of resilience design patterns that capture well-understood HPC
resilience techniques for error detection, recovery and masking in a structured format.

• Section 8. presents a structured methodology to use the design patterns for the construction of
effective and efficient resilience solutions. The design framework introduced in this section guides
HPC designers and programmers to select appropriate patterns from the catalog in order to develop
complete resilience solutions.

• Section 9. presents a pattern language for the design and implementation of complete, working HPC
resilience solutions. The pattern language organizes the patterns in the catalog in a hierarchy or
network in order to reveal the relations among the resilience patterns. This provides the means to
systematically explore alternative techniques for handling a specific fault model that may have
different efficiency and complexity characteristics.
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• Sections 11., 12., 13. present case studies that demonstrate how these patterns may be used to
understand and evaluate existing resilience solutions, as well as develop new solutions using the
pattern-based design framework.
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2. Resilience Terminology and Concepts

The terminology is largely based on prior work that established the definitions for HPC Reliability,
Availability & Serviceability (RAS) [142, 98, 150, 63, 65, 124].

2.1 Reliability

Reliability is the property of a system that characterizes its ability to perform its required functions under
stated conditions for a specified time. It provides information about the probability of occurrence of an
error or failure event during normal system operation.

2.2 Availability

Availability is the property of a system that defines the readiness of a system for service. It represents the
proportion of time a system provides a correct service, rather than incorrect service.

2.3 Serviceability

Serviceability is the property of a system that enables the identification of faults, errors or failures, the
isolation of the root cause, and the provision of hardware or software-based maintenance in order to restore
the system operation.

2.4 Systems

• System: An entity that performs a specific set of functions.

• Component: A subsystem that is part of a larger system.

• State: A system’s information about its computation, communication, interconnection, and physical
condition.

• Behavior: What a system does to implement its function, described by a series of states.

• Service: A system’s externally perceived behavior.

• Functional specification: The description of system functionality, defining the threshold between:

– Correct service: The provided service is acceptable, i.e., within the functional specification.

– Incorrect service: The provided service is unacceptable, i.e., outside the functional
specification.

• Life cycle: A system has life cycle phases in the following order:

1. Development: A system that is in development, which includes its design, construction,
deployment and testing.

2. Operational: A system that is in operation and providing correct service.

3. Retired: A system that is no longer in operation since it has reached the end of its operating
lifetime.
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• Operational status: A system has the following operational states:

1. Scheduled service outage: A system delivers no service due to a planned system downtime.

2. Unscheduled service outage: A system delivers incorrect or no service due to an unplanned
outage that is caused by an error or failure.

3. Service delivery: A system delivers correct service under normal operating conditions.

The terms fault, error and failure are sometimes used interchangeably. However, in fault tolerance
literature, these terms are associated with distinct formal concepts, which are defined as follows [18]:

2.5 Faults

Fault is an underlying flaw or defect in a system that has potential to cause problems. A fault can be
dormant and can have no effect. When activated during system operation, a fault leads to an error. Fault
activation may be due to triggers that are internal or external to the system.

• Fault classes: {benign, dormant, active} {permanent, transient, intermittent} {hard, soft}

These fault classes have the following categories:

• Benign: An inactive fault that does not activate.

• Dormant: An inactive fault that potentially does become active at some point in time.

• Active: A fault that causes an error at the moment it becomes active.

• Permanent: The presence of the fault is continuous in time.

• Transient: The presence of the fault is temporary.

• Intermittent: The presence of the fault is temporary and recurring.

• Hard: A fault that is systematically reproducible.

• Soft: A fault that is not systematically reproducible.

The following common terms map to these fault classes:

• Latent fault: Any type of dormant fault.

• Solid fault: Any type of hard fault.

• Elusive fault: Any type of soft fault.

An example of a fault is a radiation-induced bit-flip in memory is a dormant transient soft fault that
becomes an active transient soft fault when the memory is read. The fault disappears when the memory is
written. A radiation-induced bit-flip in memory is a dormant permanent soft fault if the memory is never
written. It becomes an active permanent soft fault when the memory line is read.

2.6 Errors

Errors result from the activation of a fault and cause an illegal system state.

The following error classes exist:

• Error classes: {undetected, detected} {unmasked, masked} {hard, soft}

These error classes have the following categories:

6



• Undetected: An error whose presence is not indicated.

• Detected: An error whose presence is indicated by a message or a signal.

• Masked: An error whose impact is compensated so that the system specification is satisfied despite
the incorrect state; the propagation of the error is limited.

• Unmasked: An error that has not been compensated and has the potential to propagate.

• Hard: An error caused by a permanent fault.

• Soft: An error caused by a transient or intermittent fault.

The following common terms map to these error classes:

• Latent error: Any type of undetected error.

• Silent error: Any type of undetected error.

• SDC: An undetected unmasked hard or soft error that affects the system state.

In an application program, the faulty assignment of a value to a loop counter variable may result in an error
that results in an illegal value for that variable. When the variable is used for control of a for-loop’s
execution, it may lead to incorrect program behavior. In the memory of a system, an active transient soft
fault, created by a radiation-induced bit-flip in memory being read, causes an undetected masked soft error,
when the read value is used in a multiplication with another value that happens to be 0. This causes an
undetected unmasked soft error, or SDC, when the read value is used as an index in a memory address
calculation. A detected correctable error is often transparently handled by hardware, such as a single bit
flip in memory that is protected with single-error correction double-error detection (SECDED) error
correcting code (ECC) [115]. A detectable uncorrectable error (DUE) typically results in a failure, such as
multiple bit flips in the same addressable word that escape SECDED ECC correction, but not detection,
and ultimately cause an application abort. An undetectable error may result in silent data corruption (SDC),
e.g., an incorrect application output.

2.7 Failures

Failure occurs if an error reaches the service interface of a system, resulting in system behavior that is
inconsistent with the system’s specification.

The following failure classes exist:

• Failure classes: {undetected, detected} {permanent, transient, intermittent} {complete, partial,
Byzantine}

These failure classes have the following categories:

• Undetected: A failure whose occurrence is not indicated.

• Detected: A failure whose occurrence is indicated by a message or a signal.

• Permanent: The presence of the failure is continuous in time.

• Transient: The presence of the failure is temporary.

• Intermittent: The failure is temporary but recurring in time.

• Complete: A failure that causes service outage of the system.

• Partial: A failure causing a degraded service within the functional specification.
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Figure 1. Relationship between fault, error and failure

• Byzantine: A failure causing an arbitrary deviation from the functional specification.

The following common terms map to these failure classes:

• Fail-stop: An undetected or detected failure that completely halts system operation, which often
causes an irretrievable loss of state.

• Fail-safe: A mode of system operation that mitigates the consequences of a system failure.

In an application program, a faulty value assignment to a pointer variable leads to erroneous accesses to a
data structure or buffer overflow, which in turn may cause the program to crash due to an attempt to access
an out-of-bound memory location. In the hardware, an active transient soft fault, created by a
radiation-induced bit-flip in memory being read, causes an undetected unmasked soft error, when the read
value is used as an index of a memory address calculation. A memory access violation caused by using a
corrupted address results in a detected permanent failure, as the executing process is killed by the operating
system (OS), and a message is provided to the user. However, if using the corrupted calculated address
results in an incorrect service that is not indicated, such as erroneous output, an undetected intermittent
Byzantine failure occurred.

2.8 The Relationship between Faults, Errors and Failures

While a fault is the cause of an error, its manifestation as a state change is considered an error, and the
transition to an incorrect service is observed as a failure [142]. A failure in a HPC system is typically
observed through an application abort or a full/partial system outage. For example, a bug or stuck bit is a
fault that manifests as an error in the form of a bad value or incorrect program execution; a failure is when
an application aborts or a system crashes. There is a causality relationship between fault, error and failure,
as shown in Figure 1. A fault-error-failure chain is a DAG representation with faults, errors and failures
represented by its vertices. When the system is composed of multiple components, errors may be
transformed into other errors and propagate through the system generating further errors, which may
eventually result in a failure in the system. The failure of a single component causes a permanent or
transient external fault for any other components that receive service from the failed component, which
potentially causes errors and failures in those components. A failure cascade occurs when the failure of a
component A causes an error and subsequently a failure in component B interfaced with A, and the
sequence of events leads to failures in other system components interfaced with B. For example, a faulty
procedure argument leads to erroneous computation and may manifest as an error in the form of an illegal
procedure return value. To the caller of the function, this activates a chain of errors as the incorrect return
value is passed to other functions, and the error propagates until service failure occurs, i.e., a program
crash. In a parallel application, the failure of a process may potentially lead to failure of other processes
communicating with the failed process, which causes the parallel application to hang.
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2.9 Resilience Capabilities

There are three key components to designing a resilience strategy:

2.9.1 Detection

Detection entails the discovery of an error in the state of the system, either in the data, or in the
instructions. It is typically accomplished with the help of redundancy; the extra information enables the
verification of correct values.

Errors are detected by identifying the corresponding state change. Failures are detected by identifying the
corresponding transition to an incorrect service. An error or a failure is indicated by a detector. This
detector itself can experience errors or failure as well, which may lead to undetected errors or failures, or
the false positive indications of error or failure events.

The following detection classes exist:

• Detection classes: {true, false} {positive, negative}

These detection classes have the following categories:

• True: A correct detection.

• False: An incorrect detection.

• Positive: An indication, such as a message or a signal.

• Negative: No indication.

2.9.2 Containment

A containment capability enables limiting the effects of an error from propagating. Containment is
achieved by reasoning about the modularity of components or sub-systems that make up the system. In
terms of resilience of the system, a containment module is a unit that fails independently of other units and
it is also the unit of repair or replacement.

2.9.3 Masking

Masking entails recovery or mitigation, which ensures correct operation despite the occurrence of an error.
Masking is usually accomplished by providing additional redundant state information in order to construct
correct, or at least acceptably close, values of the erroneous state. When the masking involves the change
of incorrect state into correct state, it is called error correction.

In practice, a resilience mechanism may merge the implementation of two or even all three of the
capabilities to deliver a complete solution.

2.10 Resilience Metrics

2.10.1 Reliability Metrics

The following metrics are widely used for quantifying various aspects of a system’s reliability:
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• Error or failure reliability: The probability of a system not experiencing an error or failure during
0 ≤ t, R(t).

R(t) = 1 − F(t) =

∫ ∞
t

f (t)dt (1)

• Error or failure distribution: The probability of the occurrence of an error or failure in the system
during 0 ≤ t, F(t).

F(t) = 1 − R(t) =

∫ t

0
f (t)dt (2)

• PDF: The relative likelihood of an error or failure, f (t).

• Error or failure rate: The frequency of errors or failures in a system, λ(t).

λ(t) =
f (t)
R(t)

(3)

• MTTE: A system’s expected time to error.

• MTTF: A system’s expected time to failure.

MTT E or MTT F =

∫ ∞
0

R(t)dt (4)

• FIT rate: The number of expected failures per billion hours (109) of a system’s operation, FIT .

FIT =
109

MTT F
(5)

• Serial reliability: The reliability of a system with n dependent components, R(n, t)s.

R(n, t)s =

n∏
i=1

Ri(t) (6)

• Parallel reliability: The reliability of a system with n redundant components, R(n, t)p.

R(n, t)p = 1 −
n∏

i=1

(1 − Ri(t)) (7)

• Identical serial reliability: The serial reliability with n identical components, R(n, t)is.

R(n, t)is = R(t)n (8)

• Identical parallel reliability: The parallel reliability with n identical components, R(n, t)ip.

R(n, t)ip = 1 − (1 − R(t))n (9)
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2.10.2 Availability Metrics

Availability is the property of a system that defines the proportion of time it provides correct service. The
following availability metrics are used:

• Availability: The proportion of time a system provides a correct service, A.

A =
tpu

tpu + tud + tsd
(10)

=
MTT F

MTT F + MTTR
(11)

=
MTT F
MT BF

(12)

(13)

• PU: A system’s service delivery time or uptime, tpu.

• UD: A system’s unscheduled service outage time or unscheduled downtime, tud.

• SD: A system’s scheduled service outage time or scheduled downtime, tsd.

• MTTR: The expected time to repair/replace a system, MTTR.

• MTBF: The expected time between failures in a system, MT BF.

MT BF = MTT F + MTTR (14)

• Serial availability: The availability of a system with n dependent components, As.

As =

n∏
i=1

Ai (15)

• Parallel availability: The availability of a system with n redundant components, Ap.

Ap = 1 −
n∏

i=1

(1 − Ai) (16)

• Identical serial availability: The availability of a system with n identical components, Ais.

Ais = An (17)

• Identical parallel availability: The availability of a parallel system with n identical redundant
components, Aip.

Aip = 1 − (1 − A)n (18)

A system can also be rated by the number of 9s in its availability figure (Table 1). For example, a system
with a five-nines availability rating has 99.999% availability and an annual unscheduled downtime of 5
minutes and 15.4 seconds.

11



Table 1. Availability measured by the “nines”

9s Availability Annual Downtime
1 90% 36 days, 12 hours
2 99% 87 hours, 36 minutes
3 99.9% 8 hours, 45.6 minutes
4 99.99% 52 minutes, 33.6 seconds
5 99.999% 5 minutes, 15.4 seconds
6 99.9999% 31.5 seconds

2.10.3 Error and Failure Detection Metrics

• Precision: The fraction of indicated errors or failures that are actual errors or failures.

• Recall: The fraction of all errors or failures in the system that are detected and indicated.

Precision =
True Positives

True Positives + False Positives
=

True Positives
Indicated Errors or Failures

(19)

= 1 −
False Positives

True Positives + False Positives
= 1 −

False Positives
Indicated Errors or Failures

(20)

Recall =
True Positives

True Positives + False Negatives
=

True Positives
Errors or Failures

(21)

= 1 −
False Negatives

True Positives + False Negatives
= 1 −

False Negatives
Errors or Failures

(22)

For example, a true positive detection corresponds to an existing error or failure being indicated, while a
false positive detection corresponds to a non-existing error or failure being indicated. A true negative
detection corresponds to a non-existing error or failure not being indicated, while a false negative detection
corresponds to an existing error or failure not being indicated.

2.10.4 Mean Time to Failure

Resilience is measured by vendors and operators from the system perspective, e.g., by system mean-time to
failure (SMTTF) and system mean-time to repair (SMTTR). Users measure resilience from the application
perspective, using the metric application mean-time to failure (AMTTF) and application mean-time to
repair (AMTTR) [142]. Both perspectives are quite different [44]. For example, an application abort
caused by a main memory DUE does not require the system to recover, i.e., the SMTTR is 0. However, the
aborted application needs to recover its lost state after it has been restarted, i.e., the AMTTR may be hours.
Conversely, a failure of a parallel file system server may only impact a subset of the running applications,
as the other ones access a different server. In this case, the server failure is counted toward the SMTTF,
while the AMTTF differs by application.
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3. The Resilience Challenge for Extreme-Scale HPC Systems

Various studies that analyze faults, errors and failures in HPC systems indicate that faults are not rare
events in large-scale systems and that the distribution of failure root cause is dominated by faults that
originate in hardware. These may include faults due to radiation-induced effects such as particle strikes
from cosmic radiation, circuit aging related effects, and faults due to chip manufacturing defects and design
bugs that remain undetected during post-silicon validation and manifest themselves during system
operation. With aggressive scaling of CMOS devices, the amount of charge required to upset a gate or
memory cell is decreasing with every process shrink. For very fine transistor feature sizes, the lithography
used in patterning transistors causes variations in transistor geometries such as line-edge roughness, body
thickness variations and random dopant fluctuations. These effects lead to variations in the electrical
behavior of individual transistor devices, and this manifests itself at the circuit-level in the form of
variations in circuit delay, power, and robustness [15]. The challenge of maintaining resilience continues to
evolve as process technology continues to shrink and system designers will use components that operate at
lower threshold voltages. The shrinking noise margins makes the components inherently less reliable and
leads to a greater number of manufacturing defects, as well as device aging-related effects. The use of
system-level performance and power modulation techniques, such as dynamic voltage/frequency scaling,
also tend to induce higher fault rates. It is expected that future exascale-capability systems will use
components that have transistor feature sizes between 5 nm and 7 nm, and that these effects will become
more prevalent, thereby causing the system components to be increasingly unreliable [43]. The modeling
and mitigation of these effects through improved manufacturing processes and circuit-level techniques
might prove too difficult or too expensive.

Today’s petascale-class HPC systems already employ millions of processor cores and memory chips to
drive HPC application performance. The recent trends in system architectures suggest that future
exascale-class HPC systems will be built from hundreds of millions of components organized in complex
hierarchies. However, with the growing number of components, the overall reliability of the system
decreases proportionally. If p is the probability of failure of an individual component and the system
consists of N components, the probability that the complete system works is (1 - p)N when the component
failures are independent. It may therefore be expected that some part of an exascale class supercomputing
system will always be experiencing failures or operating in a degraded state. The drop in MTTF of the
system is expected to be dramatic based on the projected system features [96]. In future exascale-class
systems, the unreliability of chips due to transistor scaling issues will be amplified by the large number of
components. For long-running scientific simulations and analysis applications that will run on these
systems, the accelerated rates of system failures will mean that their executions will often terminate
abnormally, or in many cases, complete with incorrect results. Finding solutions to these challenges will
therefore require a concerted and collaborative effort on the part of all the layers of the system stack.

Due to the constraints of power, resilience and performance, emerging HPC system architectures will
employ radically different node and system architectures. Future architectures will emphasize increasing
on-chip and node-level parallelism, in addition to scaling the number of nodes in the system, in order to
drive performance while meeting the constraints of power [137]. Technology trends suggest that present
memory technologies and architectures will yield much lower memory capacity and bandwidth per flop of
compute performance. Therefore, emerging memory architectures will be more complex, with denser
memory hierarchies and utilize more diverse memory technologies. The node and system architectures will
also become increasingly heterogeneous. The consequence of these architectural shifts is the increase in
complexity of the system software, and hence more errors are likely. The software stack must also contend
with power and resilience management, which also increase the complexity of the system software.
Furthermore, the scale of extreme-scale systems requires system software services to be decentralized to
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remain scalable, which also increases the complexity and susceptibility to errors. Additionally, application
codes are also becoming increasingly intricate, employing several separately developed software
components and modules for numerical analysis, visualization, etc. The growing complexity of the
software stack compounds the resilience challenge by making it difficult to analyze the origin of faults, the
propagation of errors and limiting their impact.

Resilience is an approach to fault tolerance for high-end computing (HEC) systems that seeks to keep the
application workloads running to correct solutions in a timely and efficient manner in spite of frequent
errors [49]. The emphasis is on the application’s outcome and the reliability of application level
information in place of or even at the expense of reliability of the system. Resilience technologies in HPC
embrace the fact that the underlying fabric of hardware and system software will be unreliable and seek to
enable effective and resource efficient use of the platform in the presence of system degradations and
failures [43]. A complete resilience solution consists of detection, containment and mitigation strategies.

Performance, resilience, and power consumption are interdependent key system design factors. An increase
in resilience (e.g., though redundancy) can result in higher performance (as less work is wasted) and in
higher power consumption (as more hardware is being used). Similarly, a decrease in power consumption
(e.g., through NTV operation) can result in lower resilience (due to higher soft error vulnerability) and
lower performance (due to lower clock frequencies and more wasted work). The performance, resilience,
and power consumption cost/benefit trade-off between different resilience solutions depends on individual
system and application properties. Understanding this trade-off at system design time is a complex problem
due to uncertainties in future system hardware and software reliability. It is also difficult due to a needed
comprehensive methodology for design space exploration that accounts for performance, resilience, and
power consumption aspects across the stack and the system. Similarly, runtime adaptation to changing
resilience demands, while staying within a fixed power budget and achieving maximum performance, is
currently limited to checkpoint placement strategies. While resilience technologies seek to provide efficient
and correct operation despite the frequent occurrence of faults and defects in components that lead to errors
and failures in HPC systems, there is no standardized methodology for optimizing the trade-off, at design
time or runtime, between the key system design factors: performance, resilience, and power consumption.
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4. Survey of HPC Resilience Techniques

This section surveys various fault-tolerance techniques used in practical computing systems, as well as
research proposals.

4.1 Hardware-based Techniques

Various HPC vendors have developed several hardware-based resilience technologies. The use of single
bit-error correction and double bit-error detection (SECDED) ECC for main memory, caches, registers and
architectural state is typical in most modern HPC installations. Error correction codes (ECC) use a flavor of
redundancy in memory structures that typically add additional bits to enable detection and correction of
memory errors. Systems such as the Cray XC40 also include independent, redundant power supplies,
redundant voltage regulator modules, redundant paths to all system, redundant array of independent disks
(RAID) and redundant hot swap blowers to ensure continuous operation in the event that one of these units
experiences malfunction or failure [90].

Production HPC systems also include reliability, availability and serviceability management systems for
monitoring and control. The Cray XT6 and newer series of machines include an integrated Cray Hardware
Supervisory System (HSS) that monitors operation of all operating system kernels. The HSS provides
hardware and software-based monitoring for all major hardware components in the system; it also controls
power-up, power-down and boot sequences, manages the interconnect, and displays the machine state to the
system administrator. The HSS system also includes the NodeKARE, which automatically runs diagnostics
on all compute nodes involved in the application removing any unhealthy nodes from the compute pool
[88]. Generations of the IBM Blue Gene series have included monitoring systems that generate online
information about the state of hardware and software of the system and store such information in the RAS
event log [99]. The RAS log information may be used for post-hoc analysis [103] to understand system’s
resilience behavior, or even in online analysis to discover trends in the failure events [158].

The Cray XE6 architecture was designed to tolerate the failure of compute nodes or services nodes [89].
The Cray Gemini High Speed Network (HSN) is designed to dynamically route around the failed nodes
[152]. The Cray Gemini support out-of-band network management. Each torus link in the Gemini
comprises four groups of three lanes and the Cyclic Redundancy Check (CRC) code for each packet are
checked by each device with automatic link level retry upon the occurrence of an error. Additionally,
Gemini uses ECC to protect major memories and data paths for the protection of all packet traffic in the
network. The Cray Aries network [14] also contains similar features.

In the IBM Blue Gene/Q (BG/Q), many mechanisms are deployed to protect the chip against errors. The
compute node of a Blue Gene/Q contains an ASIC compute chip that consists of 18 PowerPC-A2 processor
cores. Sixteen of these processor cores are designated as ’user’ cores, one core is designated for system
management (handles interrupts message passing, etc.) and the eighteenth core is a spare [79].
Additionally, the manufacturing process of the chip uses of Silicon-On-Insulator (SOI) technology,
radiation-hardened latches, and detection and correction for on-chip arrays, register files and caches [37].

The architectures of processors used in modern HPC systems contain a range of features for reliability
management. The IBM RAS features of the Power8 architecture contain features for soft error handling,
active memory mirroring, dynamic substitution of unused memory for predictive memory faults, memory
buffer replay, and triple redundant global clocks and chip-level thermal sensors [81]. The Intel Xeon series
of processors includes RAS features that enable co-operative hardware/software management of errors in
the processors. This includes Corrected Machine Check Interrupt (CMCI) for predictive failure analysis,
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Machine Check Architecture (MCA) interrupt-based recovery, as well as capabilities to add processors,
memory during system operation and socket migration in collaboration with the operating system [45].

Dual-modular redundancy (DMR) and triple-modular redundancy (TMR) hardware-based approaches have
been successfully used in mission-critical systems through hardware replication. Examples of fault-tolerant
servers include the Tandem Non-Stop [111] and the HP NonStop [22] that use two redundant processors
running in locked step. The IBM G5 [139] employs two fully duplicated lock-step pipelines to enable
low-latency detection and rapid recovery. While these solutions are transparent to the supervisor software
and application programmer, they require specialized hardware. While SECDED is the most widely used
variant of ECC, researchers have also explored Bose-Chaudhuri-Hocquenghem (BCH) and double-bit error
correction and triple-bit error detection (DECTED) [117] for multi-bit detection and correction. Chipkill
[51] is a stronger memory protection scheme that is widely used in production HPC systems. The scheme
accommodates single DRAM memory chip failure as well as multi-bit errors from any portion of a single
memory chip by interleaving bit error-correcting codes across multiple memory chips.

4.2 Software-implemented Techniques

Software-based redundancy promises to offer more flexibility and tends to be less expensive in terms of
silicon area as well as chip development and verification costs; it also eliminates the need for modifications
of architectural specifications.

4.2.1 Operating System & Runtime-based Solutions

The most widely used strategies in production HPC systems are predominantly based on checkpoint and
restart (C/R). In general, C/R approaches are based on the concept of capturing the state of the application
at key points of the execution, which is then saved to persistent storage. Upon detection of a failure, the
application state is restored from the latest disk committed checkpoint, and execution resumes from that
point. The Condor standalone checkpoint library [105] was developed to provide checkpointing for UNIX
processes, while the Berkeley Labs C/R library [57] was developed as an extension to the Linux OS. The
libckpt [125] provided similar OS-level process checkpointing, albeit based on programmer annotations.

In the context of parallel distributed computing systems, checkpointing requires global coordination, i.e.,
all processes on all nodes are paused until all messages in-flight and those in-queue are delivered, at which
point all the processes’ address spaces, register states, etc., are written to stable storage, generally a parallel
file system, through dedicated I/O nodes. The significant challenge in these efforts is the coordination
among processes so that later recovery restores the system to a consistent state. These approaches typically
launch daemons on every node that form and maintain communication groups that allow tracking and
managing recovery by maintaining the configuration of the communication system. The failure of any
given node in the group is handled by restarting the failed process on a different node, by restructuring the
computation, or through transparent migration to another node [11] [34] [101].

Much work has also been done to optimize the process of C/R. A two-level recovery scheme proposed
optimization of the recovery process for more probable failures, so that these incur a lower performance
overhead while the less probable failures incur a higher overhead [148]. The scalable checkpoint/restart
(SCR) library [114] proposes multilevel checkpointing where checkpoints are written to storage that use
RAM, flash, or local disk drive, in addition to the parallel file system, to achieve much higher I/O
bandwidth. Oliner et al. propose an opportunistic checkpointing scheme that writes checkpoints that are
predicted to be useful - for example, when a failure in the near future is likely [122]. Incremental
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checkpointing dynamically identifies the changed blocks of memory since the last checkpoint through a
hash function [10] in order to limit the amount of state required to be captured per checkpoint. Data
aggregation and compression also help reduce the bandwidth requirements when committing the
checkpoint to disk [91]. Plank et al. eliminate the overhead of writing checkpoints to disk altogether with a
diskless in-memory checkpointing approach [127].

Process-level redundancy (PLR) [138] creates a set of redundant application processes whose output values
are compared. The scheduling of the redundant processes is left to the operating system (OS). The
RedThreads API [85] provides directives that support error detection and correction semantics through the
adaptive use of redundant multithreading.

4.2.2 Message Passing Library-based Solutions

In general, automatic application-oblivious checkpointing approaches suffer from scaling issues due to the
considerable I/O bandwidth for writing to persistent storage. Also, practical implementations tend to be
fragile [61]. Therefore, several MPI libraries have been enabled with capabilities for C/R [102]. The
CoCheck MPI [144], based on the Condor library, uses synchronous checkpointing in which all MPI
processes commit their message queues to disk to prevent messages in flight from getting lost. The FT-MPI
[66], Open MPI [86], MPICH-V [26] and LAM/MPI [133] implementations followed suit by incorporating
similar capabilities for C/R. In these implementations, the application developers do not need to concern
themselves with failure handling; the failure detection and application recovery are handled transparently
by the MPI library, in collaboration with the OS.

The process-level redundancy approach has also been evaluated in the context of a MPI library
implementation [69], where each MPI rank in the application is replicated and the replica takes the place of
a failed rank, allowing the application to continue. The RedMPI library [64] [70] replicates MPI tasks and
compares the received messages between the replicas in order to detect corruptions in the communication
data. Studies have also proposed the use of proactive fault tolerance in MPI [116] [153]. However, with the
growing complexity of long running scientific applications, complete multi-modular redundancy, whether
through hardware or software-based approaches, will incur exorbitant overhead to costs, performance and
energy, and is not a scalable solution to be widely used in future exascale-class HPC systems.

4.2.3 Compiler-based Solutions

SWIFT [129] is a compiler-based transformation which duplicates all program instructions and inserts
comparison instructions during code generation so that the duplicated instructions fill the scheduling slack.
The DAFT [159] approach uses a compiler transformation that duplicates the entire program in a redundant
thread that trails the main thread and inserts instructions for error checking. The SRMT [154] uses
compiler analysis to generate redundant threads mapped to different cores in a chip multi-processor and
optimizes performance by minimizing data communication between the main thread and trailing redundant
thread. Similarly, EDDI [121] duplicates all instructions and inserts “compare" instructions to validate the
program correctness at appropriate locations in the program code. The ROSE::FTTransform [104] applies
source-to-source translation to duplicate individual source-level statements to detect transient processor
faults.

17



4.2.4 Programming Model Techniques

Most programming model approaches advocate a collaborative management of the reliability requirements
of applications through a programmer interface in conjunction with compiler transformations, a runtime
framework and/or library support. Each approach requires different levels of programmer involvement,
which has an impact on amount of effort to re-factor the application code, as well as on the portability of
the application code to different platforms.

HPC programs usually deploy a large number of nodes to implement a single computation and use MPI
with a flat model of message exchange in which any node can communicate with another. Every node that
participates in a computation acquires dependencies on the states of the other nodes. Therefore, the failure
of a single node results in the failure of the entire computation since the message passing model lacks
well-defined failure containment capabilities [61]. User-level failure mitigation (ULFM) [23] extends MPI
by encouraging programmer involvement in the failure detection and recovery by providing a fault-tolerant
API for MPI programs. The error handling of the communicator has changed from MPI_ERRORS_ARE
_FATAL to MPI_ERRORS_RETURN so that error recovery may be handled by the user. The proposed
API includes MPI_COMM_REVOKE, MPI_COMM_SHRINK to enable reconstruction of the MPI
communicator after process failure and the MPI_COMM_AGREE as a consistency check to detect failures
when the programmer deems such a sanity check necessary in the application code.

The abstraction of the transaction has also been proposed to capture a programmer’s fault-tolerance
knowledge. This entails division of the application code into blocks of code whose results are checked for
correctness before proceeding. If the code block execution’s correctness criteria are not met, the results are
discarded and the block can be re-executed. Such an approach was explored for HPC applications through
a programming construct called Containment Domains by Sullivan et al. [39] which is based on weak
transactional semantics. It enforces the check for correctness of the data value generated within the
containment domain before it is communicated to other domains. These containment domains can be
hierarchical and provide the means to locally recover from an error within that domain. A compiler
technique that, through static analysis, discovers regions that can be freely re-executed without
checkpointed state or side-effects, called idempotent regions, was proposed by de Kruijf et al. [48]. Their
original proposal [47], however, was based on language-level support for C/C++ that allowed the
application developer to define idempotent regions through specification of relax blocks and recover blocks
that perform recovery when a fault occurs. The FaultTM scheme adapts the concept of hardware-based
transactional memory where atomicity of computation is guaranteed. The approach requires an application
programmer to define vulnerable sections of code. For such sections, a backup thread is created. The
original and the backup thread are executed as an atomic transaction, and their respective committed result
values are compared [157].

Complementary to approaches that focus on resiliency of computational blocks, the Global View Resilience
(GVR) project [38] concentrates on application data and guarantees resilience through multiple snapshot
versions of the data whose creation is controlled by the programmer through application annotations.
Bridges et al. [28] proposed a malloc_failable that uses a callback mechanism to handle memory
failures on dynamically allocated memory, so that the application programmer can specify recovery
actions. The Global Arrays implementation of the Partitioned Global Address Space (PGAS) model
presents a global view of multidimensional arrays that are physically distributed among the memories of
processes. Through a set of library API for checkpoint and restart with bindings for C/C++/FORTRAN,
the application programmer can create checkpoints of array structures. The library guarantees that updates
to the global shared data are fully completed and any partial updates are prevented or undone [52]. Rolex
[84] provides various resilience semantics for error tolerance and amelioration through language-based
extensions that enable these capabilities to be embedded within standard C/C++ programs.
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4.2.5 Algorithm-Based Fault Tolerance

Algorithm-based fault tolerance (ABFT) schemes encode the application data to detect and correct errors,
e.g., the use of checksums on dense matrix structures. The algorithms are modified to operate on the
encoded data structures. ABFT was shown to be an effective method for application-layer detection and
correction by Huang and Abraham [83] for a range of basic matrix operations including addition,
multiplication, scalar product, transposition. Such techniques were also proven effective for LU
factorization [46], Cholesky factorization [77] and QR factorization [93]. Several papers propose
improvements for better scalability in the context of parallel systems, that provide better error detection and
correction coverage with lower application overheads [130] [126] [131]. The checksum-based detection
and correction methods tend to incur very high overheads to performance in sparse matrix-based
applications. Sloan et al. [140] have proposed techniques for fault detection that employ approximate
random checking and approximate clustered checking by leveraging the diagonal, banded diagonal, and
block diagonal structures of sparse problems. Algorithm-based recovery for sparse matrix problems has
been demonstrated through error localization and re-computation [141] [35].

Various studies have evaluated the fault resilience of solvers of linear algebra problems [30]. Iterative
methods including Jacobi, Gauss-Seidel and its variants, the conjugate gradient, the preconditioned
conjugate gradient, and the multi-grid begin with an initial guess of the solution and iteratively approach a
solution by reducing the error in the current guess of the answer until a convergence criterion is satisfied.
Such algorithms have proved to be tolerant to errors, on a limited basis, since the calculations typically
require a larger number of iterations to converge, based on magnitude of the perturbation, but eventual
convergence to a correct solution is possible. Algorithm-based error detection in the multigrid method
shown by Mishra et al. [112], uses invariants that enable checking for errors in the relaxation, restriction
and the interpolation operators.

For fast Fourier transform (FFT) algorithms, an error-detection technique called the sum-of-squares (SOS)
was presented by Reddy et al. [128]. This method is effective for a broader class of problems called
orthogonal transforms and therefore applicable to QR factorization, singular-value decomposition, and
least-squares minimization. Error detection in the result of the FFT is possible using weighted checksums
on the input and output [155].

While the previously discussed methods are primarily for numerical algorithms, fault tolerance for other
scientific application areas has also been explored. In molecular dynamics (MD) simulations, the property
that pairwise interactions are anti-symmetric (Fi j = - F ji) may be leveraged to detect errors in the force
calculations [156]. The resilience of the Hartree-Fock algorithm, which is widely used in computational
chemistry, can be significantly enhanced through checksum-based detection and correction for the
geometry and basis set objects. For the two-electron integrals and Fock matrix elements, knowing their
respective value bounds allows for identifying outliers and correcting them with reasonable values from a
range of known correct values. The iterative nature of the Hartree-Fock algorithm helps to eliminate the
errors introduced by the interpolated values [149]. The fault-tolerant version of the 3D-protein
reconstruction algorithm (FT-COMAR) proposed by Vassura et al. [151] is able to recover from errors in
as many as 75% of the entries of the contact map.

4.3 Integrated Approaches

Cross-layer resilience techniques [113] employ multiple error resilience techniques from different layers of
the system stack to collaboratively achieve error resilience. The design of cross-layer resilience solutions
distribute the responsibility of detection, containment and masking/recovery across multiple layers of the
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system in contrast to the traditional approaches that seek to implement the solution within a single layer of
abstraction. While the coordination across system layers increases the complexity of the design, the
cross-layer approach enables the creation of flexible resilience solutions. Based on the fault model,
frequency of fault events and their impact on the application running on a system, certain resilience tasks
may be implemented in software to save chip area and system power consumption. Additionally, the
system may use contextual information about the impact of an error available at each layer of the system to
optimize fault coverage, performance and power consumption. To formalize the design process for
resilience solutions, the cross-layer resilience study specifies a set of key tasks: detection, diagnosis,
reconfiguration, recovery, and adaptation, which may be implemented using hardware or software
mechanisms at different levels of the system stack [33]. The CLEAR framework [36] enables systematic
analysis of resilience techniques across various layers of the system stack through exploration of the large
space of combinations of resilience techniques. The framework combine selective circuit-level hardening
and logic-level parity checking with algorithm-based fault tolerance methods to provide resilient operation.

Software-only cross-layer resilience techniques enable fault management through collaboration between
the layers of the software stack, including operating systems, runtimes, libraries, middleware, and the
applications. The Coordinated Infrastructure for Fault Tolerant Systems (CIFTS) infrastructure is based on
the notion of an information backplane (the Fault Tolerance Backplane (FTB)) that enables fault
notification and response information to be propagated through a uniform interface between layers of the
system stack [76]. The availability of fault information on the backplane enables the various software
modules to proactively coordinate fault management. The Hobbes operating system and runtime (OS/R)
provides the Global Information Bus (GIB) for sharing status information, including RAS events, that is
needed by other software components [29]. The ARGO OS/R system provides publish-subscribe
framework called BEACON that enables applications and system services with access to reporting and
resource monitoring [123].

Much of the research in HPC resilience has focused on fault-model driven approaches, in which designers
identify the physical effects (such as transient errors, permanent errors etc.), or their impact on a system
(such as node failure, DIMM failure, etc.) that their design must tolerate. Many of these existing
approaches develop techniques to address each of these individual effects. Such techniques may be very
effective when system resilience must be guaranteed for only a small number of error sources. In an effort
to address extreme rates and diverse sources of faults and errors, recent efforts have explored the strategies
that seek to address more than one fault model. The combination of algorithm-based verification
mechanisms and in-memory checkpoints for silent errors and disk checkpoints for fail-stop errors has been
proved effective [21]. In the context of iterative solvers, such as the conjugate gradient solver, the
combination of algorithm-based fault tolerance and disk-based checkpointing results in more resilient and
more performant solution than with the use of a pure disk-checkpointing based solution [67]. The ACR is a
checkpoint/restart library-based solution integrated with Charm++ that accounts for failures due to hard
errors as well as undetected silent data corruptions [119]. There are also solutions that leverage multiple
techniques in an effort to mitigate the overhead of the resilience solution. In the MPI layer, the combination
of partial redundancy and checkpointing yields lower overheads in comparison to a full redundancy
approach [59].
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5. Design Patterns for Resilience

5.1 Introduction to Design Patterns

A design pattern describes a generalizable solution to a recurring problem that occurs within a well-defined
context. Patterns are often derived from best practices used by designers and they contain essential
elements of the problems and their solutions. They provide designers with a template on how to solve a
problem that may be used in many different situations. The patterns may also be used to describe design
alternatives to a specific problem. The original concept of design patterns was developed in the context of
civil architecture and engineering problems. With the goal of designing functional and aesthetically
beautiful living spaces and structures, patterns captured the detailed designs of towns and neighborhoods,
houses, gardens and rooms. These patterns identify and catalog solutions to recurrent problems and
solutions encountered during the process of building and planning. Each pattern described a problem,
which occurs repeatedly in our environment, and then described the core of the solution to that problem, in
such a way that this solution may be used a million times over, without ever doing it the same way twice
[13].

In general, a design pattern identifies the key aspects of a solution and creates an abstract description that
makes it useful in the creation of a reusable design element. Patterns don’t describe a concrete design or an
implementation - they are intended to be templates that may be applied by a designer in various contexts
and modified to suit the problem at hand. Patterns are also free from constraints of detail associated with
the level of system abstraction at which the solution is implemented. Patterns also describe the design
decisions that must be made when applying a certain solution. This enables a designer to reason about the
impact of the design decisions on a system’s flexibility or scalability as well as consider implementation
issues. The design patterns must address a specific problem at hand, and yet must be general enough to
remain relevant to future requirements of systems.

In the domain of software design, patterns were introduced in an effort to create reusable solutions in the
design of software and bring discipline to the art of programming. The intent of software design patterns
isn’t to provide a finished design that may be transformed directly into code; rather, design patterns are
used to enhance the software development process by providing proven development paradigms. With the
use of design patterns, there is sufficient flexibility for software developers to adapt their implementation to
accommodate any constraints, or issues that may be unique to specific programming paradigms, or the
target platform for the software. Related to design patterns, the concept of algorithmic skeletons was
introduced [41] and further refined [42].

In the context of object-oriented (OO) programming, design patterns provide a catalog of methods for
defining class interfaces and inheritance hierarchies, and establish key relationships among the classes [74].
In many object-oriented systems, reusable patterns of class relationships and communications between
objects are used to create flexible, elegant, and ultimately reusable software design. There are three
categories of OO patterns: (i) creational patterns for ways to do instantiation of objects (ii) structural
patterns concerned with class and object composition, and (iii) behavioral patterns for communication
between objects. Design patterns have also been defined in the design of software architectures [32] to
capture repeatedly used methodologies in software engineering practice. Pattern systems have also been
developed for cataloging concurrent and networked object-oriented environments [135], resource
management [95], and distributed software systems [31].

In the pursuit of quality and scalable parallel software, patterns for programming paradigms were
developed [108] as well as a pattern language, called Our Pattern Language (OPL) [94]. These parallel
patterns are used as means to systematically describe parallel computation and communication when
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architecting parallel software. In an effort to enable a more structured approach to designing and
implementing parallel applications, particularly for many-core processors, a catalog of parallel patterns
enables programmers to compose parallel algorithms, which may be easily implemented using various
programming interfaces such as OpenMP, OpenCL, Cilk Plus, ArBB, Thread Building Blocks (TBB)
[109]. For the design of parallel algorithms, deterministic patterns support the development of systems that
automatically avoid unsafe race conditions and deadlock [110].

Design patterns have been in a variety of other domains for codifying the best-known solutions to common
problems, including natural language processing [147], user interface design [24], web design [58],
visualization [80], and software security [54]. Patterns have also been defined for enterprise applications
that involve data processing in support or automation of business processes [72] in order to bring structure
to the construction of enterprise application architectures. In each of these domains of design, patterns
capture the essence of effective solutions in a succinct form that may be easily applied in similar form to
other contexts and problems.

5.2 Design Patterns for HPC Resilience Solutions

The occurrences of various types of faults, errors and failures are not rare events in modern large-scale
HPC system environments. HPC resilience solutions seek effective and efficient management of the
different types of fault and errors to ensure that HPC applications produce reliable outcomes despite system
degradations and component failures. The focus of resilience solutions is on application correctness lieu of,
or even at the expense of, reliability of state of the system.

In general, every resilience solution consists of the following core capabilities:

• Detection: Identifying the presence of an anomaly in the data or control value is an important aspect
of any resilience management strategy. The detection and diagnosis of faults in a system may allow
the remedy of the underlying defect, which may prevent the activation of an error or failure. The
timely detection of errors or failures enables recovery of the system.

• Containment: When an error or failure is discovered in a system, containment strategies assist in
limiting the impact of the event on other components in the system. Limiting the propagation enables
simplified recovery strategies and prevents the error from affecting other components in a system.

• Recovery: The recovery aspect of any resilience solution is necessary to ensure that the application
outcome is correct in spite of the presence of an error or a failure in a system. The recovery may
entail a workaround to isolate and bypass the presence of an error or a failed component, complete
elimination of the error or failure, and may also seek to prevent the root cause of the underlying fault
from resurfacing.

Often the solutions used to achieve these capabilities are based on well-known techniques, which have
been repeatedly used by hardware and software designers to guarantee that anomalous events in a system
are detected, their propagation limited and their impact on the correct operation of the system is minimized.
Many of these techniques that increase system reliability have been used since the early days of computing
systems. These techniques are based on the use of redundant structures to mask failed components,
error-control codes and duplication or triplication with voting to detect or correct information errors,
diagnostic techniques to locate failed components, and automatic switchovers to replace failed subsystems
[17]. Many of the hardware- and software-based resilience solutions used in HPC environments over the
past three decades are also largely based on these set of techniques.

The goal of this work is to capture the fundamental techniques that are used in the design of HPC resilience
solutions and write them down in the form of design patterns. The patterns describe the techniques for
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detection, containment and mitigation in a highly structured format. A resilience pattern systematically
names, describes the capability and explains the semantics of such a technique used in supporting
resilience in HPC systems.

Each resilience technique provides different guarantees in terms of its capabilities and impact on the system
operation (in the absence of any events as well as in response to a fault, error or failure). Using design
patterns to construct resilience solutions forces designers to contemplate the time or the space overhead
introduced, the efficiency of the reaction to a fault, error or failure event, as well as practical considerations
for implementing a pattern, such as choosing the appropriate layer of system abstraction, the assessing
design complexity added to the system, etc.

Therefore, we organize the resilience patterns in a catalog to provide designers with an accessible
collection of well-established techniques that may be reused or adapted to create new resilience solutions.
The purpose behind creating a resilience design pattern catalog is to capture the experiences and insights of
HPC hardware & software designers and practitioners in designing resilience capabilities for large-scale
parallel HPC systems. The patterns enable designers to build upon previous experience of using similar
solutions to new HPC environments. These patterns solve specific design problems for HPC resilience and
seek to make design of the solution flexible and elegant.

Previous efforts to define design patterns for fault tolerance have described a set of patterns for failure
detection, recovery and mitigation. These patterns were also defined based on well-known fault tolerance
solutions used in mission-critical systems such as telecommunication systems and space programs [78],
distributed systems [134] and enterprise data processing systems [73]. While the capabilities of some of the
patterns in these domains overlap with the capabilities of the patterns described in this document, these
patterns solve problems that are significantly different from those encountered in high-performance
computing systems in terms of the system’s architectures, the software environments, and the nature of the
applications that run on these computing systems. The patterns in this document specifically address the
challenges for maintaining resilient operation in HPC systems, which entails keeping scientific applications
running to a correct solution in a timely and efficient manner in spite of faults, errors, and failures. The
Common Object Request Broker Architecture (CORBA) [75] defines a set of standard services and
protocols defined by distributed object computing middleware. The fault tolerant version of CORBA [118]
supports a range of fault tolerance strategies, including request retry, redirection to an alternative server,
passive (primary/backup) replication, and active replication which provides applications with capabilities
for rapid recovery from faults.

5.3 Anatomy of a Resilience Design Pattern

The basic template of a resilience design pattern is defined in an event-driven paradigm based on the
insight that any resilience solution is necessary in the presence of, or sometimes in the anticipation of an
anomalous event, such as a fault, error, or failure. The abstract resilience design pattern consists of a
behavior and a set of activation and response interfaces (Figure 2). The appeal of defining the resilience
design patterns in such an abstract manner is that they are universal. The abstract definition of the
resilience design pattern behavior enables description of solutions that are free of implementation details.
The instantiation of pattern behaviors may cover combinations of detection, containment and mitigation
capabilities. The individual implementations of the same pattern may have different levels of performance,
resilience, and power consumption. Also, the resilience pattern definition abstracts a pattern’s interfaces
from the implementation of these interfaces. In specification of the resilience patterns that serve as reusable
design elements, it is important to find pertinent techniques at the appropriate granularity, define their
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Figure 2. Anatomy of a Resilient Design Pattern

activation and response interfaces in a manner that enables designers to establish key relationships among
the patterns.
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6. Classification of Resilience Design Patterns

The patterns presented in the resilience design patterns catalog provide solutions to problems that
repeatedly appear in the design of fault tolerance capabilities. The solutions offered by these patterns may
shape the design of hardware, system software as well as the applications and libraries independent of the
scope and scale of the problem. Due to the variety in the granularity and level abstraction at which each of
the patterns may be implemented, we must organize the patterns. A classification scheme codifies the
relationships between the various patterns in the catalog, which enables designers to understand their
individual capabilities and the relationships among the patterns, and to compose different patterns into
complete resilience solutions.

The most straightforward classification scheme for the resilience solutions is one based on the layer of
system abstraction at which the solution is implemented. The survey of resilience solutions presented in
section 4. is organized in this manner. However, the resilience patterns have various properties each of
which can be used as a basis for developing a classification scheme. These properties include:

• Capability: Whether the pattern offer detection, containment, recovery or masking semantics, or a
combination of these capabilities.

• Protection Coverage: The scope of the system that the pattern protects.

• Fault Model: The type of event that the pattern is equipped to handle.

• Impact: How a fault, error or failure event affects the outcome of a system, and the capabilities of
the pattern to deal with the consequences of the event.

• Design complexity of the solution: The effort necessary to incorporate the patterned solution in the
overall design of a system.

• Time overhead in the absence of fault/error/failure events: The impact of the pattern (in terms of
time to solution) on the fault-free operation of a system.

• Time overhead to manage fault/error/failure events: The impact on time to solution on account of
the actions required to manage an event.

• Space overhead of the solution: The number of additional components or sub-systems that the
solution requires.

• Power overhead of the solution: The impact of applying the pattern on the system’s power
consumption.

Our goal is to develop a classification scheme that facilitates the incorporation of resilience capabilities
which are an essential part of the design process. The scheme should enable system designers to easily
discover an appropriate pattern for a specific design problem. Therefore, we propose a classification that
organizes the resilience design patterns in a layered hierarchy. Such an organization of the patterns helps
designers to systematically evaluate the features of various patterns, and analyze the impact on coverage
and overhead of applying a pattern to a specific problem. Each layer in the hierarchy, which is illustrated in
Figure 3, enables designers to view the design problem at a different granularity. This permits the different
stakeholders to reason about resilience capabilities based on their view of the system and their core
expertise - system architects may analyze protection coverage for the various hardware and software
components that make up the system based on the patterns applied by each component; the designers of
individual components may operate within a single layer of system abstraction and focus on instantiation of
patterns based on local constraints, without the need to understand the overall system organization. Each
level in the hierarchy also addresses one or more of the design considerations, including the type of event
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Figure 3. Classification of resilience design patterns

handled, potential impact on a system, the capabilities supported by a pattern, design complexity, etc.
Therefore, the ordering of the patterns within a level in the hierarchy is based on these considerations.

Resilience in the context of HPC systems and applications has two key dimensions: (1) forward progress of
the system and (2) data consistency in the system. Based on these two aspects, the resilience design
patterns are broadly classified into:

• State Patterns: These patterns describe all aspects of the system structure that are relevant to the
forward progress of the system. The correctness and consistency of the system state ensures the
correct operation of the system. The state patterns implicitly define the scope of the protection
domain that must be covered by a resilience mechanism.

• Behavioral Patterns: These design patterns identify common detection, containment, or mitigation
actions that enable the components in a system that realize these patterns to cope with the presence
of a fault, error, or failure event.

In the classification scheme in Figure 3 the state patterns are placed separately from the behavioral patterns.
This classification enables designers to separately reason about scope of the protection domain and the
semantics of the pattern behavior.

State Patterns
The notion of state for an HPC application may be classified into three aspects [100]:

• Persistent/Static State, which represents the data that is computed once in the initialization phase of the
application and is unchanged thereafter.

• Volatile/Dynamic State, which includes all the system state whose value may change during the
computation.

• Operating Environment State, which includes the data needed to perform the computation, i.e., the
program code, environment variables, libraries, etc.

Within the layer of state patterns, the patterns are organized to capture each of these aspects of state. This
organization enables the behavioral patterns to be applied to individual aspects of the system state.
However, the state patterns may also be fused to enable the application of a single behavioral pattern to

26



more than one state pattern. Certain resilience behaviors may be applied without regard for state; such
patterns are concerned with only the forward progress of the system. Therefore, the classification of state
patterns also includes a stateless pattern to enable designers to create solutions that define behavior without
state.

Behavioral Patterns
The behavioral patterns are presented in a layered hierarchy to provide designers with the flexibility to
organize the patterns in well-defined and effective solutions:

• Strategy Patterns: These patterns define high-level policies of a resilience solution. Their descriptions
are deliberately abstract to enable hardware and software architects to reason about the overall
organization of the techniques used and their implications on the full system design. However, these
patterns describe the overall structure of each pattern and the key components in the solution and their
capabilities independent of the layer of system stack and hardware/software architectural features.

The strategy patterns are organized by the type of event that they intend to handle - fault, error or failure;
the techniques to handle these events are fundamentally different. Without delving into the specifics of
the precise type of fault, error, or failure and their impact on a system, these patterns describe the overall
plan for handling each event type.

The classification of the strategy patterns also captures the intent behind each solution. The fault
treatment patterns are concerned with diagnosing and preventing an imminent error or failure. The
recovery and compensation patterns must limit and remove an error or failure state in the system. The
recovery pattern aims to substitute an error/failure-free state in place of the erroneous/failed system state.
The compensation pattern seeks to tolerate the presence of an error or failure by providing redundancy in
the system.

• Architectural Patterns: These patterns convey specific methods necessary for the construction of a
resilience solution. They explicitly convey the type of fault/error/failure event that they handle and
provide detail about the key components and connectors that make up the solution. Since the architecture
patterns are a sub-class to the strategy patterns, they are also organized by the type of event they handle.

The architectural patterns are also organized to reflect the specific action that its solution takes to handle
the event, and the intended impact of the action on the system resilience. Consequently, there exists an
overlap between the sub-class relationships for one of the patterns.

The classification of these architectural patterns based on the core solution is also suggestive of the
design time complexity and runtime complexity of a pattern. However, architectural patterns are
independent of the precise fault model and may be implemented at any layer of the system stack.

• Structural Patterns: These patterns provide concrete descriptions of the solution rather than high-level
strategies. They comprise of instructions that may be implemented in hardware/software components.
While the strategy and architectural patterns serve to provide designers with a clear overall framework of
a solution and the type of events that it can handle, the structural patterns express the details so they can
contribute to the development of complete working solutions. Structural patterns provide a concrete
description of the components that make up the solution.

The structural patterns are also sub-classes of the strategy and architectural patterns. Therefore, their
first-order organization is also based on the type of fault event that their solution handles. However, the
pattern descriptions include the details of the fault model that the pattern protects the system against.
Although the structural patterns provide more detailed solutions, their descriptions are still independent
of the layer of system abstraction. However, based on the description of the modules, a designer may be
able to identify the layer of system stack at which the pattern may potentially be instantiated.
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Implementation patterns bridge the gap between the design principles and the concrete details required
for realization of a complete resilience solution. These are often compound patterns, i.e., patterns of
patterns, and consist of a structure pattern and a state pattern. The implementation patterns explicitly
specify the layer of system abstraction at which they are implemented, and the activation and response
interfaces. These patterns enable the designer to understand the overhead of a solution in terms of time and
space, as well as the trade-off between design complexity and runtime complexity.
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7. The Resilience Pattern Catalog

The resilience solutions presented in this specification document have been extensively studied and/or
used. The primary objective here is to capture them in a standardized and accessible format. The resilience
design patterns are based on practical solutions that have been applied to HPC systems and their
applications. Each design pattern focuses on a specific problem in HPC resilience.

7.1 Describing Design Patterns

Patterns are expressed in a written form in a highly structured format to enable HPC architects and
designers to quickly discover whether the pattern is relevant to the problem being solved. Every pattern has
the following key attributes [74]:

• A descriptive name that distinctly identifies the pattern and enables designers to think about designs
in an abstract manner and communicate their design choices to others.

• A description of the problem that provides insight on when it is appropriate to apply the pattern.

• A description of the solution that defines the abstract elements that are necessary for the composition
of the design solution as well as their relationships, responsibilities, and collaborations.

• The consequences of applying the pattern in terms of the protection coverage that the pattern offers
and the space and time trade-offs of applying the pattern in terms of performance and power
overheads.

For convenience and clarity, each resilience pattern presented in the catalog follows the same prescribed
format. There are three key reasons behind this pattern format: (1) to present the pattern solution in a
manner that simplifies comparison of the capabilities of patterns and their use in developing complete
resilience solutions, (2) to present the solution in a sufficiently abstract manner that designers may modify
the solution depending on the context and other optimization parameters, and (3) to enable these patterns to
be instantiated at different layers in the system.
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Name:
Identifies the pattern and provides a convenient way to refer to it, typically using a short phrase.

Problem:
A description of the problem indicating the intent behind applying the pattern. This describes the intended goals and objec-
tives that will accomplished with the use of this specific pattern.

Context:
The preconditions under which the pattern is relevant, including a description of the system before the pattern is applied.

Forces:
A description of the relevant forces and constraints, and how they interact or conflict with each other and with the intended
goals and objectives. This description clarifies the intricacies of the problem and make explicit the trade-offs that must be
considered.

Solution:
A description of the solution that includes specifics of how to achieve the intended goals and objectives. This description
identifies the core structure of the solution and its dynamic behavior, including its collaborations with other patterns. The
description may include guidelines for implementing the solution as well as descriptions of variants or specializations of the
solution.

Capability:
The resilience management capabilities provided by this pattern, which may include detection, containment, mitigation, or a
combination of these capabilities. The listing of capabilities enables designers to determine whether other patterns must be
employed to compose a complete resilience solution.

Protection Domain:
The resiliency behavior provided by the pattern extends over a certain scope, which may not always be explicit. Also, a
solution may be suitable for a specific fault model. The description of scope and nature of fault model that is supported by
the pattern enables designers to reason about the coverage scope in terms of the complete system.

Resulting Context:
A brief description of the post-conditions arising from the application of the pattern. There may be trade-offs between
competing optimization parameters that arise due to the implementation of a solution using this pattern. The resulting
context describes what aspects of the systems have been provided with protection, and which remain unprotected. This
indicates other patterns that may be applied for supplementing the protection domain.

Examples:
One or more sample applications of the pattern, which illustrate the use of the pattern for a specific problem, the context, and
set of forces. This also includes a description of how the pattern is applied, and the resulting context.

Rationale:
An explanation of the pattern as a whole, with an elaborate description of how the pattern actually works for specific situa-
tions. This provides insight into internal workings of a resilience pattern, including details on how the pattern accomplishes
the desired goals and objectives.

Related Patterns:
The relationships between this pattern and other relevant patterns. These patterns may be predecessor or successor patterns
in the hierarchical classification. The pattern may collaborate to complement, or enhance the resilience capabilities of other
patterns. There may also be dependency relationships between patterns, which necessitate the use of co-dependent patterns
in order to develop complete resilience solutions.

Known Uses:
Known applications of the pattern in existing HPC systems, including any practical considerations and limitations that arise
due to the use of the pattern at scale in production HPC environments.
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Terminology: The aim of defining a catalog of resilience design patterns is to provide reusable solutions to
specific problems in a way that they may be instantiated in various ways, in hardware and software.
Hardware design covers design of microarchitecture blocks, processor architecture, memory hierarchy
design, network interface design, as well as design of racks, cabinet and system-level design. The scope of
software design spans the spectrum of operating systems; runtimes for scheduling, memory management,
communication frameworks, performance monitoring tools, computational libraries; compilers;
programming languages; and application frameworks. In order to make the resilience pattern relevant to
these diverse domains of computer system design, we describe solutions in a generic manner. The
descriptions use the term system to refer to an entity that has the notion of a well-defined structure and
behavior. A subsystem is a set of elements, which is a system itself, and is a component of a larger system,
i.e., a system is composed of multiple sub-systems or components. For a HPC system architect, the scope
of system may include compute nodes, I/O nodes, network interfaces, disks, etc., while an application
developer may refer to a library interface, a function, or even a single variable as a system. The
instantiation of the pattern interprets the notion of system to refer to any of these hardware or software-level
components. A full system refers to the HPC system as a whole, or to a collection of nodes that is capable
of running a parallel application.

7.2 Strategy Patterns

7.2.1 Fault Treatment Pattern

Name: Fault Treatment Pattern

Problem: The presence of defects or anomalies in a system have the potential to activate, which may
potentially lead to an error or a partial/complete failure of a HPC (sub-) system.

Context: The pattern applies to a system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring system to discover the presence of
anomalies in the behavior of a monitored system.

• The interaction between the monitored and monitoring systems is bounded in terms of time.

• The monitoring system may optionally have the capability to modify the parameters of the monitored
system, which enables the anomaly or defect to be removed before it results in an error or a failure.

Forces:

• The interactions of the monitoring and monitored systems may interfere with the operation of the
monitored system. The frequency of these interactions must be minimized to reduce the overhead of the
monitoring; yet, the interactions must be frequent enough to detect every anomaly in the monitored
system.

• The interval for the monitoring system to gather data about the monitored system, and infer the presence
of an anomaly or a defect must be rapid to prevent the activation of an error/failure. Also, this delay
incurs an overhead to the operation of the monitored system.

Solution: The Fault Treatment pattern enables the discovery and treatment of the presence of defects or
anomalies in the system that have the potential to activate, which may potentially lead to an error or a
failure in the system. The pattern supports methods that attempt to recognize the presence of an anomaly or
a defect within a system, and creates conditions that prevents the activation of the fault into an error or
failed state. The solution requires a monitoring system, which may be a sub-system of the monitored
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system or an external independent system, that observes the key parameters of the monitored system.
These components are illustrated in Figure 4.

Monitoring 
(sub-) system

Monitored 
(sub-) system

Parameter	1

Parameter	2

Parameter	N

Scope of fault treatment domain 

Figure 4. Fault Treatment Pattern

Capability: The pattern supports fault treatment, based on the following capabilities:

• Fault detection, to detect anomalies during operation before they impact the correctness of the system
state, and cause errors and failures.

• Fault mitigation, which includes methods to enable an imminent error or failure to be prevented, or the
defect to be removed.

The Fault Treatment pattern may support either one, or both capabilities. Figure 5 illustrates these
capabilities.

Protection Domain: The protection domain extends to the scope of the monitored system, for which the
monitoring system gathers data for discovering anomalies/defects. Since the pattern seeks to detect and
alleviate a fault before activation, the protection domain implicitly extends to other systems that are
interfaced to the monitored system.

Resulting Context: The Fault Treatment pattern requires the designer to identify parameters that
indicate the presence of faults. The system design must include a monitoring system, which introduces
design complexity in the overall system design. When the monitoring system is extrinsic to the monitored
system, the design effort may be simplified, but the interfaces between the systems must be well-defined.
However, when the monitoring system is intrinsic to the design of the monitored system, the complexity of
the design process increases due to need to interface the sub-systems. The interference between the
monitoring and monitored systems must be minimized.

Examples: Various hardware-based solutions for fault detection observe the attributes of a system, such as
thermal state, timing violations to determine the presence of a defect in the behavior of the system that may
potentially cause an error or failure. Similarly, software-based solutions detect the anomalies in the
behavior of a system’s data variables or control flow attributes to determine the presence of a fault.

Rationale: The key benefit of incorporating fault treatment patterns in a design, or deploying it during
system operation is to preemptively recognize faults in the system, before they are activated and result in
errors or partial/complete failures of the system. The preventive actions avoid the need for expensive
recovery and/or compensation actions.
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Figure 5. Fault Treatment Pattern Flowchart

Related Patterns: The recovery and compensation patterns are complementary to the fault treatment
patterns. Those patterns are necessary only when the fault has been activated, and when an error or failure
state exists in the system.

Known Uses:

• Processor chips used in HPC systems contain thermal sensors that detect anomalous thermal conditions
in the processor cores. When the temperature reaches a preset level, the sensor trips and processor
execution is halted to prevent failure of the chip. The IBM Power 8 [81] and Intel Xeon [45] series of
processors include these features.

• Software-based heartbeat monitoring for liveness checking of MPI processes [19] enables detection of
faults in a processor rank, before it may activate to result in failure of the MPI communicator.

• The Cray RAS and Management System (CRMS) supports real-time fault monitoring of the status of
Cray system components, including the cabinets, blades, CPUs, network processors and network links in
the Cray XT3/XT4/XT5 systems [20].
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7.2.2 Recovery Pattern

Name: Recovery Pattern

Problem: The occurrence of errors or partial/complete failures in an HPC environment prevents
applications from running correctly.

Context: The pattern applies to a system that is deterministic, i.e. forward progress of the system is defined
in terms of the input state to the system and the execution steps completed since system initialization. The
system must also have the following characteristics:

• The error or failure in the system that the pattern handles must be detected; the pattern offers no implicit
error/failure detection.

• The system operation has well-defined intervals that enables the pattern to transition the system to a
known correct interval in response to an error/failure.

• The system can compartmentalize its state that is accurately representative of the progress of the system
since initialization at the time such state is captured.

Forces:

• The pattern requires stable storage to capture system state, which increase overhead in terms of
resources required by the system.

• The process of compartmentalizing and capturing system state interferes with system operation. The
error/failure-free overhead penalty must be minimized.

• The amount of state captured during each creation of a recovery point incurs space and time overheads.

• The frequency of creation of system state snapshots determines overhead: more frequent creation of
recovery points increases system execution time, but reduces amount of lost work upon occurrence of an
error/failure.

• The post-recovery state of the system must be as close as possible to an error/failure-free system state.

• The time interval required for the recovery of a system from a stable recovery point as well the time
interval to create and commit a checkpoint to a stable storage system must be less than the mean time
between errors/failures in the system to enable the system to make forward progress.

Solution: The Recovery pattern enables the resumption of correct operation of a system impacted by the
occurrence of errors in the system, or by the failure of the system. In an HPC environment, such events in
the system typically result in incorrect results, and in some cases, catastrophic application crashes. The
pattern supports resilient operation by restoring a system to a known correct state in the event of an error or
failure. The solution suggested by the pattern, shown in Figure 6, is based on the creation of snapshots of
the system state and the maintenance of these checkpoints on a stable storage system. Upon detection of an
error or a failure, the checkpoints are used to recreate last known error/failure-free state of the system.
When the system state is recovered, the operation of the system is resumed. Based on a temporal view of
the system’s progress, the error recovery may be either forward or backward with reference to the time
when the error/failure event occurred.

Capability: The Recovery pattern periodically preserves the essential aspects of the system state that may
be subsequently used to resume operation from a known stable and correct version. The pattern handles an
error or a failure by substituting an error-free state in place of the erroneous state. The pattern enables a
system to tolerate errors/failures by resuming operation from a stable checkpointed version of the system
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Figure 6. Recovery Pattern

that is free of the effects of the error/failure. The solution offered by this pattern is not dependent on the
precise semantics of the error/failure propagation. The flowchart for this pattern is shown in Figure 7.

Protection Domain: The protection domain for a Recovery pattern is determined by the extent of state
that is captured during checkpoint creation operation, which accurately represents the complete execution
state of the system. The broader the scope of the system state that is preserved, the larger is the scope of the
system state that may be protected from an error/failure event.

Resulting Context: With a Recovery pattern, a system is capable of tolerating failures by substitution of
erroneous/failed system state to a known previous stable state (rollback recovery), or to an inferred future
stable state (forward recovery). The system operation must be interrupted to restore system state from a
checkpoint. The frequency of creation of checkpoints determines the overhead to system operation;
frequent checkpointing incurs proportionally greater overheads during error/failure-free operation, but
reduces the amount of lost work when an error/failure event does occur. The latency of saving and restoring
state determine the overhead during error/failure-free operation, and the overhead of recovering from an
error/failure respectively.

Examples: Various checkpoint and rollback protocols enable HPC applications and systems to capture
state and commit the checkpoint files to parallel file systems. These are instances of the recovery pattern
that support recovery of an application or the complete system upon detection of an error/failure [60].

Rationale: Since the solution offered by this pattern is not dependent on either the type of error/failure, or
the precise semantics of the error/failure propagation, the design effort and complexity in using this pattern
in any system design in low.

Related Patterns: The Compensation pattern is complementary to the recovery pattern, although they
both seek to create conditions to recreate correct state. The key difference between the Recovery and the
Compensation patterns is the method used to maintain any additional state that is used for error/failure
processing. While the compensation pattern use replication of the system, a recovery pattern relies on
committing error/failure-free versions of the system to stable storage.

Known Uses:

• The Berkeley Labs C/R library (BLCR) [57] is an extension to the Linux OS that supports creation
checkpoint & restart capabilities for Linux processes and also provides an interface for programmers to
checkpoint application program state.
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Figure 7. Recovery Pattern Flowchart

• The libckpt [125] is a user-level, library-based checkpointing solution that supports explicit directives to
determine the scope of an application’s checkpointed state.

• The Scalable Checkpoint/Restart (SCR) [114] library uses multilevel checkpointing; it creates frequent
inexpensive checkpoints that can recover the loss of a few nodes to the local node-level storage, and
writes complete checkpoints that can withstand an entire system failure to the parallel file system.

7.2.3 Compensation Pattern

Name: Compensation Pattern

Problem: Errors or partial/complete failures in an HPC environment cause applications to experience
errors or fail.

Context: The pattern applies to a system that is deterministic, i.e. forward progress of the system is defined
in terms of the input state to the system and the execution steps completed since system initialization. The
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system must also have the following characteristics:

• The error or failure in the system that the pattern handles must be detected, although the pattern may
offer implicit error/failure detection.

• The system must allow for modular design with well-defined inputs and outputs for each module.

• The error/failure must not be in the inputs provided to the system.

Forces:

• The scope and strength of the redundancy employed by the pattern determines the overhead to the
system performance.

• The pattern introduces a penalty in terms of time (increase in execution time), or space (increase in
resources required) independent of whether errors or failure occurs during system operation.

• The error/failure-free overhead penalty must be minimized.

Solution: The Compensation pattern accounts for certain errors in the system, or the failure of a (sub-)
system. The pattern is based on the definition of modules (with well-defined inputs and outputs), about
which redundant information is maintained. The scope of the module may include a sub-system, or cover
the full system. The pattern provides error/failure resiliency operation by applying redundancy to the
module. The redundancy may be in the form of maintaining a group of replicas of the module, referred to
as N-modular redundancy. The module replicas are functionally identical and each replica receives
identical inputs. Alternatively, the redundancy may be in the form of maintaining encoded information
about the module. The key components of the pattern are illustrated in Figure 8.

Compensation 
Manager

Scope of compensation domain 

(Sub-) System
(sub-) system 
state, progress

replace primary 
(sub-) system with 
redundant version

Redundant 
(Sub-) System

restore affected (sub-) 
system using 
redundant knowledge 

primary (sub-) system 
state, progress

Figure 8. Compensation Pattern

Capability: The pattern supports error/failure detection and in some cases error/failure correction by using
the redundant information about a module to recompense for the presence of an error/failure. When the
redundancy is in the form of modular replication, an error or failure in one of the modules may be tolerated
by substituting the module with a replica. The replicas of the modules permit the system to continue
operation even in the presence of a fail-stop failure. In order to recover from 2N errors/failures in the
system, there must be 2N + 1 distinct replicas. For the detection of errors, the outputs of the replicas of the
system are compared by a monitoring system. For a system to tolerate an error/failure, the number of
replicas must be greater than two, in which case the monitor performs majority voting on the outputs
produced by the replicas. This enables incorrect outputs from replicas in error/failed state to be filtered out.
The working of the pattern is shown in Figure 9.
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Figure 9. Compensation Pattern Flowchart

Protection Domain: The protection domain of the Compensation pattern extends to the scope of the
module on which redundancy is applied.

Resulting Context: The Compensation pattern requires the replication of the system and its inputs. The
design effort and complexity of replication of the system depends on the replication method. A naive
replication requires low design effort; the design of functionally identical but independently designed
versions of the replicas requires higher design effort. The preparedness of the replica during system
operation to compensate for the error/failure state determines the level of overhead: The replica may be
active or passive; the replica state may be classified hot, warm and cold which are the forms of replication
configurations based on the levels of intervention required for compensating for an error/failure.

Examples: The N-modular redundancy approach is used at the hardware and software levels in various
HPC components. Dual-modular redundancy (DMR) is typically used for error detection while
triple-modular redundancy (TMR) is used for error detection and correction [97]. Redundant information
in the form of error correction codes is also used at the hardware-level and at the application-level for
application data structures [82] for compensation of data errors.

38



Rationale: The Compensation patterns enable systems to tolerate errors/failures by relying on the
replicated versions of the system to substitute a failed system, or to infer and compensate for errors/failures
by comparing the outputs of the replicas.

Related Patterns: The Recovery pattern is complementary to the compensation pattern, although they
both seek to create conditions to recreate correct state. The key difference between the Recovery and the
Compensation patterns is the method used to maintain any additional state that is used for error/failure
processing. Unlike Recovery pattern, which uses a temporally forward or backward error/failure-free
version of the system, a compensation pattern utilizes some form of redundancy to tolerate errors/failures
in the system.

Known Uses:

• The MR-MPI [64], rMPI [68] and their successor RedMPI [70] are implementations of the message
passing interface that transparently replicate MPI messages. They detect and correct errors through
active comparison between redundant copies across MPI ranks.

• Production HPC systems use memory modules that provide ECC, which maintain redundant bits per
memory line. These redundant bits compensate for bit flip errors within the memory lines and enables
detection and correction of certain errors. The standard ECC supports single-bit error correction and
double-bit error detection (SECDED) [115]. Chipkill [51] permits single DRAM memory chip failure as
well as multi-bit errors from any portion of a single memory chip by interleaving bit error-correcting
codes across multiple memory chips.
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7.3 Architectural Patterns

7.3.1 Fault Diagnosis Pattern

Pattern Name: Fault Diagnosis Pattern

Problem: An incomplete understanding of the cause and impact of a fault in an HPC system design makes
design process of remedial actions difficult.

Context: The pattern is a derivative pattern of the Fault Treatment strategy pattern and it applies to a
system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring system to discover the presence of
anomalies in the behavior of a monitored system.

• The interaction between the monitored and monitoring systems is bounded in terms of time.

• The monitoring system has the capability to analyze the behavior of the monitored system.

Forces:

• The interactions of the monitoring and monitored systems may interfere with the operation of the
monitored system. The frequency of these interactions must be bounded.

• The time interval for the monitoring system to infer the presence of an anomaly or a defect must be
minimized in order to report the fault in a timely manner (before the activation of an error or failure).
This time delay also incurs an overhead to the operation of the monitored system.

• The diagnostic resolution, i.e., the degree of accuracy of the fault diagnosis, must be high.

Solution: The Fault Diagnosis pattern identifies the presence of a defect or anomaly that has the
potential to activate, leading to the occurrence of an error or a failure. The pattern uses a monitoring system
that observes specific parameters of a monitored system. These components are shown in Figure 10. Since
the presence of a fault that has not activated into an error does not affect the correct operation, the Fault
Diagnosis pattern makes an assessment on what may potentially be wrong with a system. The diagnosis
entails making inferences based on the observed behavior of a system and it also help narrow the search for
the root cause of the fault. The assessment is based on the standard operating behavior of the monitored
system.

Monitoring 
(sub-) system

Monitored 
(sub-) system

Parameter	1

Parameter	2

Parameter	N

Scope of fault treatment domain 

Inference

Root	Cause	Analysis
Event	Information

Diagnosis

Figure 10. Fault Diagnosis Pattern
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Capability: The pattern provides a method that attempts to recognize the presence of an anomaly or a
defect within a system and identifies the fault location and type. The monitoring system observes
deviations in the parameters to determine the presence of a fault and seeks to identify the location of the
fault. The flowchart for this pattern is shown in Figure 11.
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type and location

END

START

Monitor system 
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Determine fault domain

Figure 11. Fault Diagnosis Pattern Flowchart

Protection Domain: The protection domain extends to the scope of the monitored system, about which the
monitoring system gathers data for discovering anomalies/defects. Since the pattern seeks to detect and
alleviate a fault before activation, the protection domain implicitly extends to other systems that are
interfaced to the monitored system.

Resulting Context: The Fault Diagnosis pattern requires the designer to identify parameters that
indicate the presence of faults. The system design must include a monitoring system, which introduces
design complexity in the overall system design. When the monitoring system is extrinsic to the monitored
system, the design effort may be simplified, but the interfaces between the systems must be well-defined.
However, when the monitoring system is intrinsic to the design of the monitored system, the complexity of
the design process increases due to need to interface the sub-systems. The Fault Diagnosis pattern only
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infers the presence of a defect and reports it, but does act to remedy the fault. Based on the monitored
system design and accessibility of the parameters selected for observation, the diagnosis may not be very
precise and may sometimes give no indication of defect mechanism.

Rationale: The Fault diagnosis pattern enables error/failure avoidance by detecting an anomaly in the
system before it results in an error/failure. The pattern may also provide insights into the root cause and the
location of the fault.

Examples: Various hardware faults are detected through analysis of software symptoms, such as
observation of latency of operations. In the context of HPC systems, faults may be detected and diagnosed
by accumulating empirical data on the characteristics and the behavior of system components and using
this inferred knowledge to discover fault patterns.

Related Patterns: In contrast to the error/detection recovery and compensation patterns, the fault diagnosis
pattern is a passive pattern that observes system behavior and infers the presence of a fault based on the
deviation from specified normal behavior of the system.

Known Uses:

• Self-Monitoring and Reporting Technology (SMART) [146] is used in HDD and solid state disk
systems. It detects and reports on various indicators of the disk’s reliability.

• The Intelligent Platform Management Interface (IPMI) [50] is a set of specifications that provide
standardized interfaces for monitoring hardware health information such as the system temperatures,
fans, power supplies, etc. and the logging of abnormal system states in the System Event Log (SEL),
Sensor Data Record (SDR). Using these interfaces, software tools may monitor the health of system
resources and infer the presence of anomalies in behavior.

7.3.2 Reconfiguration Pattern

Pattern Name: Reconfiguration Pattern

Problem: The presence of a fault, error or failure event may affect configuration of the system components,
preventing its correct operation.

Context: The pattern derives from the Fault Treatment and Error/Failure Recovery strategy
patterns and is intended to manage the effects of a fault, error or failure event. It applies to a system that
has the following characteristics:

• The system that is deterministic, i.e. forward progress of the system is defined in terms of the input state
to the system and the execution steps completed since system initialization.

• The fault, error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit fault monitoring, prediction, or error/failure detection capability.

• The system should be able to be partitioned into logical modules; altering the interconnection between
the modules in the system enables the system to remain operational.

Forces:

• The system design must allow for encapsulation of system functions into a set of well-defined modules;
the ability of a system to alter the interconnection among modules must permit system operation, which
is functionally equivalent to the fault, error, or failure-free version of the system.

• The time to reconfigure the system must be minimized; the interval required to reconfigure incurs an
overhead to the operation of the system.
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• The reconfiguration may force the system to operate at a lower level of performance. The performance
degradation because of the reconfiguration of the system must be minimized.

Solution: The Reconfiguration pattern prevents a fault, error or failure event from affecting the correct
operation of the system. The pattern entails modification of the interconnection between modules or
sub-systems in the overall system. The system may assume several configurations in response to a fault,
error or failure event, each of which is characterized by its own topology of interconnections, but retains
functional equivalency with the original system configuration. The pattern makes sub-systems out of larger
systems by isolating of the module of the system affected by the event. The sub-system consists of an
altered organization of the system modules that is functionally equivalent to the system configuration
before the occurrence of the fault, error or failure event. Figure 12 provides a graphical description of this
pattern solution.
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Figure 12. Reconfiguration Pattern

Capability: The pattern enables systems to tolerate the impact of a fault, error or failure by isolating the
module affected by the event. The altered configuration prevents the module that experienced the fault,
error or failure condition from affecting the correctness of the overall system operation, and enables the
system to continue operation. The working of this pattern is shown in Figure 13.

Protection Domain: The protection domain of the Reconfiguration pattern covers all the modules
whose interconnections may be reconfigured in order to continue operating the system in a functionally
equivalent operating state.

Resulting Context: The reconfiguration of the system may result in the operation at a degraded
performance level. This incurs additional time overhead to the system. The design of the reconfiguration
capability requires the partitioning of the system into modules that remain functionally correct in multiple
different configurations; some of these configurations are sub-systems of the original system. The design
complexity in defining the scope of these modules and validate their equivalency to alternative
configuration is significant. The pattern also introduces runtime overhead in altering the interconnections
of a system.

Examples: Various software-based solutions support the reconfiguration of the subsystems to isolate a
fault, error or failure prone resource. This includes the configuration of processors, memory subsystems,
storage subsystems and interconnect topologies. Cluster management systems often support the capabilities
to dynamically adapt the cluster configuration based on the health of the compute nodes in the system.
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Rationale: The Reconfiguration pattern enables a system to tolerate to a fault, error or failure by
adapting itself to the impact of the event and continuing to operate. The pattern enables systems to make
forward progress by relying on the reconfigured version of the system.

Related Patterns: Like the Checkpoint-Recovery pattern, the Reconfiguration pattern supports the
isolation and removal of a fault in a system, and provides capabilities for recovery of the system from the
impact of an error or failure event. In contrast to the Checkpoint-Recovery pattern, which maintains
snapshots of the system to stable storage to perform forward or backward recovery, the Reconfiguration
pattern isolates a module in error or failure state and adapts the interconnections among the remaining
modules to recover the operation of the system.

Known Uses:

• The Charm++ adaptive runtime system interacts with the resource manager to dynamically reconfigure
the number of nodes assigned to a job based on the resilience, power and performance characteristics of
the system [9].
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• In the Cray Linux Environment CLE, the NodeKARE module automatically runs diagnostics on all
involved compute nodes in the cluster whenever a user’s program terminates abnormally. It removes the
failing nodes from the pool of available compute nodes so that subsequent jobs are allocated to healthy
nodes and are able to run reliably to completion [89].

7.3.3 Checkpoint Recovery Pattern

Pattern Name: Checkpoint Recovery Pattern

Problem: An unrecoverable error or a failure event in an HPC environment prevents the execution of
applications.

Context: The pattern is a derivative of the Recovery pattern and it applies to a system that is deterministic,
i.e., forward progress of the system is defined in terms of the input state to the system and the execution
steps completed since system initialization. The system must also have the following characteristics:

• The error or failure in the system must be detected; the pattern offers no implicit error/failure detection
capability.

• The system has well-defined intervals that enables the pattern to transition the system to a known correct
interval in response to an error/failure.

• When the system encounters the same non-deterministic events with the same system state, and at the
same location and timing, the system behavior is identical. The execution of the system between the
intervals is deterministic.

• The system is capable of compartmentalizing its state that is accurately representative of the progress of
the system since initialization at the time such state is captured.

Forces:

• The pattern requires stable storage to capture system state or to log events, which increase overhead in
terms of resources required by the system.

• The process of compartmentalizing and capturing system state or logging interferes with system
operation. The error/failure-free overhead penalty must be minimized.

• The extent of system state captured during the creation of a checkpoint incurs space and time overheads.

• The post-recovery state of the system must be as close as possible to an error/failure-free system state.

• The frequency of creation of checkpoints determines overhead. An increase in the checkpointing
frequency increases system execution time, but reduces amount of lost work upon occurrence of an
error/failure.

• The time interval required for the recovery of a system from a stable recovery point as well the time
interval to create and commit a checkpoint to a stable storage system must be less than the mean time
between errors/failures in the system to enable the system to make forward progress.

Solution: The Checkpoint-Recovery pattern accounts for unrecoverable errors in the system, or
supports the recovery from the failure of the system. In general, checkpoint-recovery solutions are
classified into checkpoint-based and log-based strategies. In the case of the former, the solution is based on
the creation of snapshots of the system state and maintenance of these checkpoints on a stable storage
system during the error/failure-free operation of the system. In the case of log-based protocols, the pattern
uses a combination of checkpointing and logging of non-deterministic events in the system. The pattern is
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illustrated in Figure 14. Upon detection of an error or a failure, the checkpoints are used to recreate last
known error/failure-free state of the system. The system operation is then restarted. Based on a temporal
view of the system’s progress, the error/failure recovery may be either forward or backward.

Checkpoint 
Restart 

Manager

Scope of recovery domain 

(Sub-) 
System

(sub-) system 
state, progress

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

Persistent	Store

Figure 14. Checkpoint Recovery Pattern

Capability: The Checkpoint-Recovery pattern periodically preserves the essential aspects of the system
state that may be subsequently used to recover the system from an error/failure. The pattern handles an
error or a failure by retrieving an error/failure-free system state from a storage system, or by reconstructing
such state, and substituting the erroneous/failed state with the error/failure-free state. Therefore, the system
is able to resume operation with a version of the system state that is free of any effects of the error/failure
event. These steps are shown in the flowchart in Figure 15. The solution offered by the pattern supports
only recovery; the detection and containment of the error/failure is beyond the scope of the pattern’s
capabilities.

Protection Domain: The protection domain for a Checkpoint-Recovery pattern is determined by the
extent of state captured during checkpoint operation and/or the number of system operations that can be
recovered from the log of events. For failure recovery, the protection domain must include the state of the
complete system. For error recovery, the protection domain includes the scope of system state captured at
every checkpoint; the error recovery is possible only when the location of the error is within the state that is
checkpointed.

Resulting Context: The use of the Checkpoint-Recovery pattern enables a system to tolerate errors or
failures using substitution or inference to recreate an error/failure free version of the system state. The
system is restarted from a known previous stable state (backward recovery), or to an inferred stable state
(forward recovery), which potentially results in some loss of work. The pattern requires interruption of the
system during error/failure-free operation of the system to record the checkpoint, which results in a time
overhead. The frequency of creation of checkpoints and/or event logging determines the overhead to system
operation; frequent checkpointing/logging incurs proportionally greater overheads during error/failure-free
operation. However, more frequent checkpointing and logging reduces the amount of lost work when the
system encounters an error/failure event. The checkpointing/logging latency affects the overhead during
error/failure-free operation on account of the latency to write the checkpoint to a storage system. The scope
of the system state captured during a checkpoint operation results in a space overhead due to the
requirements of resources to retain the checkpoints. This scope also affects the time required for recovery
from an error/failure due to the time required to retrieve a checkpoint, or recreate state from the log.

Rationale: The solution offered by this pattern is independent of the type of error/failure and its mode of
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propagation in the system. Therefore, the design effort and complexity in using this pattern in any system
design in low. The pattern also enables implementation of portable solutions due to the low dependence on
system’s architecture.

Examples: In the context of HPC systems, checkpoint and restart capabilities in the software layers,
including various library-based and operating system-based solutions enable recovery from process
errors/failures.

Related Patterns: The Redundancy and Design Diversity patterns are complementary to the
Checkpoint-Recovery pattern, although they both seek to create conditions to recreate correct state. The
key difference between these classes of patterns is the method used to maintain any additional state that is
used for error/failure processing. While the diversity patterns use replication of the system, a recovery
pattern relies on committing error/failure-free versions of the system to stable storage.

Known Uses:

47



• The Berkeley Labs C/R library (BLCR) [57] for Linux processes, the Scalable Checkpoint/Restart
(SCR) [114] library for MPI-based applications are widely used instances of the checkpoint-restart
pattern in HPC systems.

• Library implementations of the MPI standard, such as OpenMPI also support transparent
checkpoint-restart capabilities [87].

• Log-based recovery based on message logging has been adopted by implementations of MPI [27].

7.3.4 Redundancy Pattern

Pattern Name: Redundancy Pattern

Problem: The occurrence of error or failure events caused by physical faults in an HPC environment often
cause unrecoverable errors or failures of (sub-) systems, which prevent the execution of applications.

Context: The pattern is a derivative of the Compensation pattern and it applies to a system that has the
following characteristics:

• The system must be deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The system must allow for modular design with well-defined inputs and outputs for each module.

• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern introduces penalty in terms of time (increase in execution time), or space (increase in
resources required) independent of whether an errors or failure occurs.

• The error/failure-free overhead penalty introduced by the replication of state must be minimized.

Solution: The Redundancy pattern supports the detection of unrecoverable errors or failures in the system
state, and accounts for the loss of correctness/functionality caused by such events. The pattern creates a
group of N replicas of a system’s state as shown in Figure 16. The redundancy may include replication of
the system’s operation and/or the inputs to the system. Each of the N copies of the system state exist
simultaneously. The redundant versions of the system are provided with the identical inputs, and their
respective outputs are compared to detect and potentially correct the impact of an error or a failure in either
replica of the systems.

Capability: The availability of replicated versions of the system state enable the following capabilities:

• Fail-over, which entails substitution of a replica in error or failed state with another replica that is
error/failure-free.

• Comparison, which entails observing the likeness of each replica’s outputs as means to detect the
presence of an error or failure in either replica.

• Majority voting on the outputs produced by each replica system enables the detection of errors and
failures, and filtering out the outputs that fall outside the majority.

The working of this pattern is shown in the flowchart in Figure 17.

Protection Domain: The protection domain of the pattern extends to the scope of the system state that is
replicated.
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Resulting Context: The design effort and complexity of replication of the system state requires low design
effort since the replication entails creation of identical copies of the system state.

Rationale: The Redundancy patterns enable systems to tolerate errors/failures by relying on the replicated
versions of the system state to compensate for an error or failure in the system, or to infer and compensate
for errors/failures by comparing the outputs of the replicas.

Examples: The use of dual-modular redundancy for error detection and triple-modular redundancy for
error/failure detection and correction is common in various hardware and software-level modules. The use
of redundant information based on encoding the state is also used to detect and correct errors in system
state.

Related Patterns: The Redundancy and Design Diversity patterns are based on inclusion of
redundancy to compensate for errors or failures. The diversity in the Redundancy pattern stems from the
replication of the system’s state unlike the Design Diversity pattern, which uses independently
implemented versions of the system’s design to tolerate errors or failures.

Known Uses:

• HPC systems contain service nodes that are responsible for system management tasks while the parallel
computation is performed by a set of compute nodes. The tasks include user login, network file system,
job and resource management, communication services. Various existing solutions provide hot-standby
redundancy with transparent fail-over to manage the occurrence of failures, including the Simple Linux
Utility for Resource Management (SLURM) [6], as well as the metadata servers of the Parallel Virtual
File System (PVFS) [40] and the Lustre file system [7].

• Production HPC systems such as the Cray XC40 series [90] include redundant power supplies, voltage
regulator modules and cooling fans to ensure continuous operation in the event that one of these units
experiences malfunction or failure.
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7.3.5 Design Diversity Pattern

Pattern Name: Design Diversity Pattern

Problem: Design faults introduced by human mistakes or defective design tools cause systems to
malfunction or fail.

Context: The pattern is a derivative of the Compensation pattern and it applies to a system that has the
following characteristics:

• The system has a well-defined specification for which multiple implementation variants may be created.

• There is an implicit assumption of independence between multiple variants of the implementation.

Forces:

• The pattern requires distinct implementations of the same design specification, which are created by
different individuals or teams.
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• The pattern increases the design complexity due to the need of additional design and verification effort
required to create multiple implementations.

• The performance penalty during error/failure-free operation due to disparity in the implementation
variants must be minimized.

Solution: The Design Diversity pattern detects and corrects errors or failures in the system that may
occur due to design flaws in the system. The prevention of design faults and their removal are not
straightforward tasks due to the verification effort required to ensure that a system operates according to its
specification for all possible inputs and operating states. The pattern enables systems to tolerate
errors/failures due to design faults that may arise because of incorrect interpretation of the specifications, or
due to mistakes during implementation. The Design diversity pattern entails partitioning the system
into N replica systems. Each replica system is an implementation variant of a system’s design specification,
as illustrated in Figure 18. These design variants are applied in a time or space redundant manner. The
redundant systems are provided with identical inputs and their respective outputs are compared to detect
and potentially correct the impact of an error or a failure in either replica of the systems.

Capability: The pattern relies on independently created, but functionally equivalent versions of a system
specification. The systems operate in parallel, in a time or space redundant manner. The pattern is based on
the idea that the different implementations have different designs and therefore the same fault would not
affect all the versions at once and in the same manner. This capability, which is shown in Figure 19,
enables the systems to tolerate errors or failures caused by design flaws.

Protection Domain: The protection domain extends to the scope of the system that is described by the
design specification, of which multiple implementation variants are created.

Resulting Context: The Design Diversity pattern enables systems to tolerate errors and failures due to
design flaws given that the likelihood that each replica is affected by the same transient error or failure is
small. Additionally, the pattern also supports resilience transient errors/failures because the replica systems
are functionally identical and are deployed in a redundant manner. However, the need to implement
multiple independent versions requires design and verification effort.

Rationale: The intent behind applying this pattern is to eliminate the impact of human error during the
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implementation of a system. Due to the low likelihood that different individuals or teams introduce
identical bugs in their respective implementations, the pattern enables compensating for errors or failures
caused by a bug in any one implementation of the same design.

Examples: The concept of design diversity is predominantly used in software design. N-version
programming is used in software development, which entails the implementation of variants of a design by
different teams, but to a common specification.

Related Patterns: The Design Diversity and Redundancy patterns are based on inclusion of
redundancy to compensate for errors or failures. In contrast to the Redundancy pattern, which simply
replicates the system state, the Design Diversity pattern typically uses multiple versions of the system
that are only functionally equivalent.

Known Uses:

• The design diversity solution is widely used in the validation of the results produced by scientific
applications, particularly those that require high-precision floating point arithmetic. Such applications
may be compiled and executed using alternative implementations of compiler toolchains, message
passing libraries, numerical analysis libraries to validate the application results.
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7.4 Structural Patterns

7.4.1 Monitoring Pattern

Pattern Name: Monitoring Pattern

Problem: The presence of a defect or anomaly in the system may eventually result in an error or failure.

Context: The pattern is a derivative pattern of the Fault Diagnosis architectural pattern and applies to a
system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring system to discover the presence of
anomalies in the behavior of a monitored system.

• The interaction between the monitored and monitoring systems is bounded in terms of time.

• The monitoring system has the capability to readily analyze the behavior of the monitored system to
identify anomalies in the operation.

Forces:

• The interactions of the monitoring and monitored systems may interfere with the operation of the
monitored system. The frequency of these interactions must be bounded.

• The time interval for the monitoring system to infer the presence of an anomaly or a defect must be
minimized to report the fault in a timely manner (before the activation of an error or failure). This time
delay also incurs an overhead to the operation of the monitored system.

• The degree of accuracy of the fault diagnosis must be high.

Solution: The Monitoring pattern analyzes the behavior of a system with the goal of discovering the
presence of a defect or anomaly in the system that has the potential to cause errors or failures. The pattern,
whose structure is outlined in Figure 20, contains a monitoring system that observes specific parameters of
a monitored system. The monitoring system may approach the problem using two strategies:

• Effect-Cause Diagnosis: This approach entails observation of the parameters of the overall system for
anomalies. When a parameter deviates from a range of values that may be considered as normal
operation, the monitoring system attempts to determine the root cause. The monitoring system logically
partitions the system into modules and progressively eliminates the modules known to be fault-free.
Through this process, it narrows the search for the fault in the system.

• Cause-Effect Diagnosis: This approach is based on a set of known fault models and the monitoring
system compares the system parameters with a model developed using fault free system operation, or
using simulations. When the observed set of parameters deviates from a model, the presence of and the
type of fault may be inferred.

The pattern reports the presence of a fault and its location based on these inferences.

Capability: The pattern provides a method that attempts to recognize the presence of an anomaly or a
defect within a system and identifies the fault location and type. Its working is shown by the flowchart in
Figure 21.

Protection Domain: The protection domain extends to the scope of the monitored system, about which the
monitoring system gathers data for discovering anomalies/defects. Since the pattern seeks to detect and
alleviate a fault before activation, the protection domain implicitly extends to other systems that are
interfaced to the monitored system.
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Resulting Context: The Monitoring pattern requires the designer to identify parameters that indicate the
presence of faults. The system design must include a monitoring system, which introduces design
complexity in the overall system design. When the monitoring system is extrinsic to the monitored system,
the design effort may be simplified, but the interfaces between the systems must be well-defined. However,
when the monitoring system is intrinsic to the design of the monitored system, the complexity of the design
process increases due to need to interface the sub-systems. The Monitoring pattern only infers the
presence of a defect and reports it, but does act to remedy the fault. Based on the monitored system design
and accessibility of the parameters selected for observation the diagnosis may not be very precise and may
sometimes give no indication of defect mechanism.

Rationale: The pattern enables the monitored system to determine the presence of a fault and to analyze its
root cause and location. The pattern enables the system to take precise corrective actions to prevent the
activation of the fault to cause an error or failure event in the system.

Examples: Various platform-level interfaces, such as the IPMI [50], support the monitoring of a system’s
resources, including the memory modules, disk drive bays, network interfaces as well as various
board-level sensors.

Related Patterns: The structure of the Monitoring pattern is closely related to the Prediction pattern
since they both contain monitoring and monitored system entities. The key difference between these
patterns is the amount of temporal information used by the patterns to assess the presence of a defect or
anomaly in the system. The Monitoring pattern uses presently observed system parameters in contrast to
the Prediction pattern, which uses historical trend information to forecast future fault events.

Known Uses: Various HPC system installations use monitoring tools for collecting performance- or
health-related data about the system. Popular solutions include:

• Supermon High-Speed Cluster Monitoring System [143]

• Ganglia Monitoring System [107]

• Nagios [4]

• OVIS Lightweight Distributed Monitoring System [12]
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7.4.2 Prediction Pattern

Pattern Name: Prediction Pattern

Problem: Recognizing system conditions that may cause future faults may help prevent an error or failure
event in the system.

Context: The pattern is a derivative pattern of the Fault Diagnosis architectural pattern and applies to a
system that has the following characteristics:

• The system has well-defined parameters that enable a monitoring system to discover the presence of
anomalies in the behavior of a monitored system.

• The interaction between the monitored and monitoring systems is bounded in terms of time.

• The monitoring system has the capability to store historical data about the behavior of the monitored
system in order to analyze trends in fault occurrences.

Forces:
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• The interactions of the monitoring and monitored systems may interfere with the operation of the
monitored system. The frequency of these interactions must be bounded.

• The time interval for the monitoring system to infer the presence of an anomaly or a defect must be
minimized in order to report the fault in a timely manner (before the activation of an error or failure).
This time delay also incurs an overhead to the operation of the monitored system.

• The degree of accuracy of the fault prediction must be high.

Solution: The Prediction pattern identifies anomalous behavior that indicates the potential for future
faults, which may result in errors or failures in the system. The pattern contains a monitoring system that
observes specific parameters of a monitored system, as illustrated in Figure 22. The pattern may be based
on:

• Rule-based method: builds rules of association to capture the causal correlations between system
parameter values and fault events.

• Statistical-based method: discovers probabilistic characteristics of potential errors/failures in a system
using statistical inference techniques to examine correlations between previous events.

The monitoring system contains the following components to predict faults in a monitored system:

• Filter/Preprocessor: removes incomplete fault data and duplicates and produces a consistent format for
analysis.

• Regression: is a component that seeks to analyze the parameter values and establish relationships
between them.

• Knowledge Base: is a storage component that maintains the rules or statistical properties and models,
which may be used for online prediction of fault events using real-time data captured from the monitored
system.

Monitoring 
(sub-) system

Monitored 
(sub-) system

Parameter	1
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Filtering,	Classification

Predictive	Analysis
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Figure 22. Prediction Pattern

Capability: The pattern provides a method that anticipates the occurrence of fault events based on patterns
of behavior of the monitored system that attempts to recognize the potential for future occurrences of an
anomaly or a defect within a system. Its operation is illustrated in the flowchart in Figure 23.

Protection Domain: The protection domain extends to the scope of the monitored system, about which the
monitoring system gathers data for discovering anomalies/defects. Since the pattern seeks to detect and

56



Initialize system

[yes]

[no]

Statistical/Rule-based 
Modeling of Parameters

END

START

Monitor system 
parameters

Regression

POSSIBLE 
FAULT 

CONDITION

Filtering

Raise fault notification

Figure 23. Prediction Pattern Flowchart

alleviate a fault before activation, the protection domain implicitly extends to other systems that are
interfaced to the monitored system.

Resulting Context: The Prediction pattern requires the designer to identify parameters that indicate the
presence of faults. The system design must include a monitoring system, which introduces design
complexity in the overall system design. When the monitoring system is extrinsic to the monitored system,
the design effort may be simplified, but the interfaces between the systems must be well-defined. However,
when the monitoring system is intrinsic to the design of the monitored system, the complexity of the design
process increases due to need to interface the sub-systems. The Prediction pattern only infers the
presence of a defect and reports it, but does act to remedy the fault. Based on the monitored system design
and accessibility of the parameters selected for observation the diagnosis may not be very precise and may
sometimes gives no indication of defect mechanism.

Rationale: The pattern enables the monitored system to use simple rule-based inference or historical trends
in system behavior to predict future fault events. If future fault events are predicted with high precision,
then avoidance or preventive actions may be used.
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Examples: Hardware and software systems use correlations between past behaviors to predict the future
occurrences of fault events, such as a memory device tends to show, for a given address, multiple repetitive
correctable errors before showing an uncorrectable error.

Related Patterns: The structure of the Prediction pattern is closely related to the Monitoring pattern
since they both contain monitoring and monitored sub-system entities. The key difference between these
patterns is the amount of temporal information used by the patterns to assess the presence of a defect or
anomaly in the system. The Prediction pattern uses historical trend information to forecast future fault
events in contrast to the Monitoring pattern, which uses presently observed system parameters.

Known Uses:

• Prediction Models and Analysis for the IBM BlueGene/L [103]

• Event Prediction for Proactive Management in Large-scale Computer Clusters [132]

7.4.3 Restructure Pattern

Pattern Name: Restructure Pattern

Problem: The occurrence of a fault, or a resulting error or failure affects the configuration of a system such
that correct system operation is not possible.

Context: The pattern is a derivative of the Reconfiguration pattern and applies to a system that has the
following characteristics:

• The system that is deterministic, i.e. forward progress of the system is defined in terms of the input state
to the system and the execution steps completed since system initialization.

• The fault, error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit fault monitoring, prediction, or error/failure detection capability.

• The system may be partitioned into N interconnected sub-systems.

Forces:

• The system must be able to be partitioned into a sub-set of sub-systems that is functionally equivalent to
the fault, error, or failure-free version of the system.

• The restructuring may require the system to operate in degraded state using fewer than N sub-systems.
The performance degradation of the system must be minimized.

Solution: The Restructure pattern solution is based on modifying the configuration between the N
interconnected sub-systems to isolate the sub-system affected by a fault, error or failure. This
reconfiguration seeks to exclude the affected sub-system from interaction with other sub-systems. The
restructured system, as shown in Figure 24, includes N-1 sub-systems, and yet seeks to remain functionally
equivalent to the system before the occurrence of the fault, error or failure event.

Capability: The pattern enables systems to tolerate the impact of a fault, error or failure by enabling the
system to continue operation by preventing the affected part of the system from affecting the correctness of
the system. The steps involved in this solution are shown in Figure 25.

Protection Domain: The protection domain of the Restructure pattern spans the part of system whose
state may be reconfigured, and yet is able to continue operating in a functionally equivalent operating state.

Resulting Context:
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Figure 24. Restructure Pattern

• The reconfiguration of the system may result in the operation of the system in degraded condition. This
incurs additional time overhead to the system.

• The pattern introduces additional design complexity since the system must remain functionally correct in
multiple configurations.

Rationale: The Restructure pattern enables a system to tolerate to a fault, error or failure by adapting
itself to the impact of the event and continuing to operate. The pattern enables systems to make forward
progress by relying on the reconfigured version of the system.

Examples: Dynamic page retirement schemes are an example of the restructure pattern, in which pages
that have an history of frequent memory errors are removed from the pool of available pages.

Related Patterns: The remaining reconfiguration patterns - the rejuvenation and reinitialization patterns -
are closely related since they all seek to isolate the error/failed state of the system and prevent it from
affecting the remaining error/failure-free part of the system.

Known Uses:

• The recurrence of memory errors in a specific cell or region of the chip often indicates degradation of the
memory module. NVIDIA drivers support dynamic page retirement, which retires the page from the
pool of available physical memory resources [120].

• The proposed user-level fault mitigation extension to the MPI standard [23] allows parallel applications
to get notifications of process failures. ULFM provides a set of routines to revoke and restructure a MPI
communicator consisting of the remaining processes.

7.4.4 Rejuvenation Pattern

Pattern Name: Rejuvenation Pattern

Problem: A fault event, or a resulting error or failure may cause a sub-system to operate incorrectly or stop
functioning, which prevents correct operation of the overall system.

Context: The pattern is a derivative of the Reconfiguration pattern and it applies to a system that has the
following characteristics:

• The system that is deterministic, i.e. forward progress of the system is defined in terms of the input state
to the system and the execution steps completed since system initialization.
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• The fault, error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit fault monitoring, prediction, or error/failure detection capability.

• The system may be partitioned into N interconnected sub-systems.

• The fault, error, or failure must not be persistent.

Forces:

• The system must be able to be partitioned into a sub-set of sub-systems that is functionally equivalent to
the fault, error, or failure-free version of the system.

• The rejuvenation is often a slow process that requires substantial additional overhead to identify the part
of the system affected by the fault, error or failure, and to selectively reinitialize the system, in addition
to overhead incurred due to any lost work.

Solution: The Rejuvenation pattern provides isolation of the specific part of the system affected by an
error/failure, and restoring or recreating the affected state such that the system may resume normal
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operation. The pattern, whose structure is shown in Figure 26, enables the restoration of the correct
operation of a (sub-) system impacted by a fault, error, or failure event.
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Figure 26. Rejuvenation Pattern

Capability: The pattern requires the system operation to be halted to identify the part of the system affected
by the error/failure. As shown in the flowchart in Figure 27, only the affected part of the system is restored
to ensure correct operation of the system.

Protection Domain: The protection domain of the Rejuvenation pattern spans the part of system whose
state is restored.

Resulting Context:

• The rejuvenated system may not maintain the level of performance as before the occurrence of an event.
Therefore, the pattern may result in the operation of the system in degraded condition, which incurs
additional time overhead to the system.

• The overhead in terms of time to identify the specific state affected by the fault, error or failure, and
restore it to known correct state may be considerable.

Rationale: The Rejuvenation pattern enables a system to tolerate a fault, error or failure by restoring the
affected part of the system to known state that will ensure correct operation. Such targeted recovery
prevents complete reset, or restructuring the system, both of which carry considerable overhead to the
system operation.

Examples: The targeted recovery of data structures in system software, such as kernel modules, permits
recovery without the need to reinitialize the complete system.

Related Patterns: The remaining reconfiguration patterns - the reinitialization and restructure patterns - are
closely related since they all seek to isolate the error/failed state of the system and prevent it from affecting
the remaining error/failure-free part of the system.

Known Uses:

• Algorithm-based recovery methods for data corruptions in structures used in numerical analysis
problems use interpolation of neighboring data values to rejuvenate data values in error state. Such
methods have been demonstrated in the context of the Hartree-Fock algorithm used in computational
chemistry codes [149].

• The Mini-Ckpts framework enables HPC applications to survive fatal operating system failures/crashes
by rejuvenating the OS using critical kernel structures, which are preserved in persistent memory [71].
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7.4.5 Reinitialization Pattern

Pattern Name: Reinitialization Pattern

Problem: A fault, error or failure event affects a system to the extent that restoring correct operation is
impossible.

Context: The pattern is a derivative of the Reconfiguration pattern and applies to a system that has the
following characteristics:

• The system that is deterministic, i.e. forward progress of the system is defined in terms of the input state
to the system and the execution steps completed since system initialization.

• The fault, error or failure in the system that the pattern handles must be detected; the pattern offers no
implicit fault monitoring, prediction, or error/failure detection capability.

• The system may be partitioned into N interconnected sub-systems.

• The fault, error, or failure must not be persistent.
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Forces:

• The system must be able to be partitioned into a subset of sub-systems that is functionally equivalent to
the fault, error, or failure-free version of the system.

• The reinitialization is often a slow process that requires substantial additional overhead to reinitialize the
system, in addition to overhead incurred due to lost work.

Solution: The Reinitialization pattern the alleviates the impact of the non-operation of a (sub-) system
caused by the occurrence of a fault, error, or failure event. To recover from the error/failure, the pattern
restores the system to its initial state. This causes system operation to restart and a pristine reset of state,
which implicitly removes the effects of the error/failure. The pattern structure is illustrated in Figure 28.
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Figure 28. Reinitialization Pattern

Capability: The Reinitialization pattern performs a reset of the system state to restore pristine state
before system operation is resumed. The flowchart in Figure 29 contains a graphical representation of these
steps.

Protection Domain: Since the reinitialization causes reset of the system state, the protection domain of the
Reinitialization pattern spans the complete system.

Resulting Context: The restoral of the system state to the initial state causes lost work, but guarantees the
impact of the fault/error/failure is completely removed before service is resumed.

Rationale: The Reinitialization pattern is applied in conditions in which the recovery from the
fault/error/failure instance is deemed impossible, or excessively expensive in terms of overhead to
performance.

Examples: A node reboot is an instance of the Reinitialization pattern.

Related Patterns: The remaining reconfiguration patterns - the rejuvenation and restructure patterns - are
closely related since they all seek to isolate the error/failed state of the system and prevent it from affecting
the remaining error/failure-free part of the system.

Known Uses:

• Various cluster management software systems, such as the Cray Hardware Supervisory System (HSS)
[89], enable malfunctioning nodes in the cluster to be reset. The HSS initiates a reboot sequence for a
failing node without disrupting the remaining nodes in the system.
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7.4.6 Rollback Pattern

Pattern Name: Rollback Pattern

Problem: The occurrence of an error or failure event prevents forward progress of a system.

Context: The pattern is a derivative of the Checkpoint-Recovery pattern. It applies to a system that is
deterministic, i.e. forward progress of the system is defined in terms of the input state to the system and the
execution steps completed since system initialization. The system must also have the following
characteristics:

• The error or failure in the system must be detected; the pattern offers no implicit error/failure detection
capability.

• The system has well-defined intervals that enables the pattern to transition the system to a known correct
interval in response to an error/failure.

• When the system encounters the same non-deterministic events with the same system state, and at the
same location and timing, the system behavior is identical. The execution of the system between the
intervals is deterministic.
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• The system is capable of compartmentalizing its state that is accurately representative of the progress of
the system since initialization at the time such state is captured.

• The system is capable of exporting its current state and importing a new state.

Forces:

• The pattern requires stable storage to capture system state or to log events, which increase overhead in
terms of resources required by the system.

• The process of compartmentalizing and capturing system state or logging interferes with system
operation. The error/failure-free overhead penalty must be minimized.

• The extent of system state captured during the creation of a checkpoint incurs space and time overheads.

• The post-recovery state of the system must be as close as possible to an error/failure-free system state.

• The frequency of creation of checkpoints determines overhead. An increase in the checkpointing
frequency increases system execution time, but reduces amount of lost work upon occurrence of an
error/failure.

• The time interval required for the recovery of a system from a stable recovery point as well the time
interval to create and commit a checkpoint to a stable storage system must be less than the mean time
between errors/failures in the system to enable the system to make forward progress.

Solution: The Rollback pattern is based on the checkpoint-recovery solution, which entails the creation of
snapshots of the system state and maintenance of these checkpoints on a stable storage system during the
error/failure-free operation of the system. This pattern, whose solution is outlined in Figure 30, prevents
fail-stop behavior in systems caused by errors in the system, or failure of (sub-) system(s) that eventually
lead to catastrophic failure. The pattern may also be based on log-based protocols that use a combination of
checkpointing and logging of non-deterministic events in the system. The defining feature of the Rollback
solution is the backward recovery of the solution, i.e., based on a temporal view of the system’s progress,
the system state restored during the error/failure recovery process is a previous error/failure-free state of the
system.

When the system design may be partitioned into of several sub-systems, the pattern must coordinate the
process of checkpointing. The structure of the pattern is based on the coordination policy:

• Coordinated rollback recovery protocol: The approach requires the sub-systems to coordinate the
process of creating checkpoints. The coordination enables a globally consistent checkpoint state, which
simplifies the recovery.

• Uncoordinated rollback recovery protocol: The sub-systems each independently decide when to create
their respective checkpoints. This approach has the potential to cause the full-system to propagate
rollbacks to the initial system state to ensure that all dependencies are met; this condition is called the
domino effect.

• Communication-based rollback recovery protocol: The protocol enables each sub-system to create local
checkpoints, but periodically also enforces coordinated checkpoints between all sub-systems. Such a
hybrid strategy helps avoid the domino effect.

The log-based recovery is based on piecewise deterministic assumption, in which the system identifies
nondeterministic events and the information necessary to replay the event during recovery is captured and
logged. When the pattern uses logging protocols for the non-deterministic events, it may be based on the
following protocols:
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• Pessimistic: The protocol assume that a failure occurs after a nondeterministic event in the system.
Therefore, the determinant of each nondeterministic event is immediately logged to stable storage.

• Optimistic: The determinants are held in a volatile storage and written to stable storage asynchronously.
This protocol makes the optimistic assumption that the logging is completed before the occurrence of an
error/failure. The error/failure-free overhead of the optimistic approach is low.

• Causal: The protocol provides a balanced approach by avoiding immediate writing to stable storage
(much like the optimistic protocol to reduce error/failure free overhead), but each sub-system commits
output independently (like the pessimistic protocol to prevent creation of orphan sub-systems).
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Figure 30. Rollback Pattern

Capability: The Rollback pattern enables the system to recover and resume operation from the point of
occurrence of an error or a failure. The recovery of the system state typically leverages previously captured
checkpointed state and/or logging information to recreate a stable version of the system state. The system
is rolled back to the recovered state before resuming operation. These steps are shown in the flowchart in
Figure 31.

Protection Domain: The protection domain for a Rollback pattern is determined by the extent of state
captured during checkpoint operation and/or the number of system operations that can be recovered from
the log of events. For failure recovery, the protection domain must include the state of the complete system.
For error recovery, the protection domain includes the scope of system state captured at every checkpoint;
error recovery is possible only when the location of the error is within the state that is checkpointed.

Resulting Context: The time overhead introduced by the application of the Rollback pattern during
error-free operation depends on the frequency of taking checkpoints. The rollback leads to loss of work due
to the need to recover the system from a previous version of the system state. The amount of work lost
correlates with the frequency of the checkpoint operations. The worst-case scenario for recovery using this
pattern is a rollback to the initial state of the system.

Rationale: The solution offered by this pattern is not dependent on either the type of error/failure, or the
precise semantics of the error/failure propagation. The design effort and complexity in using this pattern in
any system design is low. The impact of an error/failure on the system progress may be mitigated by
restarting the system from a known version of the system state rather than endure complete loss of work
performed until the occurrence of the error/failure event.

Examples: In the context of HPC systems, checkpoint and restart capabilities in the software layers,
including various library-based and operating system-based solutions enable recovery from process
errors/failures and rollback of the applications.
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Related Patterns: The Rollforward pattern is closely related to the Rollback pattern. The key difference
between the two patterns is the temporal relation between the recovered state and the error/failure state. In
the rollback pattern the system is restarted from a recovered state that is based on a previous stable
version of the system state.

Known Uses:

• The CoCheck checkpoint restart supports rollback recovery for a MPI implementation; for the
coordination of the checkpoints, CoCheck uses a special process [145]. The Condor checkpoint/restart
facility is enabled by the user by linking the program source code with the condor library [106].

• Message logging protocols have been implemented in OpenMPI to support faster failure recovery [27].

7.4.7 Rollforward Pattern

Pattern Name: Rollforward Pattern
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Problem: The impact of an error or failure may prevent correct operation of a system, causing fail-stop
behavior.

Context: The pattern is a derivative of the Checkpoint-Recovery pattern. It applies to a system that is
deterministic, i.e. forward progress of the system is defined in terms of the input state to the system and the
execution steps completed since system initialization. The system must also have the following
characteristics:

• The error or failure in the system must be detected; the pattern offers no implicit error/failure detection
capability.

• The system has well-defined intervals that enables the pattern to transition the system to a known correct
interval in response to an error/failure.

• When the system encounters the same non-deterministic events with the same system state, and at the
same location and timing, the system behavior is identical. The execution of the system between the
intervals is deterministic.

• The system is capable of compartmentalizing its state that is accurately representative of the progress of
the system since initialization at the time such state is captured.

• The system is capable of exporting its current state and importing a new state.

Forces:

• The pattern requires stable storage to capture system state or to log events, which increase overhead in
terms of resources required by the system.

• The process of compartmentalizing and capturing system state or logging interferes with system
operation. The error/failure-free overhead penalty must be minimized.

• The extent of system state captured during the creation of a checkpoint incurs space and time overheads.

• The post-recovery state of the system must be as close as possible to an error/failure-free system state.

• The frequency of creation of checkpoints determines overhead. An increase in the checkpointing
frequency increases system execution time, but reduces amount of lost work upon occurrence of an
error/failure.

• The time interval required for the recovery of a system from a stable recovery point as well the time
interval to create and commit a checkpoint to a stable storage system must be less than the mean time
between errors/failures in the system to enable the system to make forward progress.

Solution: The Rollforward pattern is also based on the checkpoint-recovery solution, which entails the
creation of snapshots of the system state and maintenance of these checkpoints on a stable storage system
during the error/failure-free operation of the system. The pattern structure is illustrated in Figure 32. The
pattern must be able to create checkpoints of the system state and includes a stable storage system. When
the system may be partitioned into modules, the checkpointing may be coordinated, uncoordinated, or
communication-based. The pattern may employ log-based protocols use a combination of checkpointing
and logging of non-deterministic events in the system. The forward recovery supported by the pattern
enables the state of a system that experiences an error/failure to be recovered and restarted to the state it
had reached right before the occurrence of the error/failure.

The Rollforward pattern must include a mechanism to facilitate restoral of the system from the last stable
checkpoint up to the point of the error/failure event. This mechanism may be based on either:
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• Log-based protocols that are based on the piecewise deterministic assumption, in which the system
identifies nondeterministic events and the information necessary to replay the event during recovery is
captured and logged. When the pattern uses logging protocols for the non-deterministic events, it may be
based on pessimistic, optimistic, or causal protocols.

• Online recovery protocols, which do not rely on event logging for rollforward of the system. These
protocols may rely on inference to recreate state, or may permit the state to self-correct after restart.

Persistent	Store

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

(Sub-) 
System

checkpointing interval 

rollforward
checkpointing interval 

events events 

Figure 32. Rollforward Pattern

Capability: The Rollforward pattern enables the system to recover and resume operation from the point
of occurrence of an error or a failure. The recovery of the system state typically leverages previously
captured checkpointed state and/or logging information to recreate a stable version of the system state. The
pattern uses the recovered stable version of the system to roll forward the system to the most recent state
before the error/failure. The working of the pattern during error-/failure-free operation and during recovery
is shown in Figure 33.

Protection Domain: The protection domain for a Rollforward pattern is determined by the extent of state
captured during checkpoint operation and/or the number of system operations that can be recovered from
the log of events. For failure recovery, the protection domain must include the state of the complete system.
For error recovery, the protection domain includes the scope of system state captured at every checkpoint;
the error recovery is possible only when the location of the error is within the state that is checkpointed.

Resulting Context: The Rollforward pattern enables the system to perform recovery and restart
operation from the point of occurrence of an error or a failure, which prevents the loss of work due to the
error/failure event. The rollforward capability may incur a time overhead to bring the system state to the
most recent state before the error/failure.

Rationale: The solution offered by this pattern is not dependent on either the type of error/failure, or the
precise semantics of the error/failure propagation, the design effort and complexity in using this pattern in
any system design in low. The pattern also reduces the amount of lost progress due to the occurrence of an
error/failure event.

Examples: In the context of HPC systems, checkpoint and restart capabilities in the software layers,
including various library- based and operating system-based solutions that support replay of log events
enable rollforward recovery. The use of algorithm-specific knowledge in scientific algorithms may also
enable rollforward capabilities.

Related Patterns: The rollback pattern is closely related to the rollforward pattern. The key difference
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between the two patterns is the temporal relation between the recovered state and the error/failure state. In
the rollforward pattern the recovered state is based on a stable version of the system state immediately
before the occurrence of the error/failure.

Known Uses:

• Global View of Resilience (GVR) [38] uses versioning of distributed arrays supports rollforward
recovery based on application-specified mechanisms.
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7.4.8 Forward Error Correction Code Pattern

Pattern Name: Forward Error Correction Code Pattern

Problem: The presence of information errors in a system’s state affects its correct operation.

Context: The pattern is a derivative of the Redundancy pattern and it applies to a system that has the
following characteristics:

• The system must be deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The system state is represented using a sequence of symbols.

Forces:

• The pattern introduces penalty in terms of time (increase in information access latency), and space
(increase in resources required) independent of whether an error or failure occurs.

• The error/failure-free overhead penalty introduced by the replication of state must be minimized.

• The space overhead incurred by the additional redundant state information must be minimized.

• The number of errors that are detectable and correctable is limited by the amount of redundant
information contained in the forward error correction code.

Solution: The Forward Error Correction Code pattern detects and corrects information errors in the
system state. The pattern consists of an encoder and a decoder module. In the simplest form (illustrated in
Figure 34), the encoder repeats each symbol that represents the system state. The decoder module checks
both instances of each symbol. In general, the encoder module accepts k information symbols that
represent the system state and appends separately a set of r redundant symbols that are derived from the
symbols representing system state. The output of the encoder module is a (n, k) code, in which n=k+r. The
symbols that represent the system state are not modified by the encoder module. The decoder module
permits the original state to be extracted from the FEC encoded state.

Capability: The availability of forward error correction codes in the system allows for recovery from
corruption of some symbols that represent the system state. The FEC encoded redundant state information
is a complex function of the original state. The pattern enables the recovery of the system from any errors
in the representation of the system state. The working of the FEC pattern is shown in Figure 35.

Protection Domain: The protection domain of the pattern extends to the scope of the state that is encoded
and decoded using the forward error correction code.

Resulting Context: The Forward Error Correction Code pattern permits the system to tolerate the
corruption of some symbols in the system state. The design complexity of the pattern is based on the type
and strength of the FEC. At runtime, every operation that affects the system state requires
encoding/decoding operations, which adds time overhead to the operations. Additionally, the
encoder/decoder modules must maintain the FEC symbols, which incurs a storage overhead for these
symbols. The system state may be partitioned to mitigate the overhead of encoding and decoding the
system state.

Rationale: The application of the FEC pattern allows the detection and correction of symbol errors in the
system state. In many cases, the compensation of the symbol errors using the redundant information
computed by the FEC enables reconstruction of the original state information.

Examples: There are various schemes that enable forward error correction in memory devices, storage
systems as well as communication channels. Based on time and space overhead constraints, schemes of
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Figure 34. Forward Error Correction Code Pattern

different detection and correction capabilities are used. Popular examples include parity bits, checksums,
Hamming codes, hash function codes. More elaborate schemes such as systematic cyclic block codes
include binary BCH, Reed-Solomon, Cyclic redundancy checks (CRC).

Related Patterns: The Forward Error Correction Code and the N-modular redundancy patterns
are based on the inclusion of redundancy in the system to compensate for errors or failures. The
N-version pattern is also based on inclusion of redundancy. However, the diversity in the N-modular
pattern stems from the introduction of redundancy in the system’s state unlike the N-version pattern,
which uses independently implemented versions of the system’s design to tolerate errors or failures.

Known Uses:

• InfiniBand, which is among the most widely deployed high-speed interconnect employs forward error
correction in the InfiniBand devices, including adapters and switches, to fix bit errors throughout the
network [8]. The FEC allows reduction in data re-transmission between the end-nodes.

• HPC systems use memory DIMMs that employ ECC, which is based on forward error correction by
maintaining redundant bits per memory line. These ECC bits support compensation of bit flip errors
within the memory lines [115].

• Algorithm-based fault tolerance (ABFT) methods use schemes such as checksums that perform forward
error correction at the application-level [82].

7.4.9 N-modular Redundancy Pattern

Pattern Name: N-modular Redundancy Pattern

Problem: The pattern solves the problem of dealing with errors, as well as partial or complete failures.

Context: The pattern applies to a system that has the following characteristics:
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• The system must be deterministic, i.e. forward progress of the system is defined in terms of the input
state to the system and the execution steps completed since system initialization.

• The system has a modular design that has a well-defined scope and a set of inputs and outputs.

• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern introduces penalty in terms of time (increase in execution time), or space (increase in
resources required) independent of whether an errors or failure occurs.

• The scope of the system that is replicated must be carefully selected; too large a scope incurs significant
overhead, while too small a scope leads to incomplete protection for the system.

• The error/failure-free overhead in terms of time and space introduced by the replication of state must be
minimized.

Solution: The N-modular Redundancy pattern enables the detection and correction of errors or failures
in a system. The pattern defines modules for which it creates a group of N replicas as shown in Figure 36.
Each module has a set of inputs, a well-defined scope of system operations, and a set of outputs. The
n-modular redundancy entails replication of the module that requires protection. Each of the N modules of
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the system exist simultaneously. The modules may be active at the same time (spatial replication), or may
operate in succedent order (temporal replication), or may activate the redundant modules on-demand. The
redundant modules in a system must be provided with the identical inputs. Therefore, the pattern may
require replication of the input state.

When the modules are operated in spatial or temporal redundant mode, the pattern includes an independent
module that compares their respective outputs to detect and potentially compensate for the presence of an
error or a failure in one of the replica modules in the systems.
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Figure 36. N-modular Redundancy Pattern

Capability: The working of the pattern is shown in the flowchart in Figure 37. The presence of replicated
versions of the system state modules enable the following capabilities:

• Fail-over, which entails substitution of a replica in error or failed state with another replica that is
error/failure-free.

• Comparison, which entails observing the likeness of each replica’s outputs as means to detect the
presence of an error or failure in either replica.

• Majority voting on the outputs produced by each replica system enables the detection of errors and
failures, and filtering out the outputs that fall outside the majority.

Protection Domain: The protection domain of the pattern extends to the module that encapsulates the
scope of the system state that is replicated.

Resulting Context: The design effort and complexity of replication of the system state requires low design
effort since the replication entails creation of identical copies of the system state.

Rationale: The N-modular redundancy patterns enable systems to tolerate errors/failures by relying on
the replicated versions of the system state to substitute a failed system, or to infer and compensate for
errors/failures by comparing the outputs of the replicas.

Examples: The use of n-modular redundancy in various hardware and software components enables
detection and correction of errors, or the compensation of failures in a system. The dual-modular
redundancy for error detection and triple-modular redundancy for error detection and correction are widely
used forms of this pattern in HPC environments.

Related Patterns: The N-modular redundancy and the N-version patterns are based on inclusion of
redundancy to compensate for errors or failures. The diversity in the N-modular pattern stems from the
replication of the system’s state unlike the N-version pattern, which uses independently implemented
versions of the system’s design to tolerate errors or failures.
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Figure 37. N-modular Redundancy Pattern Flowchart

Known Uses:

• Implementations of the MPI standard use n-modular redundancy for detection and correction of errors
by replicating the MPI messages, or even by replicating MPI ranks. The MR-MPI [64], rMPI [68] and
RedMPI [70] are known examples of the n-modular redundancy approach.

• Approaches that use n-modular redundancy for the compute nodes in a system have been evaluated and
shown to improve the overall availability of a HPC system [62].

7.4.10 N-version Design Pattern

Pattern Name: N-version Design Pattern

Problem: Design bugs may manifest themselves during system operation causing incorrect operation or
failure.

Context: The pattern is a derivative of the Design Diversity pattern and it applies to a system that has
the following characteristics:

• The system has a well-defined specification for which multiple implementation variants may be
designed.

• There is an implicit assumption of independence of between multiple variants of the implementation.
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• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern requires distinct implementations of the same design specification, which are created by
different individuals or teams.

• The pattern increases the system complexity due to the need additional design and verification effort
required to create multiple implementations.

• The error/failure-free overhead penalty due to disparity in the implementation variants must be
minimized.

Solution: The N-version Design pattern supports the detection and correction of errors or failures in the
behavior of the system that may occur due to design faults in the system. The pattern enables handling
errors or failures due to Bohrbugs, although Heisenbugs may also be treated using this design pattern. The
pattern entails creation of N independent versions of the system that are functionally identical, but designed
independently. A majority voting logic is used to compare the results produced by each design version.
Figure 38 illustrates the overall structure of this pattern solution.

Implementation
Version 1

Specification

Implementation
Version 2

Implementation
Version 3

Implementation
Version N

Figure 38. N-version Design Pattern

Capability: In this pattern, each of the N (N >= 2) versions of the designs are independently implemented,
but the versions are functionally equivalent systems. The versions are operated independently and the
critical aspects of the system state are compared to detect and correct errors/failures due to Bohrbugs or
Heisenbugs. The flowchart in Figure 39 describes the working of this pattern.

Protection Domain: The protection domain extends to the scope of the system that is described by the
design specification, of which multiple implementation variants are created.

Resulting Context: The extent to which each of the n design versions are different affects the ability of the
pattern to tolerate errors/failures in the system. The use of the n-version design pattern requires significant
design overhead in implementing and testing independent versions of a specification. Differences in the
design may cause differences in timing in generating output values for comparison and majority voting -
these differences incur overhead to the overall system operation.

Rationale: The intent behind applying this pattern is to eliminate the impact of design faults during the
implementation of a system. Due to the low likelihood that different individuals or teams introduce
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identical bugs in their respective implementations, the pattern enables compensating for errors or failures
caused by a bug in any one implementation of the same design.

Examples: Various versions of the same software are used for the detection of errors due to bugs in the
implementation of either version.

Related Patterns: The pattern is similar to the n-modular redundancy pattern, which entails creating replica
versions of the state associated with the pattern and accounting for the presence of errors/failures through
majority voting. The key difference between the patterns is the independence of design between the replica
versions of the system.

Known Uses:

• HPC centers often provide various MPI library implementations such as the MVAPICH2 [3], OpenMPI
[5], MPICH2 [2] and Intel MPI [1] all of which are based on the MPI standard. By testing large-scale
applications with these separate implementations of MPI potentially exposes bugs in the MPI libraries.

• The DIVA processor architecture [16] includes an out-of-order core as well as a simple in-order
pipelined core. The in-order pipeline is functionally equivalent to the primary processor core (it
implements the same instruction set architecture) and is used to detect errors in the design of the
out-of-order processor core.
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7.4.11 Recovery Block Pattern

Pattern Name: Recovery Block Pattern

Recovery Block Problem: Flaws in the design due to human errors and/or faulty tools may cause errors or
failures during system operation.

Context: The pattern is a derivative of the Design Diversity pattern and it applies to a system that has
the following characteristics:

• The system has a well-defined specification for which multiple implementation variants may be
designed.

• There is an implicit assumption of independence of between multiple variants of the implementation.

• The cause of errors or failures experienced by the system may not be due to errors in the inputs.

Forces:

• The pattern requires distinct implementations of the same design specification.

• The pattern increases the system complexity due to the need of additional design and verification effort
required to create multiple implementations.

• The error/failure-free overhead penalty due to disparity in the implementation variants must be
minimized.

Solution: The Recovery Block pattern supports the detection and correction errors or failures in the
behavior of the system that may occur due to design faults in the system. The pattern is a flavor of the
N-version design pattern, in which a recovery block is invoked when the result from the primary version of
the system fails an acceptance test. The recovery block consists of an alternate implementation of the
primary system, which is based on the same design specification. The relation between the primary system
and its recovery block is shown in Figure 40.

With the use of the Recovery block pattern, the system is composed of functional blocks. Each block
contains at least a primary design and exceptional case handler along with an adjudicator. If the adjudicator
does not accept the results of the primary system, it invokes the exception handler subsystem. This
indicates that the primary system could not perform the requested service operation.

Capability: The working of the Recovery Block pattern is illustrated in Figure 41. The pattern uses an
acceptance test to validate the result produced by the primary system. If the result from the primary version
passes the acceptance test, this result is reported and the test ends. If, on the other hand, the result from the
primary version fails the acceptance test, another version from among the multiple versions is invoked and
its result produced is checked by the acceptance test.

Protection Domain: The protection domain extends to the scope of the system that is described by the
design specification, of which the recovery block implementation variant is created.

Resulting Context: The extent which the primary design and recovery block versions of the system
specification are different affects the ability of the pattern to tolerate errors/failures in the system. The use
of the Recovery block design pattern requires significant design overhead in implementing and testing
independent versions of a specification.

Rationale: This pattern relies on multiple variants of a design which are functionally equivalent but
designed independently. The secondary recovery block design is used to perform recovery, if the system
implementation of the primary design produces an output that suggests the presence of an error/failure of
the primary system. This determination is made by the adjudicator sub-system.

78



Specification

Figure 40. Recovery Block Pattern

Examples: Various application-based fault tolerance methods include verification routines that check for
the validity of a computation.

Related Patterns: The significant differences in the recovery block approach from N-version programming
are that only one version is executed at a time and the acceptability of results is decided by an adjudicator
test rather than by majority voting.

Known Uses:

• Containment Domains [39] provide a recover routine that is initiated upon detection of an error in the
execution of the block of code encapsulated by the domain. This enables the containment domain to
constrain the detection and correction of errors to the boundary of the domain.

• The SwiFT library provides language based implementation of the recovery block for use in C language
programs.
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7.5 State Patterns

7.5.1 Static State Pattern

Pattern Name: Static State Pattern

Problem: The scope of the system state that remains unchanged for the entire duration of system operation
has unique resilience properties and needs that are different from other aspects of the system state.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by the
input state and the sequence of operations since initialization.

• The notion of lifetime can be associated with the various parts of a system’s state.

Forces:

• The state patterns expose an intrinsic property of the system. The precise definition of aspects of the
system state requires a detailed understanding of the system structure and operation.

• The facility in identifying the state patterns depends on the layer of system abstraction at which the
behavioral patterns associated with the state pattern are instantiated.

Solution: The Static State pattern encapsulates the portion of the system state that remains unchanged
for the entire duration of system operation. The static state refers to all aspects of a system’s state that is
computed when the system is initialized, but is not modified during the system operation. From the
perspective of an HPC application, the static state is persistent; it includes program instructions and
variable state that is computed upon application initialization. Figure 42 shows how the scope of the pattern
relates to other state patterns. The encapsulation of such persistent state enables a behavioral resilience
pattern to leverage the unchanging nature of the state when performing detection or recovery actions.
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Figure 42. Static State Pattern

Capability: The static state outlives the process that creates/initializes it. The identification of this pattern
follows the steps outlined in Figure 43. In the context of HPC programs, the Static state pattern presents
an application-centric view of a system. The correctness of the static state at all times is essential to the
correct execution and outcome of a program.

Protection Domain: The Static State pattern defines the scope of the system state that remains
unchanged after initialization.

Resulting Context: The persistent state pattern defines the scope of the static program state. The presence
of any errors in the persistent state may not necessarily lead to immediate catastrophic failure of an
application program’s execution, but might lead the program on divergent paths that cause a failure at a
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future point in the program’s execution. Therefore, the integrity of this aspect of a program’s state is
essential for correct execution.

Examples: Various algorithm-based fault tolerance methods leverage the property of invariance in the
persistent state. These methods maintain redundant information about the application variables in the static
state that enables recovery to their default data values at any time during application execution.

Rationale: The isolation of the state that is persistent throughout an HPC application program execution is
supported by this pattern. The invariance property of the state encapsulated by this pattern enables the use
of a resilience behavioral pattern that leverage this property to detect and recover errors/failure of such
state.

Related Patterns: Together with the Dynamic State pattern and Environment State pattern, the
Static State pattern defines the overall state of a system.

Known Uses:

• In the design of iterative methods, the static data structures such as the operand matrix A, the right-hand

82



side B, or the preconditioner are computed once in the initialization phase of the application and are
unchanged after. Errors in these structures are recovered by maintaining checksums [82].

7.5.2 Dynamic State Pattern

Pattern Name: Dynamic State Pattern

Problem: The scope of the system state that changes as a result of the system operation has unique
resilience needs from other aspects of the system state.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by the
input state and the sequence of operations since initialization.

• The notion of lifetime can be associated with the various parts of a system’s state.

Forces:

• The state patterns expose an intrinsic property of the system. The precise definition of aspects of the
system state requires a detailed understanding of the system structure and operation.

• The facility in identifying the state patterns depends on the layer of system abstraction at which the
associated behavioral patterns are instantiated.

Solution: The Dynamic State Pattern encapsulates the system state that changes as the system makes
forward progress. In an HPC application, the dynamic state includes the variables that are modified by the
algorithm. This scope with respect to other state patterns is shown in Figure 44. The encapsulation of the
dynamic state enables the identification of the appropriate behavioral resilience patterns to detect and
correct fault/errors in such state. Often the behavioral pattern cannot rely on the current error-affected
version of the state to perform recovery; the detection/recovery entails the use of a previously preserved
version of the dynamic state, or repeating operations from a known stable point. Alternatively, the
resilience solution must accept limited loss of information when the behavioral patterns do not completely
recreate an error-free version of the dynamic state pattern.
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Figure 44. Dynamic State Pattern

Capability: The state refers to all aspects of the program state that continuously changes as an application
program executes. This includes the data values that are computed during system operation, or the
control-flow variables that enable forward progress of the system. The correctness of the dynamic state is
essential for a correct outcome of a program, but certain algorithms permit faults in the dynamic state to be
tolerated. The identification of the dynamic state pattern is illustrated in Figure 45.
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Protection Domain: The Dynamic State pattern defines the scope of the system state that changes during
system operation as the system makes forward progress.

Resulting Context: From the perspective of an HPC program, the encapsulation of the dynamic state
enables definition of resilience behaviors, i.e., detection and correction techniques, which must not rely on
the specific structure or intrinsic properties of the data contained by the pattern.

Examples: Algorithm-based fault tolerance strategies that guarantee resilience of the dynamic state
actively track changes to state. Redundancy methods maintain copies of the change to the dynamic state to
compensate for the version that is impacted by an error or failure.

Rationale: The isolation of the dynamic state that is updated throughout an application program execution
is supported by this pattern. The dynamic feature of this state pattern implies that any errors/failure in such
state amounts to lost work. Therefore, the isolation of the dynamic state enables the use of resilience
behavioral patterns that explicitly seek to recover the dynamic state. Alternatively, a behavioral pattern may
recover an error in the dynamic state without the need to abort and restart an application program using
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lossy techniques.

Related Patterns: Together with the Dynamic State pattern and Environment State pattern, the
Persistent State pattern defines the overall state of a system.

Known Uses:

• The most widely used method for protecting dynamic state is using checkpointing-based roll-back
recovery methods.

• Algorithm-specific techniques that support recovery of dynamic state without the need for recovery use
lossy methods [100]

7.5.3 Environment State Pattern

Pattern Name: Environment State Pattern

Problem: The scope of the system state that provides a common set of services that support the primary
function of the system has unique resilience properties and needs from other aspects of the system state.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by the
input state and the sequence of operations since initialization.

• The complete system state may be described in terms of state relevant to the core function of the system,
called the primary state and the system state that serves to support its function, called the environment.

Forces:

• The state patterns expose an intrinsic property of the system. The precise definition of aspects of the
system state requires a detailed understanding of the system structure and operation.

• The facility in identifying the state patterns depends on the layer of system abstraction at which the
associated behavioral patterns are instantiated.

Solution: The Environment State Pattern encapsulates the system state that supports the operation of
the system. The pattern defines the scope of the system state that provides a common set of services in
support of the primary function of the system. The environment also facilitates and coordinates the
operation of various sub-systems in a system. Figure 46 illustrates the relation between the state pattern
and the static and dynamic patterns. In general, HPC systems navigate complexity through the definition of
abstractions that hide the details of specific functions behind well-defined interfaces. From the perspective
of an HPC application, the overall system state may be partitioned into the aspects that serve the primary
function of the system and those that provide access to the system resources and services that enable the
application to fulfill its function. The encapsulation of the environment state enables designers to instantiate
behavioral patterns for that are independent of the design of the HPC applications and their algorithms.

Capability: An error/failure in the environment state is often immediately catastrophic to the operation of
the primary system. The encapsulation of the environment state follows the steps in Figure 47 and enables
the development of resilience strategies for the system environment separately from the resilience
capabilities of an application program.

Protection Domain: The Environment State pattern defines the scope of the components in the
environment that support the operation of the primary system. For an HPC system, this scope includes
productivity tools and libraries, the runtime system, the operating system, file systems, communication
channels, etc.
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Resulting Context: The pattern defines the scope of the state that support resource sharing, coordination
and communication between the various sub-systems. While an application program does not normally
have complete control over its environment, it may exert partial control to affect the environment through
well-defined interfaces.

Examples: Operating-system based resilience mechanisms focus on the correctness of the data structures
within the kernel. These mechanisms are independent of the resilience features of the application program.

Rationale: Any changes in the environment due an error or failure event directly affects the application
program operating within the environment. The encapsulation of the environment enables the resilience
behavior of the environment state to be reasoned about separately from the resilience behavior of the
primary system state, i.e., an HPC application’s state.

Related Patterns: Together with the Persistent State pattern and Dynamic State pattern, the
Environment State pattern defines the overall state of a system.

Known Uses:

• The failure of the operating system environment on the compute node of HPC system is often fatal for
the application. The Mini-Ckpts framework emphasizes the recovery of the OS environment by
preserving kernel structures in persistent memory [71].

• The ULFM MPI provides recovery of the communication environment from the failure of processes by
reconstructing the MPI communicator [23].

7.5.4 Stateless Pattern

Pattern Name: Stateless Pattern

Problem: Several resilience strategies operate without the need for defining a specific protection domain.
However, behavioral patterns expect a complementary state pattern for completeness.

Context: The pattern applies to the state of the system that has the following characteristics:

• The overall state of the system is deterministic, i.e., the system output state is determined solely by the
input state and the sequence of operations since initialization.

Forces:

• The state patterns expose an intrinsic property of the system. The precise definition of aspects of the
system state requires a detailed understanding of the system structure and operation.
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• The facility in identifying the stateless pattern depends on the layer of system abstraction at which the
associated behavioral patterns are instantiated.

Solution: The Stateless Pattern facilitates the creation of resilience strategies that are independent of
system state. It provides the construct of null state in order to create solutions that have a well-defined
notion of behavior but need not define a scope for the behavior. From the perspective of an HPC
application, the definition of the Stateless pattern permits defining the scope of operations that perform
fault/error/failure detection or recovery without explicitly defining the variable state of the program that is
affected by the operations.

Capability: In the context of HPC programs, solutions that are based on a Stateless pattern may include:
(i) applications that consist of predominantly memory load operations and rarely contain state-modifying
memory and I/O operations; these applications typically perform reductions operations over large number
of data elements, and (ii) applications that yield imperfect results since their algorithms are based on
approximation and iterative refinement, or use noisy input data to begin with.

Protection Domain: The Stateless pattern defines the notion of null system state when defining a
resilience solution.

Resulting Context: The stateless pattern is utilized together with behavioral resilience patterns whose

87



actions do not necessitate modifying any aspect of the system state during the detection or recovery. The
resilience solution that uses a stateless pattern must select and instantiate a behavioral pattern that can deal
with any additional side-effects due to the inclusion of the stateless pattern.

Examples: The use of the transaction model to provide resilient behavior is an example of the Stateless
pattern. Transactions support execution of a sequence of operations that may complete as a unit, or fail; the
notion of partial execution is not supported. While the transaction may entail performing computation on
data variables, the resilience of the data is independently managed; the resilience solution may be defined
with a Stateless pattern.

Rationale: The pattern is the equivalent of a null pattern that enables resilience solutions to be constructed
without the requirement for the behavioral patterns to operate on the program state.

Related Patterns: While the Persistent State pattern Dynamic State pattern, and the Environment
State pattern defines the complement of the overall state of a system, the Stateless pattern offers the
notion of null state.

Known Uses:

• The idempotence property guarantees that any region can be freely re-executed, even after partial
execution, and still produce the same result. Language-level constructs as well as compiler-based
techniques enable definition of idempotent regions of execution; the recovery of such regions are
stateless [47].
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8. Building Resilience Solutions using Resilience Design Patterns

Figure 48. Elements of a resilience solution for HPC systems and applications

8.1 Components of Resilience Solutions

The resilience design patterns presented in the catalog offer solutions to problems that repeatedly occur in
the design of resilience capabilities for HPC. Each pattern in the catalog presents a solution to a specific
problem in dealing with fault, error and failure events. Complete resilience solutions must seek to ensure
that an HPC application executes to a correct solution despite the presence of events in the systems.
However, architecting a HPC system and its software environment is a complex process. To incorporate
resilience into the system design and software development efforts, the interaction between the resilience
patterns and the distribution of responsibility between the patterns is as important as identifying the
appropriate pattern for a solution based on its characteristics.

The artifacts of a design process that uses the resilience design patterns are complete resilience solutions
that provide fault/error/failure detection, containment and mitigation capabilities for a specific fault model.
Additionally, the resilience capability must protect a well-defined domain. These key constituents of a
complete solutions are shown in Figure 48. The design patterns may be instantiated at multiple layers of
system abstraction, and are relevant to various application and system scales. However, many of the
patterns in the catalog individually provide partial solutions by supporting only one or two out of the
detection, containment and mitigation solutions. For system and application designers to use these patterns
in the construction of resilient versions of their designs, these patterns must be organized into a
well-defined system of patterns.

8.2 Design Spaces

During the design of a complete resilience solution, there are various factors that must be considered in the
selection of patterns besides their detection, containment and mitigation capabilities, including the layer of
abstraction for their implementation, scalability of the solution, portability to other architectures,
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dependencies on any hardware/software features, flexibility to adapt the solution to accelerated fault rates,
capability to handle alternative fault and error events, the performance and performance overheads.

We define a framework that enables the composition of the resilience design patterns. A pattern framework
enables the creation of the outline of the resilience solution that captures the dimensions and capabilities of
the patterns, reveals and clarifies the relationships between the patterns. The combination of these patterns
based on the guidelines offered by the hierarchical classification scheme enables the complete solutions for
resilience to specific fault models in HPC systems. However, there is sufficient flexibility to adapt the
solution to specific situations. The framework also enables the designer to navigate the various issues that
must be addressed in the process of developing practical resilience solutions.

Capability

Fault model

Protection domain

Implementation Mechanisms

Interfaces

Figure 49. Design Spaces for construction of resilience solutions using patterns

In order to articulate a systematic method for customized designs, the framework is based on design spaces
(Figure 49). These design spaces provide guidelines for the decision making in the design process, which
consists of selection of the appropriate patterns based on the requirements of protection and the cost of
using specific patterns. The framework consists of the following design spaces:

• Capability: The patterns must support capabilities that enable the detection, containment, mitigation
of faults/errors/failure events.

• Fault model: The identification of the root causes of fault events and their impact and propagation
through the system must be well-understood to provide effective solutions.

• Protection domain: The definition of the protection domain enables clear encapsulation of the
system scope over which the resilience patterns operate.

• Interfaces: The identification and implementation of the activation and response interfaces for
behavioral patterns affect the propagation of fault/error/failure event information.

• Implementation mechanisms: The implementation design space is concerned with constraints
imposed by specific features of hardware, execution or programming models, software ecosystems.

These design spaces represent the important aspects of the design process that a designer must contemplate
in order to create effective and efficient resilience solutions. The design spaces provide a structured flow to
the design process since each design space presents one or more key decision points that shapes the
resilience solution, as well as the overall design of the system. Design spaces also provide a framework to
guide the creation of cross-layered resilience solutions that leverage capabilities from multiple layers of the
system abstraction. With the use of resilience patterns in the context of the framework provided by the
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design spaces, HPC system designers, users and application developers may evaluate the feasibility and
effectiveness of novel resilience techniques, as well as analyze and evaluate existing solutions.

The design spaces are ordered from the abstract to concrete, and they cover the important structural and
behavioral design considerations. As a designer advances through these design spaces, they are able to
develop a clearer understanding of the solution profile and the general constraints, which enables them to
select the appropriate patterns from the catalog and decide on implementation alternatives. Designers may
use various approaches to navigate the design spaces, including a strictly top-down approach, in which the
design is driven by the event type and model that a system must be protected against, and the
implementation of the system is adapted to enable the system to survive the different ways in which the
event may impact the reliability of the system. Alternatively, in a bottom-up approach, the resilience
capability must be woven into the existing hardware or software component designs and interfaces, and
additional components are included to enhance the protection coverage, or to handle specific fault model
behaviors. Often, designers may be required to take a hybrid approach, in which the design spaces are
revisited in an effort to refine a design, to optimize the features of a solution, and to enable designers to
overcome constraints imposed by any hardware or software system features.
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9. A Pattern Language for HPC Resilience

A pattern language is considered as a system of patterns that are related with each other in a hierarchy or
network. The structure of the network helps designers makes sense of the individual patterns, as well as
helps anchor them in various combinations to provide complete solutions. Our pattern language for HPC
resilience explains the discipline to use the various design patterns to create effective and efficient
resilience solutions. The elements of the language are the patterns detailed in Section 7. The language
guides a designer from the beginning of a design problem to the realization of its solution.

9.1 Types of Pattern Relations

In general, a pattern language has the structure of a network such that patterns that are related by some
measure of relevance are linked together. The definition of the linkage between patterns is the key for a set
of patterns to become a language rather than be seen as a collection of isolated, standalone ideas for design.

In contrast to a pattern classification, which provides the means to group patterns based on a set of rules or
pattern properties, a pattern language explicitly interweaves the patterns in the catalog based on every
possible (but at least one) type of pattern interrelation. Based on the interrelations between the patterns, the
complete set of the resilience patterns in the catalog forms a language. Therefore, making these relations
explicit is essential to the process of developing a pattern language.

Table 2. Types of Pattern Relations

Pattern Relation Description Inverse Relation

abstraction Pattern x describes an abstract form of pattern y specialization

specialization Pattern x provides specific details about pattern y abstraction

used with Pattern x is used to address different problem than y; may be
used together conflict

conflict Pattern x and y are not suitable to be applied together for a
specific problem used with

similarity Pattern x and y have some similar features, but address differ-
ent problems -

domain Pattern x specifies the protection domain for the behavioral pat-
tern y -

Highlighting these relationships between patterns enables designers to grasp the entire collection of
patterns. Therefore, the pattern language also serves as an index to the catalog of resilience design patterns.
For the resilience design patterns, various types of pattern relations may be used to express kinds of
relatedness between the patterns. Table 2 provides an overview of the types of relationships between the
resilience patterns. These interrelations between the patterns form the links between patterns in the
network, thereby defining the order in which the patterns should be applied to a HPC resilience design.
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9.2 Structure of the Pattern Language

Forming a pattern language requires establishing rules for linking each of the patterns in the catalog. This
is a particularly complex task for resilience design patterns due to their large number and the various design
considerations and optimizations that must be accounted for. To enable designers to understand the
language and for rapid analysis of the relationships between the various resilience design patterns, we have
represented the pattern language using a graph. Each pattern is represented as a vertex and every relation
between any two patterns is represented by an edge in the graph network. Based on the type of relation
between the patterns, the edges may be directed or undirected. This representation of our pattern language
is shown in Figure 50.

The pattern graph represents the language since it captures all the interrelations between the resilience
patterns. This representation of the language is intended to make these patterns useful for a broad target
audience. System architects may use the language to understand the scope of the problem and develop a
high-level layout of the pattern-based solution, while the designers of individual component may use the
language to understand the pattern relationships that directly impacts their part of the design.

The use of the graph representation of the pattern language also enables structured analysis of resilience
solutions. For example, a simulator may use the graph representation of the pattern language for design
space exploration to evaluate alternative combinations of patterns that may have different complexity and
performance characteristics. Similarly, the graph representation of the language may enable a runtime
system or scheduler to make dynamic decisions about the suitability of instantiating a specific combination
of patterns.

The graph representation of the language highlights the pattern relations (listed in Table 2) between all the
resilience patterns in the catalog. The vertices representing the patterns are clustered to align with the
classification scheme described in Section 6. The state patterns and the three categories of the strategy
patterns are represented in different colors. The derivative patterns of each of these classes are represented
in the same color as their parents. The patterns are ordered from abstract to concrete to enable designers to
focus on the contours of a solution before delving into implementation specifics. Additionally, most of the
relations are directed from one pattern to another, but they often also imply an inverse relation in the
opposite direction. Therefore, every edge in the graph may be treated as a directed connection between
patterns that highlights a specific relation between the two patterns. From the designers’ perspective, this
representation of the pattern language provides the methodology for selecting patterns from the catalog.
The language outlines the ordering of the critical decisions that must be considered when designing and
implementing a resilience solution.

10. Using the Pattern Language

Our pattern language spans all the way from the initial architecture of a resilience solution down to the
lowest level details of the implementation for a specific architecture and software environment. Defining
which patterns to use and how to combine them is the very essence of the pattern language. However, an
emphasis of a pattern language is often not represented in the inherent structure of the pattern language.
Since our pattern language is in the form of a network, there is no one sequence that perfectly captures the
pattern relationships. Therefore, when selecting a suitable combination of patterns for constructing a
resilience solution, there are numerous ways in which the network of patterns may be traversed.
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Figure 50. Resilience Pattern Language Representation

10.1 Structured Design of HPC Resilience Solutions

The pattern language outlines the intended flow of information when reading or browsing the pattern
catalog. Using the pattern language, solutions are designed incrementally by exploring the links of the
network that represents the pattern language. This yields an order in which the patterns should be applied
to a design problem, which is called a pattern language sequence. However, the pattern sequence is not
strictly linear. Various stakeholders, including system HPC system architects, hardware and software
designers, application developers and users can construct solutions by discovering a sequence that fits their
design objectives and constraints. For the following key aspects of a resilience design process, the pattern
language enables the discovery of pattern-based solutions:

• Protection Domain: Based on the scope of the system that the solution intends to protect, the
language may traverse the network starting from the state pattern vertices, and then identify the
behavioral patterns to protect the selected domain.

• Fault Model: The type of event that a solution is designed for forces the designer to consider one of
the strategy pattern vertices, before exploring the network links that will enable the identification of
derivative patterns that are capable of handling the consequences of a specific fault, error or failure
type.

• Fault Management Capabilities: Based on whether the pattern offers detection, containment,
recovery or masking semantics, or a combination of these capabilities, the traversal may commence
at specific cluster in the graph representing the language.

• Implementation-Driven: Often the design of a resilience solution may be constrained by the
idiosyncrasies of a hardware architecture or software environment, or by the availability of specific
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technologies for supporting a resilience solution. In this case, the pattern language may be used to
identify the structural patterns first, and traverse the links of the network towards the more abstract
behavioral patterns and the state patterns to evaluate the effective protection domain and capabilities.

10.2 Other Design Considerations for Resilience Solutions

While the pattern language for designing resilience solutions for HPC systems is intended to provide
designers with a roadmap to create solutions, there are various other critical decisions that must be
considered in addition to the fundamental choices of protection domain, fault model, capability and
implementation mechanisms. These include:

• Design complexity of the solution: The effort necessary to incorporate the patterned solution in the
overall design of a system.

• Time overhead in the absence of fault, error, or failure events: The impact of the pattern (in
terms of time to solution) on the fault-free operation of a system.

• Time overhead to manage fault, error, or failure events: The impact on time to solution on
account of the actions required to manage an event.

• Space overhead of the solution: The number of additional components or subsystems that the
solution requires.

• Power overhead of the solution: The impact of applying the pattern on the system’s power
consumption.

For each optimization objective, the graph edges may be annotated with relations that express the
implications of selecting a pattern when traversing the network. Using these additional relations, the
pattern language may be used to discover an ordering of patterns that meets these design considerations as
well as the functional requirements of a solution for confronting a specific type of fault, error or failure.

11. Case Study: Checkpoint and Rollback Solution for Process Failures

This section explores use cases for the application of resilience design patterns to the systematic design and
analysis of resilience solutions. We use the pattern-based approach for understanding existing solutions
with the view to adapt the solution to future generations of HPC systems. The case study describes the
pattern-based design process for the fault model of process/task failure on a notional architecture and
software environment of a HPC system.

For this case study, we aim to develop a resilience solution that enables an HPC application to survive a
process failure. In an HPC environment, the diagnosis of the precise root cause of these failures is difficult
due to the lack of sufficient hardware-level debugging information. For designing a purely software-based
solution, the fault model is a process crash or hang whose cause is unknown. This type of failure results
from the presence of a fault in the processor or memory that activates to cause an error in the form of an
illegal instruction or an invalid address in the program state. When the program execution encounters the
address in the program state that is in error state, the process may crash or hang.

Checkpoint and restart (C/R) solutions are the often used to support resilience to process failures in HPC
systems. We reexamine this well-known software-based solution using the structured pattern-based
approach to analyze composition of the constituent patterns needed to design this solution. Such analysis
will be useful for adapting C/R solutions to future systems and evaluate their performance characteristics.
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Figure 51. Resilience Solution Case Study: Checkpoint & Restart using BLCR

The goal of a complete C/R solution is to recover a failed process such that the application may resume
from an error-free state. This requires that the solution capture the image, or snapshot, of a running process
and preserves it for later recovery. The checkpoint is typically committed to parallel file system on disk
storage. For parallel applications, the C/R framework’s coordination protocols produce a global snapshot
of the application by combining the state of all the processes and their communications in a parallel
application. Since most parallel applications using the message passing interface (MPI) define a MPI
process to be a POSIX process, the protection domain of the solution must cover the complete POSIX
process state and the point-to-point and collective messages exchanged between the processes.

The protection domain for the solution must cover the global process state. Therefore, we fuse the
Persistent and Dynamic and Environment state patterns, which extends the domain of our system-level
checkpointing solution to the entire memory associated with a process; in a Linux-based environment, the
protection domain extends over the virtual address space of a Linux process.

For the detection of a process failure, we require instantiation of the Fault Treatment strategy pattern.
Specifically, our solution requires a Fault Diagnosis architecture pattern to discover the location of the
failure and the type of event, which is enabled by a Monitoring structural pattern. The instantiation of the
Monitoring pattern is a kernel-level heartbeat monitor, which is deployed in the system to detect whether
the process is alive.

For the selection of a recovery pattern, there are key two considerations: (i) the frequency of node failures;
and (ii) the performance and resource overhead of applying the pattern. The space overhead incurred by
instantiating a Compensation strategy pattern for recovery is substantial due to the need to replicate the
protection domain. For systems that experience process failures infrequently, the use of a
compensation-based solution proves prohibitively expensive. Therefore, for the failure recovery we select
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the Recovery strategy pattern. The Checkpoint-Recovery architectural pattern is appropriate since
Linux provides the capability for a running process to be interrupted and its context to be written to disk.
Also, the process state is deterministic and defined by the state of the program counter and the registers;
therefore, the Roll-back structure pattern is suitable for implementation at the operating system level.
With the selection of this pattern, protection domain of the failure is to be limited to a single process
context, which implicitly defines the containment pattern. The implementation of the recovery pattern
requires a disk storage system, to which the checkpoint, i.e., the process state captured during failure-free
operation is exported. The performance overhead of these patterns during failure-free operation and the
recovery time are dependent on bandwidth available between memory and the disk system.

The implementation of the patterns, which is illustrated in Figure 51, is implemented using the Berkley
Lab’s Checkpoint/Restart (BLCR) [57] framework. Since BLCR does not provide a failure detection
mechanism, the Monitoring pattern is implemented by a kernel-level module that uses heartbeat
monitoring to check for process liveness. BLCR provides a completely transparent checkpoint of the
process, which saves the current state of a Linux process. The framework uses a coarse-grain locking
mechanism to momentarily interrupt the execution of all the threads of the process, giving them a global
view of its current state. The entire state is saved, including the CPU registers, the virtual memory map as
well as the function call stack. From the perspective of an application programmer, the checkpoint routine
returns with a different error code, to let the caller know if this function call returns from a successful
checkpoint or from a successful restart. The Roll-back pattern handles recovery after the detection of a
process failure by restoring the context file set from the stable storage, and recreating the process on the
same hardware, with the same software environment. BLCR also provides an API for applications
programmers to manage pattern behavior through hooks that allow the application to block off code
sections where checkpoints are not permitted. These hooks also give applications a chance to respond to
checkpoint/requests and take appropriate action, which provides an application programmer with explicit
control over the pattern’s activation and response interfaces.
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12. Case Study: Proactive Process Migration for Failure Avoidance

In HPC environments, various fault indicators indicate the imminence of error or failure events. The goal
of this case study is to design and implement a proactive resilience solution using the structured design
pattern-based approach. Various resilience strategies are inherently reactive, i.e., they respond to the
occurrence of an error or a failure event and seek to prevent the event from affecting the correct execution of
an HPC application. In contrast to a reactive solution that seeks to recover from an error or a failure event
after the fact, the notion of proactive fault tolerance responds to faults in a system and seeks to prevent their
activation into errors/failures. This analysis of a error or failuer avoidance solution is intended to identify
the patterns that must instantiated for a proactive design approach, and to articulate the protection domain,
capabilities and implementation specifics of the solution. The case study describes the pattern-based design
process for faults that have the potential to result in future failure events in an HPC environment.

Figure 52. Resilience Solution Case Study: Process Migration

The key to designing a proactive strategy is the identification of fault indicators that can sufficiently predict
the activation of an error or failure. The fault model for this case study is a defect in the system that has the
potential to result in an error or failure. We consider faults that are known to cause errors, which result in
application crashes. Using design patterns, we seek to develop a software-based solution that can
preemptively migrate parts of an application away from system resources that are about to fail. In a HPC
system, the failure of a compute node causes termination of the application processes running on that node.
Since the presence of a fault does not impact the correctness of an application program until it activates, the
solution supports proactive failure avoidance from the application’s perspective. We select the protection
domain by fusing the Persistent and Dynamic and Environment state patterns. Much like the C/R
solution, the protection domain covered by these patterns includes the complete POSIX process state in a
Linux environment. The ultimate objective of the solution is to preemptively migrate the application
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processes from compute nodes where a failure is likely to cause them to crash to another node in the
system.

To anticipate the occurrence of a failure, the solution must observe critical indicators that will predict the
likelihood of a failure. We apply the Fault Treatment strategy pattern, which is instantiated as a Fault
Diagnosis pattern in every node of the HPC system. This pattern is instantiated as a Prediction
structural pattern, which enables estimating the possibility of an imminent error or failure event. Its
activation interface reads health monitoring data for the various components in each compute node and its
response interface signals the possibility of a node failure. The prediction pattern creates a control
feedback-loop such that a mitigation pattern can take preventive action to avoid failure of the processes
running on the node. Since the solution addresses faults in the computes nodes, it requires the instantiation
of another Fault Treatment pattern for mitigation rather than a Recovery strategy pattern. For this
solution, we assume that the number of nodes allocated for an application run are determined during startup
and are fixed for the lifetime of the application run. If the application uses all nodes in the allocation at
initialization and leaves no spare nodes, the inclusion of a Compensation strategy pattern is not a suitable
alternative. The Reconfiguration architectural pattern is applied, which is instantiated in the form of a
Restructure structural pattern that isolates a failing node and migrates the application processes to an
alternative compute node in the system. The containment is implemented by a kernel level module provides
containment for the fault by identifying the process that is executing on the node which the Prediction
pattern has assessed vulnerable due to a specific set of changes in operating conditions of the node.

The overall structure of the pattern-based design is illustrated in Figure 52. The implementation of the
Prediction pattern is realized as a per-node health monitoring mechanism that uses various
platform-level indicators in the system. It uses platform data available through the Intelligent Platform
Management Interface (IPMI) interface, which relies on the baseboard management controller (BMC) to
collect sensors readings for health monitoring, including the data on temperature, fan speed, and voltage.
The response interface of the pattern notifies the scheduler when the sensors indicate deterioration of a
node’s health. Since the behavior of the Recovery strategy pattern used by this solution entails performing
a live migration of a POSIX process in the context of the MPI execution environment, the implementation
of the Restructure pattern is realized within the system’s job scheduler. The pattern identifies healthy
nodes in the system as potential destinations for the process migration. Once a destination node has been
identified, the pattern initiates the migration of the process from source to destination node. It is imperative
the entire context of a process be migrated when the presence of a fault is inferred on a compute node.
Therefore, the migration entails transfer of the process image, which occurs by a page-by-page copy of the
address space. The implementation then synchronizes all the MPI processes to a consistent state, after
which the in-flight data in the MPI communication channels is drained. Once all the MPI processes reach a
consistent global state, the remaining dirty pages, which includes the registers, signal information, pid,
files, etc. to the destination node. Once the mapping of the processes to nodes in the system has been
restructured, the communication channels and the previously saved in-flight messages are restored. The
migrated processes resume execution on the destination node. The implementation of the patterns in this
solution ensure the transparency of the proactive migration to the HPC application.
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13. Case Study: Cross-Layer Hardware/Software Solution for Soft Error Resilience

Among the major challenges for future hardware and software design is the requirement of solutions to
balance the performance and power efficiency with the robustness offered by a solution. Resilience
solutions that are implemented across multiple layers of the system stack, where partial solutions work
together to achieve required degrees of resilience in a highly performance and power-efficient manner.
While design patterns provide a systematic framework to re-evaluate and refine existing resilience
solutions, they are also a valuable tool to design novel solutions. This section demonstrates the use of
resilience design patterns for the exploration and assessment of such novel cross-layered solutions. The
case study describes the pattern-based design process for the fault model of transient errors on a notional
architecture and software environment of a HPC system.

Figure 53. Resilience Solution Case Study: Cross-Layer Design using ECC with ABFT

In this case study, we use design patterns as building blocks to explore novel resilience solutions that
leverage capabilities from various layers of the system stack. By navigating the design spaces of the
resilience design pattern framework, we can evaluate the effectiveness of instantiating a detection,
containment or mitigation pattern at a specific level in the system stack and systematically construct a
cross-layer resilience solution that connects patterns from multiple layers. The structured approach
supported by the framework also enables refining the cross-layered solution. The aim of this case study is
to develop a solution that provides soft error detection and correction for HPC application data structures.
The fault model that we consider is transient errors in memory structures that cause multiple bit flips in the
application’s data or control variables, which may result in outcomes ranging from incorrect results to fatal
program crashes.

The DRAM memory chips used in HPC systems use error correcting codes (ECC) to detect and correct bit
flip errors. Similarly, algorithm-based fault tolerance techniques are available that maintain checksums for
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data structures to detect and correct data value errors at the application level. However, the lack of formal
methods to combine these solutions often precludes cross-layer hardware-software designs that cooperative
protect the application data. Our proposed solution is designed to support transient error resilience for a
scientific application that uses an iterative linear solver method. In general, these methods solve a system
of linear equations represented as A.x = B, where x is the solution vector, A is the operand matrix and b is
a known vector. The iterative algorithm begins with an initial approximation of the solution x, and refines
this solution until the residual norm is below a certain error bound. Therefore, the matrix A and vector b
are scoped within Static state patterns, the solution vector x in a Dynamic state pattern, and the
remaining variable state is contained within an Environment pattern. While the solution vector is often
tolerant to perturbations due to the iterative nature of the algorithm, any transient errors within the scope of
the two Static state patterns affects the correctness of the solver. Therefore, we define the protection
domain of our cross-layer solution to include only these static patterns.

For achieving error detection and correction in digital data, the general approach is to add redundant
information to discover errors and reconstruct the original data. This approach fits the Compensation
strategy pattern, which may be instantiated in the form of a Forward Error Correction pattern. For the
detection of the transient errors, we assume that this pattern is implemented in the form of ECC in the
DRAM modules, which supports single-bit error correction and double-bit error detection. Therefore, the
instantiation of this structural pattern handles both detection and mitigation for single-bit errors. Double-bit
errors result in an ECC violation on the memory line, which is asynchronously communicated by the
Forward Error Correction pattern to the operating system via its response interface by raising a
machine check exception. For the containment of the double-bit error, we deploy a Fault Treatment
pattern in the operating system, since the OS views the double-bit corruption as a fault. Since the pattern
must discover whether the double-bit corruption maps to the protection domain specified by the state
patterns, it is instantiated as a Fault Diagnosis pattern, specifically as a Monitoring structural pattern.
For recovery of variable state scoped by the Static state pattern, the solution instantiates the
Compensation strategy pattern. It uses the Redundancy architecture pattern and structures the solution
based on the Forward Error Correction pattern.

The instantiation of the patterns across the system stack is illustrated in Figure 53. The Monitoring
pattern for containment is implemented as a kernel-level module that maps the physical address to the
virtual address space to discover whether the fault may be contained within the Static state pattern. The
pattern’s response interface treats the presence of the fault in the state pattern as an application error and
notifies the numerical library. When the error is outside the scope of the Static state pattern, the response
interfaces indicates to the kernel module that the error is unrecoverable, which results in the OS killing the
application. Besides the Forward Error Correction pattern in ECC for single-bit error recovery,
another instance of this pattern type is implemented in the numerical library to handle double-bit errors.
The implementation maintains a set of checksums for the matrix A and vector b. The checksums enable the
identification of the element of the matrix affected by the error, and substitution of that element with a
correct value using the remaining uncorrupted elements in the row/column and the checksum values. The
instantiation of the Forward Error Correction pattern at the application library level provides context
about the significance of the error to the overall application, and is able to employ an algorithm-specific
fault tolerance detection and correction method, which is more cost effective for double-bit error mitigation
than system-level bulk reliability provided by hardware-level solution such as an enhanced ECC that
supports double-bit correction. Therefore, the cooperation between patterns across system layers supports a
flexible memory protection mechanism to single and double-bit memory errors, which allows the
application to resume operation towards completion rather than experience a fatal crash with higher
performance and energy efficiency.
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14. Summary

In this document, we presented an updated and revised specification of the concept of resilience design
patterns, which support a systematic approach to designing and implementing resilience solutions. The
structured approach to designing and implementing HPC resilience solutions is useful to reduce the
complexity of the design process, and is particularly relevant for the future generations of extreme-scale
parallel systems and their applications. The patterns are based on well-known and well-understood
solutions that have been applied in HPC systems and provide solutions to specific problems encountered in
the management of resilience. We have formatted each of these solutions in the template of design patterns
such that they may be used by designers as reusable templates when building and refining resilience
solutions. The resilience design patterns presented in this document support detection, containment,
masking and recovery capabilities. This revision contains additional patterns as well as improvements to
the textual descriptions of the patterns from the previous version of the specification and the inclusion of
graphical representations of each pattern. We modified the classification scheme, which organizes the
resilience patterns in a layered hierarchy, to highlight the important relationship between the state and
behavioral patterns, and to accomodate the new patterns introduced in this version. The new classification
is designed to expose the relationships between the various patterns in the catalog and their capabilities,
which enables system architects to approach the solution abstractly while allowing individual component
designers and developers to restrict their work to the level that directly impacts their portion of the solution.
In this version, we have also made minor changes to the design framework that simplifies the construction
of complete resilience solutions through the composition of design patterns. The framework is intended to
be useful in creating portable solutions, whose implementation may be customized to specific architectures
and software stacks. The resilience patterns and the pattern-oriented framework facilitates the exploration
of a variety of alternative solutions, the refinement and optimization of individual solutions, and the
investigation of the effectiveness and efficiency of solutions. This structured approach aims to address the
resilience challenge for extreme-scale HPC systems through a systematic design of solutions with an
emphasis on optimizing the trade-off, at design time or runtime, between the key system design factors:
performance, resilience, and power consumption.
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