
Resilience Design Patterns: A Structured Approach to

Resilience at Extreme Scale

Saurabh Hukerikar and Christian Engelmann 1

c© The Author 2017. This paper is published with open access at SuperFri.org

Reliability is a serious concern for future extreme-scale high-performance computing (HPC)

systems. Projections based on the current generation of HPC systems and technology roadmaps

suggest the prevalence of very high fault rates in future systems. While the HPC community has de-

veloped various resilience solutions, application-level techniques as well as system-based solutions,

the solution space remains fragmented. There are no formal methods and metrics to integrate the

various HPC resilience techniques into composite solutions, nor are there methods to holistically

evaluate the adequacy and efficacy of such solutions in terms of their protection coverage, and

their performance & power efficiency characteristics. Additionally, few of the current approaches

are portable to newer architectures and software environments that will be deployed on future sys-

tems. In this paper, we develop a structured approach to the design, evaluation and optimization

of HPC resilience using the concept of design patterns. A design pattern is a general repeatable

solution to a commonly occurring problem. We identify the problems caused by various types of

faults, errors and failures in HPC systems and the techniques used to deal with these events. Each

well-known solution that addresses a specific HPC resilience challenge is described in the form of

a pattern. We develop a complete catalog of such resilience design patterns, which may be used by

system architects, system software and tools developers, application programmers, as well as users

and operators as essential building blocks when designing and deploying resilience solutions. We

also develop a design framework that enhances a designer’s understanding the opportunities for in-

tegrating multiple patterns across layers of the system stack and the important constraints during

implementation of the individual patterns. It is also useful for defining mechanisms and interfaces

to coordinate flexible fault management across hardware and software components. The resilience

patterns and the design framework also enable exploration and evaluation of design alternatives

and support optimization of the cost-benefit trade-offs among performance, protection coverage,

and power consumption of resilience solutions. The overall goal of this work is to establish a sys-

tematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC

systems that keep scientific applications running to a correct solution in a timely and cost-efficient

manner despite frequent faults, errors, and failures of various types.

Keywords: high-performance computing, resilience, fault tolerance, design patterns.

1. Introduction

Extreme-scale, high-performance computing (HPC) will significantly advance discovery in

fundamental scientific research by enabling multiscale simulations that range from the very

small, on quantum and atomic scales, to the very large, on planetary and cosmological scales.

Computing at scales in the hundreds of petaflops, exaflops and beyond will also provide the com-

puting power for rapid design and prototyping and big data analysis. Yet, to build and effectively

1Oak Ridge National Laboratory

One Bethel Valley Road,

Oak Ridge, TN 37831 USA

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the

U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article

for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,

worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government purposes. The Department of Energy will provide public access to these results of

federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-

public-access-plan)

operate extreme-scale HPC systems, there are several key challenges, including management of

power, massive concurrency, and resilience [22].

In the pursuit of greater computational capabilities, the architectures of future HPC systems

are expected to change radically. These innovative systems require equally novel components,

which are designed to communicate and compute at unprecedented rates. Traditional HPC

system design methodologies have not had to account for power constraints, or parallelism on

the level designers must contemplate for future extreme-scale systems [55]. The evolution in the

architectures will require changes to the programming models and the software environment

to ensure application scalability. In the midst of these rapid changes, the resilience to faults

or defects in system components, which can cause errors and failures, will be critical. The

reliability of these systems will be threatened by a decrease in individual transistor reliability

due to manufacturing defects prevalent at deeply scaled technology nodes, device aging related

effects, etc. [9]. The chips built using these devices will be increasingly susceptible to errors due

to the reduced noise margins arising from near-threshold voltage (NTV) operation [24] (that will

be necessary to meet the limits on power consumption). These effects are expected to increase

the rate of transient and hard errors in the system. The scientific applications running on these

systems will no longer be able to assume correct behavior of the underlying machine. The errors

will propagate and generate various kinds of failures, which may result in outcomes in HPC

applications ranging from data corruptions to catastrophic crashes.

Managing the resilience of future extreme-scale systems is a complex, multidimensional

challenge. As HPC systems approach exaflops scale, the sheer frequency of faults and errors

in these systems will render many of the existing resilience solutions ineffective. Newer modes

of failures due to faults and errors, which will only emerge in advanced process technologies

and complex system architectures, will require novel resilience solutions. To remain viable the

adaptations of existing solutions, as well as the designs of new solutions, must also navigate

the complexity of the hardware and software environments of future systems. Additionally,

HPC resilience solutions, both hardware and software, must optimize for some combination of

performance, power consumption and cost while providing effective protection against faults,

errors and failures. Therefore, addressing the resilience challenge for extreme-scale HPC systems

will require integration and coordination between various hardware and software technologies

that are collectively capable of handling a broad set of fault models at accelerated fault rates.

The HPC community and vendors have developed a number of hardware and software

resilience solutions over the years to confront faults and their consequences in a HPC system

and to limit their impact on the applications. Most of these solutions are based on a limited

set of underlying detection, containment and mitigation techniques that have persisted through

generations of systems and will remain important in the future. The key to the design and

implementation of HPC resilience solutions is no longer the invention of novel methodologies

for dealing with the various fault types that may occur, or to manage the extreme fault rates;

rather, it is based on the selection and combination of the most appropriate solutions among the

well-understood resilience techniques and adapting them to the design concerns and constraints

of the emerging extreme-scale systems. However, there are no systematized methods to adapt the

existing solutions to future architectures and software environments, nor are there formalized

to integrate multiple solutions into composite solutions. There is also a lack of standardized

methods to investigate and evaluate the effectiveness and efficiency of such solutions. Therefore,

the designers of HPC hardware and software components have a compelling need for a systematic

methodology for designing, assessing and optimizing resilience solutions.

In this work, we develop a structured approach for constructing resilience solutions for

HPC systems and their applications based on the concept of design patterns. Design patterns

are descriptions of well-known solutions to specific, repeatedly occurring problems that are

encountered in a specific domain. In an effort to develop resilience design patterns we identify

well-known techniques to handle faults and their consequences in various hardware and software

components throughout the HPC system stack. In general, resilience solutions provide techniques

for the detection of faults, errors or failures in a system, mechanisms to ensure that their

propagation is limited, and for masking of error or failure and recovery of the system. This

paper presents a complete catalog of patterns that capture the solutions for each of these three

aspects. Each pattern provides a solution to a recurring HPC resilience problem under a set of

clearly defined assumptions about the type of the fault, error or failure it deals with and the

constraints about the system behavior it guarantees. The resilience design patterns are specified

at a high level of abstraction and describe solutions that are free of implementation details.

The patterns have the potential to shape the design of HPC applications’ algorithms, numerical

libraries, system software, and hardware architectures, as well as the interfaces between layers

of system abstraction. Therefore, they are intended to be useful for HPC application, library

and tool developers, hardware architects and system software designers, as well as system users

and operators.

We codify the resilience design patterns in a layered hierarchy, which classifies the patterns

in the catalog, and clearly conveys the relationships among them. The hierarchical scheme

enables individual hardware/software component designers to focus on problems and constraints

related to detection, containment and mitigation/recovery of specific fault types in specific

contexts, while system architects contemplate role of the individual patterns within the context

of the overall system architecture and software environment and issues related to stitching

the various patterns together and refinement of their interactions. Combining these patterns

according to the guidelines given by the classification scheme provides a systematic way to

design and implement new resilience solutions, port existing solutions to future architectures

and software environments, and to holistically evaluate the scope and efficiency of the solutions.

Therefore, using the design patterns as building blocks enables:

• Systematic design and refinement of resilience solutions by using patterns to outline the

overall structure of the solution (independent of a specific implementation approach), and

incrementally converging towards a detailed implementation.

• Design of solutions with a clear understanding of their protection coverage and performance

efficiency.

• Evaluation and comparison of alternative resilience solutions through qualitative and quan-

titative evaluation of the coverage and handling efficiency of each solution.

• Design of flexible solutions through integration of multiple patterns into complete resilience

solutions. The individual patterns may be independently evolved and developed for porta-

bility to different HPC system architectures and software environments.

• Design of cross-layered resilience solutions that combine capabilities from different layers

of the system stack.

• Optimization of the trade-off space, at design time or at runtime, between the key system

design factors: performance, resilience, and power consumption.

In this paper, we also develop a systematic methodology to combine an essential set of

patterns into productive and efficient resilience solutions. We present a conceptual framework

based on the notion of design spaces that enables HPC designers to use the patterns as reusable

design elements. The framework enables designers to navigate the complexities of composing

patterns into complete solutions within the constraints of performance and power overheads, the

fault model and its impact on the system, hardware and software implementation challenges, etc.

The overall goal of this work is to enable a systematic methodology for the design and evaluation

of resilience technologies in HPC systems that keep applications running to a correct solution in

a timely and cost-efficient manner despite frequent faults, errors, and failures of various types.

2. Design Patterns for HPC Resilience

The occurrences of various types of faults, errors and failures are not rare events in modern

large-scale HPC system environments. The term fault refers to an underlying flaw or defect in

a system that has potential to cause problems, an error refers to the result of the activation

of a fault, which causes an illegal system state. A failure occurs if an error reaches the ser-

vice interface of a system, resulting in system behavior that is inconsistent with the system’s

specification. The faults are due to radiation-induced effects such as particle strikes from cosmic

radiation and the system environment, chip manufacturing defects and design bugs that remain

undetected during post-silicon validation and manifest themselves during system operation, as

well as circuit wear out, or aging failure mechanisms of CMOS integrated circuits. The faults

may also occur due to software bugs, which is a growing concern as the complexity of the soft-

ware environment grows. Due to the complex system interactions and dependencies between the

hardware and software components, the application program, and the HPC system’s physical

environment, preventing the activation of these faults and containing the propagation of the

resulting errors and failures to other components a significant challenge.

HPC resilience solutions seek effective and efficient management of the different types of

fault and errors to ensure that the applications produce reliable outcomes despite the resulting

degradations and failures. The focus of resilience solutions is on application correctness lieu of,

or even at the expense of, reliability of state of the system. In general, every HPC resilience

solution consists of the following core capabilities:

• Detection: Identifying the presence of an anomaly in the data or control value is an

important aspect of any resilience management strategy. The detection and diagnosis of

faults in a system may allow the remedy of the underlying defect, which may prevent the

activation of an error or failure. The timely detection of errors or failures enables recovery

of the system.

• Containment: When an error or failure is discovered in a system, containment strategies

assist in limiting the impact of the event on other components in the system. Limiting the

propagation enables simplified recovery strategies.

• Recovery: The recovery aspect of any resilience solution is necessary to ensure that the

application outcome is correct in spite of the presence of an error or a failure in a system.

The recovery may entail a workaround to isolate and bypass the presence of an error or

a failed component, complete elimination of the error or failure, and may also seek to

prevent the root cause of the underlying fault from resurfacing.

Often the solutions used to achieve these capabilities are based on well-known techniques,

which have been repeatedly used by hardware and software designers to increase system reli-

ability since the early days of computing systems. These techniques are based on the use of

redundant structures to mask failed components, error-control codes and duplication or tripli-

cation with voting to detect or correct information errors, diagnostic techniques to locate failed

components, automatic switchovers to replace failed subsystems, and the specification of well-

defined modular structures and interfaces for containment and definition of recovery scope [5].

Many of the resilience solutions, hardware and software, used in HPC environments over the

past three decades are also largely based on these set of techniques.

Our goal is to capture the best-known techniques that are used in the design of HPC

resilience solutions formatted as design patterns. A design pattern describes a generalizable

solution to a recurring problem that occurs within a well-defined context. It identifies the key

aspects of a solution and presents it in the form of an abstract description, which provides

designers with guidelines on how to solve a problem. Each pattern in this paper presents a

solution to a specific problem in detecting, recovering from, or masking a fault, error or failure

event. The pattern descriptions don’t describe a concrete design or an implementation, and are

also free from constraints of details associated with the level of system abstraction at which the

solution can be implemented. Therefore, the resilience patterns may be used as design templates

that may be adapted by the HPC hardware or software designers for a specific problem at

hand. The design of new resilience solutions and adapting existing ones for future extreme-

scale systems is accomplished by combining various patterns into complete solutions and by

refining their interactions. The patterns describe the design decisions and trade-offs that must be

considered when applying a certain solution, which enables designers to reason about the impact

of applying a solution on a system’s performance scalability and power consumption overhead as

well as consider implementation issues. Since the various resilience techniques handle different

types of events, and they each provide different guarantees about properties such as the time or

the space overhead introduced to the normal execution of the system, number of simultaneous

errors or failures it can handle, the efficiency of the reaction to a failure, the design complexity

added to the system, the patterns may also be used to explore alternatives solutions to a given

problem.

Based on the insight that any resilience solution is only necessary in the presence of, or

sometimes in the anticipation of an anomalous event, such as a fault, error, or failure, we define

the template of a resilience design pattern in an event-driven paradigm. The design pattern tem-

plate consists of a behavior and a set of activation and response interfaces. The pattern behavior

provides a description of the solution, which systematically names, explains the semantics of,

and evaluates the trade-offs involved in using the solution in an HPC environment. The activa-

tion and response interfaces specify the conditions for application of the solution. The individual

implementations of the same pattern may have different levels of performance, resilience, and

power consumption. However, using this universal template enables a standardized approach for

the evaluation of patterns and comparison between alternative solutions for a given problem.

While any resilience design pattern must conform to this basic template, the instantiation of a

pattern may cover combinations of detection, containment and mitigation capabilities.

3. Classification of Resilience Design Patterns

For designers of HPC resilience solutions, the patterns serve as reusable design elements.

For the design of resilient hardware and software components, the patterns can be combined

in different ways to produce complete solutions. For a systematic approach to transforming

R
ej

uv
en

at
io

n
Fault	Treatment Recovery Compensation

Design Diversity

R
ec

ov
er

y
bl

oc
k

n-
ve

rs
io

n
de

si
gn

n-
m
od

ul
ar
	

Re
du

nd
an
cy

Stateful

St
at

el
es

s

Fault	Diagnosis

R
ol

l f
or

w
ar

d

Checkpoint	Recovery

R
ol

lb
ac

k

Pe
rs

is
te

nt

En
vi

ro
nm

en
t

D
yn

am
ic

M
on

ito
rin

g

Pr
ed

ic
tio

n

St
ra

te
gy

St
ru

ct
ur

al
State

Reconfiguration

R
ei

ni
tia

liz
at

io
n

R
es

tru
ct

ur
e

Ar
ch

ite
ct

ur
al

Redundancy

Fo
rw

ar
d	
Er
ro
r	

Co
rr
ec
tio

n	
Co

de

Behavioral

Figure 1. Classification of resilience design patterns

individual patterns into a solution consisting of a system of patterns, a classification scheme is

essential. A classification outlines the relationships between the various patterns, which enables

designers to understand their individual capabilities and the relationships among the patterns

when seeking to integrate different patterns into composite solutions.

The resilience design patterns may be classified on the basis of the type of event handled,

whether the pattern offers detection, containment, recovery or masking semantics, the scope of

protection coverage offered, design complexity of the patterns, time and space overheads, power

consumption overheads, etc. However, in developing a classification for the resilience design

patterns, our goal is to provide designers with the guidelines to identify the patterns that make

up a resilience solution, specify the roles played by individual patterns, and how they interact,

such that the incorporation of resilience capabilities becomes an essential part of the design

process of HPC hardware and software components.

We develop a pattern classification scheme that organizes the resilience patterns in a layered

hierarchy, in which each level addresses a specific aspect of the problem. Resilience in the context

of HPC systems and its applications has two key dimensions: (1) forward progress of the system

and (2) data consistency in the system. Based on these factors, we organize the resilience design

patterns into two major categories, state patterns and behavioral patterns. These are placed

side by side in Figure 1 to enable designers to separately reason about the patterns that define the

scope of the protection domain and those that define the semantics of the detection, containment

and mitigation. The behavioral patterns are organized in a hierarchy, as shown in Figure 1, in

which the patterns in bottom layer may be used to think about the strategies suitable for

confronting anomalous events depending on whether it is a fault, an error, or a failure. The

patterns in the middle layer explicitly defines the architecture of a solution based on the nature

of the event and considers compatibility of the pattern solution with the overall system design.

The top-level patterns consider issues related to implementation of the solution, including the

appropriate granularity and level of system abstraction, and the overheads incurred by the

solution.

For the design and analysis of new solutions, or adapting existing solutions to emerging

HPC environments, hardware and software designers can approach the hierarchy of patterns in

a top down or bottom-up manner. The refinement and optimization of patterns will often require

traversing the layers several times before a solution is finalized. The hierarchical organization

of the patterns permits the different stakeholders to reason about resilience solutions based on

their view of the system and their core expertise. Architects describe the overall organization of

the solutions, analyze the integration of various resilience patterns across the system stack, and

evaluate the protection coverage and overheads to overall system performance. The designers of

individual hardware and software components operate within a single layer of system abstraction

and focus on alternative patterns to address the problem at hand and the analyze the design

complexity of instantiating a specific pattern.

3.1. State Patterns

The state patterns specify the protection domain of a resilience solution. The correctness

and consistency of the system state ensures the correct operation of a system. Therefore, the

precise definition of the scope of the protected system state is an important part of designing

a resilience solution. From the perspective of an HPC application, the notion of state may be

classified into three categories:

• Static State, which represents the data that is computed once in the initialization phase

of the application and is unchanged thereafter.

• Dynamic State, which includes all the system state whose value may change during the

computation.

• Operating Environment State, which includes the data needed to perform the computation,

i.e., the program code, environment variables, libraries, etc.

The state patterns, which capture each of these aspects of the system state, are classified

as stateful patterns. The properties of each state pattern may be used to guide the selection

of a behavioral pattern. Certain resilience strategies may be applied without regard for state

and apply behavioral patterns that are concerned with only the forward progress of the system

(for e.g., idempotent operations). Therefore, the classification of state patterns also includes a

stateless pattern that enable designers to create solutions that define behavior without state.

This organization of the state patterns enables the behavioral patterns to be applied to individual

aspects of a system’s state. However, in designing a resilience solution, more than one type of

state pattern may be fused to enable the use of a single behavioral pattern for more than one

state pattern.

3.2. Behavioral Patterns

The behavioral patterns are concerned with forward progress of the system despite the pres-

ence of anomalous events in the system. These design patterns identify detection, containment,

or mitigation actions that enable the components in a system that realize these patterns to cope

with the presence of a fault, error, or failure event. The behavioral patterns are presented in a

layered hierarchy to highlight the design choices when selecting one pattern over another:

• Strategy Patterns: These patterns define high-level polices of a resilience solution. The

strategy patterns are organized by the type of event that they handle - fault, error or failure,

since the techniques to handle these events are fundamentally different. The classification

of the strategy patterns captures the intent behind of each solution makes the design

choices in applying the patterns explicit. These patterns describe the overall structure and

the key components in a solution in a manner independent of the layer of system stack

and hardware/software architectural features. Their descriptions are deliberately abstract

to enable hardware and software architects to reason about the overall organization of the

solution and assess the suitability of the pattern to the full system design.

The fault treatment patterns are concerned with diagnosing and preventing an imminent

error or failure. The recovery and compensation patterns must limit and remove an error

or failure state in the system. The recovery pattern aims to substitute an error/failure-free

state in place of the erroneous/failed system state. The compensation pattern seeks to

tolerate the presence of an error or failure by providing redundancy in the system design.

• Architectural Patterns: The architectural patterns convey specific methods necessary

for the construction of a resilience solution. The patterns provide details about the key

components and connectors that make up the solution and explicitly specify the type of

event that they handle. These patterns are a sub-class of the strategy patterns, and they

are also organized based on the type of event they handle and the intended impact of the

action on the system resilience. Certain architectural patterns may be adapted to confront

faults, errors or failures. Consequently, there exists an overlap between the patterns in

the architectural layer with more than one type of strategy pattern in Figure 1. The

classification of these architectural patterns based on the core solution is also suggestive

of the design time and runtime complexity encountered when instantiating a pattern. Yet,

architectural pattern descriptions are independent of the precise fault model and may be

implemented at any layer of the system stack.

• Structural Patterns: These patterns provide concrete descriptions of the solution rather

than high-level strategies. While the strategy and architectural patterns serve to provide

designers with a clear overall framework of a solution and the type of events that it can

handle, the structural patterns express the details such that they can contribute to the

development of complete working solutions. They comprise of specific instructions for

implementing the pattern, including concrete descriptions of the key parts of the solution.

Their descriptions include specific details of the fault model that the pattern handles.

Although the structural patterns provide more detailed solutions, their descriptions are still

independent of the layer of system abstraction at which the patterns may be instantiated.

The pattern descriptions are flexible enough for most, if not all structural patterns to be

suitable for implementation within hardware structures as well as within algorithms in

the application or system software. The various structural patterns are sub-classes of the

strategy and architectural patterns. Therefore, their first-order organization is also based

on the type of fault event that their solutions handle.

A variety of implementation patterns may be derived from the structural patterns.

These patterns are intended to bridge the gap between the design principles and the concrete

details of an implementation. The pattern descriptions explicitly specify the layer of system

abstraction at which they are implemented, and the activation and response interfaces. The

implementation patterns also enable a standardized way for hardware and software designers

to communicate about design of their resilience solutions. These patterns may be designed as

composite patterns, i.e., using a combination of patterns. Defining implementation patterns

enables designers to thoroughly analyze the overhead of a solution in terms of time and space,

as well as the trade-off between design complexity and runtime complexity. Due to the limitless

possibilities in developing implementation patterns suited for various architectures, software

environments and HPC applications through pattern composition, we only provide detailed

descriptions of the foundational state and behavioral resilience patterns in this paper.

4. The Resilience Design Pattern Catalog

The resilience design pattern catalog contains detailed descriptions of the state and behav-

ioral patterns. The primary objective of the catalog is to capture the best-known HPC resilience

solutions and present them a standardized and accessible form. For the patterns to be useful to

HPC system architects and individual hardware and software component designers alike, they

are written down in a highly structured format to enable designers to quickly discover whether

the pattern solution is suitable to the problem being solved.

For convenience and clarity, each resilience pattern in the catalog follows the same prescribed

format. The pattern description is formatted in terms of the following key attributes:

• Name : Identifies the pattern and provides a convenient way to refer to it, typically using

a short phrase.

• Problem : A description of the problem indicating the intent behind applying the pattern.

This describes the goals and objectives that will accomplished with the use of this specific

pattern.

• Context : The preconditions under which the pattern is relevant, including a description

of the system before the pattern is applied.

• Forces: A description of the relevant forces and constraints, and how they interact or

conflict with each other, and with the intended goals and objectives. The forces highlight

the intricacies of the problem and make the trade-offs that must be considered explicit.

• Solution : A description of the solution that includes specifics of how to achieve the in-

tended goals and objectives. This includes the core structure of the solution, its semantics

and its interactions with other patterns. The description includes guidelines for implement-

ing the solution, as well as descriptions of variations or specializations of the solution.

• Capability : The resilience management capabilities provided by this pattern, which may

include detection, containment, mitigation, or a combination of these capabilities.

• Protection Domain : The resiliency behavior provided by the pattern extends over a

certain scope, which may not always be explicit. The description of the nature of the

fault model and its protection domain enables designers to reason about the scope of the

coverage in terms of the complete system.

• Resulting Context : A brief description of the post-conditions arising from the applica-

tion of the pattern. There may be trade-offs between competing optimization parameters

that arise due to the use of this pattern.

• Examples: One or more sample applications of the pattern, which illustrate the use of

the pattern for a specific problem, the context, and set of forces. This also includes a

description of how the pattern is applied, and the resulting context.

• Rationale : An explanation of the pattern as a whole with an elaborate description of how

the pattern actually works for specific situations. This provides insight into its internal

workings of a resilience pattern, including details on how the pattern accomplishes the

intended goals.

• Related Patterns: The relationships between this pattern and other relevant patterns.

These patterns may be predecessor or successor patterns in the hierarchical classification,

or patterns that provide similar capabilities.

• Known Uses: Known applications of the pattern in existing HPC systems, including any

practical considerations and limitations that arise due to the use of the pattern at scale in

production HPC environments.

There are three key reasons behind this pattern format: (1) to present the pattern solution

in a manner that simplifies comparison of the capabilities of patterns and their use in developing

complete resilience solutions, (2) to present the solution in a sufficiently abstract manner that

designers may modify the solution depending on the context and other optimization parameters,

and (3) to enable these patterns to be instantiated at different layers in the system.

The complete catalog of resilience design patterns in the template format is available in a

specification document [38]. In the remainder of this section, we summarize each design pattern,

highlighting its key features. The pattern descriptions use the term system to refer to an entity

that has the notion of a well-defined structure and behavior. A subsystem is a set of elements,

which is a system itself, and is a component of a larger system, i.e., a system is composed

of multiple sub-systems or components. For a HPC system architect, the scope of system may

include compute nodes, I/O nodes, network interfaces, disks, etc., while an application developer

may refer to a library interface, a function, or even a single variable as a system. A full system

refers to the HPC system as a whole or to a collection of nodes, which is capable of running a

parallel application.

4.1. Strategy Patterns

4.1.1. Fault Treatment Pattern

The emergence of a defect or anomaly in an HPC system environment has the potential to

activate, which may potentially lead to an error or a failure in the system. The Fault Treatment

pattern provides a method that attempts to recognize the presence of an anomaly or a defect

within a system, and creates conditions that prevents the activation of the fault into an error or

failed state. The solution requires an auxiliary monitoring system, which may be a sub-system of

the monitored system or an external system, that observes the key parameters of the monitored

system. The pattern applies to a system that has well-defined parameters that may be used

to discover the presence of anomalies in the behavior of the monitored system. The pattern

supports either one, or both of the following capabilities:

• Fault detection: detect anomalies during operation before they impact the correctness

of the system state.

• Fault mitigation: methods to enable an imminent error or failure to be prevented, or

the defect to be removed.

The protection domain of this pattern extends to the scope of the monitored system and

implicitly extends to other systems that are interfaced to the monitored system. The benefit of

incorporating fault treatment patterns in a design, or deploying it during system operation is to

preemptively recognize faults in the system; the preventive actions avoid the need for expensive

recovery and/or compensation actions that may be necessary if the fault activation causes an

error or failure. In incorporating this pattern in the design of a HPC hardware or software

component, the key considerations are the frequency of interaction between the monitoring and

monitored (sub-)systems and the precision of fault detection. The frequency of these interactions

must be minimized to reduce interference in the operation of the monitored system; yet, the

interactions must be frequent enough to detect every defect in the monitored system. Also, fault

must be detected and treated in a timely manner, i.e., the time interval for the monitoring

system to gather data about the monitored system and to infer the presence of an anomaly

or a defect must be rapid to prevent the activation of an error/failure. The pattern must also

have few false positive and false negatives to minimize preemptive mitigation actions that are

unnecessary.

In HPC systems, various hardware-based solutions for fault detection observe the attributes

of a system, such as thermal state, timing violations in order to determine the presence of a

defect in the behavior of the system that may potentially cause an error or failure. For example,

processor chips such as the IBM Power 8 and Intel Xeon series processors contain thermal sensors

that detect anomalous conditions in the cores. Software-based solutions detect the anomalies in

the behavior of a system’s data variables or control flow attributes to determine the presence

of a fault. Heartbeat monitoring is used for liveness checking of MPI processes, which enables

detection of imminent failure of the MPI communicator [6].

4.1.2. Recovery Pattern

In an HPC environment, the occurrence of errors or failures in the system results in incorrect

answers, and in some cases, catastrophic application crashes. The Recovery pattern enables a

system to survive an error or failure event. The pattern is suitable for a system whose design or

runtime configuration contains no intrinsic support for tolerating the error or failure event. The

solution is based on the periodic creation of snapshots of the system state during error/failure-

free operation, and the maintenance of these snapshots persistently. Upon detection of an error

or a failure, the preserved snapshots are used to recreate a known error/failure-free state of

the system. When the system state is recovered, the operation of the system is resumed. The

error or failure in the system must be detected; the pattern offers no implicit error/failure

detection. The pattern applies to a system that is deterministic, i.e. forward progress of the

system is defined in terms of the input state to the system and the execution steps completed

since system initialization. The pattern requires the system state can be compartmentalized in

a form that is accurately representative of the progress of the system since initialization. It also

requires that the system has well-defined intervals that enables it to transition the system state

to a known correct interval in response to an error/failure.

The protection domain for a Recovery pattern is determined by the scope of the state

pattern that is captured during checkpoint creation operation. The size and frequency of

creation of checkpoints determines the overhead to system operation; frequent checkpointing

incurs proportionally greater overheads during error/failure-free operation, but reduces the

amount of lost work when an error/failure event does occur. Also, the broader the scope of

the system state that is preserved, the larger is the scope of the system state that may be

protected from an error/failure event. The solution offered by this pattern is not dependent

on the precise semantics of the error/failure propagation. Therefore, the effort and complexity

in using this pattern in a hardware or software design, or in the system configuration is low.

There are several instances of the usage of the pattern in HPC systems to support recovery of

an application or the complete system upon detection of an error/failure. For example, various

checkpoint and rollback protocols enable HPC applications and systems to capture state and

commit the checkpoint files to parallel file systems [27].

4.1.3. Compensation Pattern

The occurrence of an error or failure event may cause loss in system functionality, or reduc-

tion in system capacity. The HPC applications running on such a system may produce incorrect

results or experience failure. The Compensation pattern makes up for the deficiency or abnor-

mality in a system that is caused by the error or failure event. The pattern solution introduces

redundancy with into the system design, or in the configuration to counterbalance the (sub-

)systems in error or failed state. The pattern is applicable to a system that is deterministic, and

the overall system design allows for modular design with well-defined inputs and outputs for each

module, about which redundant information is maintained. The redundancy may be in the form

of a group of replicas of a (sub-)system, referred to as n-modular redundancy, or in the form of

encoded information about the (sub-)system state. The pattern supports detection, and in some

cases correction, by using the redundant information about a (sub-) system to recompense for

the presence of an error/failure. The scope of the protection domain, which covers includes the

part of the system designed or operated redundantly, may include a sub-system, or the cover

the full system.

The replicas of the modules permit the system to continue operation even in the presence

of a (sub-)system failure. When the redundancy is in the form of modular replication, an error

or failure in one of the (sub-)systems may be tolerated by substituting the (sub-)system with a

replica. In order to recover from 2N errors/failures in the system, there must be 2N + 1 distinct

replicas. For the detection of errors, the outputs of the replicas of the system are compared

by an auxiliary monitor (sub)-system. For a system to tolerate an error/failure, the number

of replicas must be greater than two, in which case the monitor performs majority voting on

the outputs produced by the replicas. This enables incorrect outputs from replicas in erroneous

state to be filtered out. The design effort and complexity of replication of the system depends

on the replication method: deploying identical replicas requires low design effort, but the design

of functionally identical but independently designed versions of a (sub-)system requires much

higher design and verification effort.

The scope and strength of the redundancy employed by the pattern determines the overhead

to the system performance. The pattern introduces a penalty in terms of time (increase in execu-

tion time), or space (increase in resources required) independent of whether an errors or failure

occurs during system operation. The N-modular redundancy approach is used at the hardware

and software levels in a various HPC components; the dual-modular redundancy (DMR) for error

detection and triple-modular redundancy (TMR) for error detection and correction [42] are the

most widely used forms of redundancy. Redundant information in the form of error correction

codes is also used at the hardware-level in the form of ECC [49] and at the application-level for

application data structures [37].

4.2. Architectural Patterns

4.2.1. Fault Diagnosis Pattern

The occurrence of a defect or anomaly has the potential to activate causing an error or failure

in the system. The Fault Diagnosis pattern, which is a derivative of the Fault Treatment

strategy pattern, identifies the presence of the fault and determines its root cause. The solution

consists of an auxiliary monitoring system that observes specific parameters of a monitored

system. Until a fault has not activated into an error it does not affect the correct operation of

the system. Therefore, the Fault Diagnosis pattern makes an assessment about the presence of

a defect based on observed behavior of one or more system parameters. The inference is based on

observing deviations in the standard operating behavior of the monitored system. Identifying the

norm of (sub-)system parameters also enables narrowing the search for the fault type, its location

and its root cause. To incorporate this pattern in an HPC environment requires inclusion of a

monitoring (sub-)system, which introduces additional complexity in the overall system design.

When the monitoring system is extrinsic to the monitored system, the design effort may be

simplified, but the interfaces between the (sub-)systems must be well-defined. The pattern only

infers the presence of a defect and reports it via its response interface, but does not act to remedy

the fault. Among the key design challenges when using the pattern is the resolution limit, which

is influenced by the number of parameters observed and frequency of probing the monitored (sub-

)system and affects the precision of the fault detection. In the context of HPC systems, faults

may be detected and diagnosed based by accumulating empirical data on the characteristics and

the behavior of hardware and software components and use the information to discover faults.

For example, HPC components commonly use the Intelligent Platform Management Interface

(IPMI) [21], which provides standardized interfaces for monitoring hardware health information

such as the system temperatures, fans, power supplies, etc. Using these interfaces, software

tools may monitor the health of system resources and infer the presence of anomalies in the

components.

4.2.2. Reconfiguration Pattern

In the event of a fault, error or failure event the configuration, i.e., the organization of

the (sub-)systems in an HPC environment may be affected in ways that result in applications

producing incorrect results, or experiencing fatal crashes. The Reconfiguration pattern,

which derives from the Fault Treatment and Recovery strategy patterns, entails modification

of the interconnection between (sub)-systems. The reconfiguration isolates the (sub-)system

affected by the event to prevent it from affecting the correct operation of the overall system.

The pattern assumes that the system may be partitioned into a set of logical modules and that

altering the interconnection between the modules is possible. The protection domain of the

Reconfiguration pattern covers all (sub-)systems that are interconnected to provide a specified

function. The pattern may cause the system to assume several configurations in response to

a fault, error or failure event, each of which is characterized by its own topology of intercon-

nections, the system must retain functional equivalency with the original system configuration.

The performance overhead of using this pattern is proportional to the number of (sub-)systems

and degree of interconnection between them. The reconfiguration of the system may also

result in system operation at a degraded performance level. The implementation of the pattern

requires partitioning the system into modules that remain functionally correct in multiple

different configurations. There is much complexity associated with defining the scope of these

modules and to validate their functional equivalency in alternative configurations. Well-known

use cases of the reconfiguration pattern include the NodeKARE module in the Cray Linux

Environment CLE, which automatically runs diagnostics on all involved compute nodes in the

cluster whenever a users program terminates abnormally and removes the failing nodes from the

pool of available compute nodes so that subsequent jobs are allocated only to healthy nodes [18].

4.2.3. Checkpoint Recovery Pattern

Errors or failures in an HPC environment may result in conditions that prevent forward

progress of the system until the error or failure condition is removed. The Checkpoint-Recovery

pattern, which is a specialization of the Recovery strategy pattern, is based on the creation of

snapshots of the system state and maintenance of these checkpoints on a persistent storage

system during the error- or failure-free operation of the system. Upon detection of an error

or a failure, the checkpoints/logged events are used to recreate last known error- or failure-

free state of the system, after which the system operation is restarted. The solution offered

by the pattern supports only recovery; the detection and containment of the error/failure is

beyond the scope of the pattern’s capabilities. The pattern assumes that the system is capable

of compartmentalizing its state in a way that is accurately representative of the progress of the

system since initialization. The techniques used by the pattern are classified into checkpoint-

based and log-based strategies. The checkpoint-based solution typically captures and preserves

the complete state of the system; in contrast, log-based strategies only record specific system

events. Instantiations of the pattern may also use a combination of checkpointing and event

logging. The pattern handles an error or a failure by retrieving a version of the error or failure-

free state from the checkpointed state, and substituting the erroneous or failed state with the

error or failure-free state. Therefore, the system is able to resume operation with a version of

the system state that is free of any effects of the error or failure event.

However, the pattern requires interruption of the system during error or failure-free opera-

tion to record the checkpoint, which incurs an overhead. The frequency of creation of checkpoints

and/or event logging determines the extent of the overhead; frequent checkpointing/logging in-

curs proportionally greater overheads during error- or failure-free operation. However, more

frequent checkpointing and logging reduces the amount of lost work when the system encoun-

ters an error or failure event. The checkpointing/logging latency affects the overhead during

error- or failure-free operation on account of the latency to write the checkpoint to a storage

system. The scope of the system state captured during a checkpointing operation results in a

proportionate increase in space overhead due to the storage resources needed to preserve the

checkpoints. The solution offered by this pattern is independent of the type of error or failure and

its mode of propagation. Therefore, the design effort and complexity in instantiating this pattern

in any system design in low. In the context of HPC systems, checkpoint and restart capabili-

ties in the software layers, including various library-based and operating system-based solutions

such as BLCR [25] for Linux processes. Certain library implementations of the MPI standard,

such as OpenMPI, also support transparent checkpoint-restart [39]. Log-based recovery based

on message logging has been adopted by implementations of MPI [10].

4.2.4. Redundancy Pattern

When an error or failure event in an HPC environment cannot be prevented from affecting

the correct operation of a component, or the full system, it must be remedied to enable forward

progress of the system. The Redundancy pattern, which is a derivative of the Compensation

pattern, enables offsetting the effects of the error/failure. The pattern solution entails incor-

porating excess resources in the (sub-)system design or in the configuration at runtime. The

redundancy enables a (sub-)system to detect, and in certain cases correct an error/failure, by

repetition, omission of a (sub-)system without loss of functionality, or superfluity of (sub-)system

state information. The pattern applies to a (sub-)system that allows for a modular design with

well-defined inputs and outputs for each module. The application of a Redundancy architecture

pattern, the following error/failure handling capabilities can be supported:

• Detection by comparison: observing the likeness of each replica’s outputs as means to

detect the presence of an error or failure in each redundant version of a (sub-)system.

• Fail-over mitigation: substitution of a replica in error or failed state with another

identical replica that is error/failure-free.

• Mitigation by isolation: creation of a group of N replicas of a (sub-)system and majority

voting on the outputs produced by each replica; the outputs that fall outside the majority

are excluded.

• Encoding information for detection and mitigation: maintenance of additional

(sub-)system state information to identify errors within the state.

The protection domain of the pattern extends to the scope of the (sub-)system state about

which redundant information is maintained. The pattern introduces penalty in terms of time

(increase in execution time), or space (increase in resources required) independent of whether

an errors or failure occurs. The use of dual-modular redundancy for error detection and triple-

modular redundancy for error/failure detection and correction are common forms of instantia-

tion of the pattern in various hardware and software-level modules. HPC systems contain service

nodes that are responsible for system management tasks while the parallel computation is per-

formed by a set of compute nodes. The tasks include user login, network file system, job and

resource management, communication services. Various existing solutions provide hot-standby

redundancy with transparent fail-over to tolerate failures in the critical services in the service

nodes. Well-known examples of redundancy are the scheduling and resource management ser-

vices in Simple Linux Utility for Resource Management (SLURM) [53] , as well as the metadata

servers of the Parallel Virtual File System (PVFS) [15] and the Lustre file system [2]. Produc-

tion HPC systems such as the Cray XC40 series [19] include redundant power supplies, voltage

regulator modules and cooling fans to ensure continuous operation in the event that one of these

units experience malfunction or failure.

4.2.5. Design Diversity Pattern

Design flaws on account of human error or defective tools manifest themselves as errors,

which may cause failures in HPC environments. The Design Diversity pattern, which is also a

derivative of the Compensation pattern, creates distinct but functionally equivalent versions of

the same design specification, which are created by different individuals or teams, or developed

using different tools. The intent behind applying this pattern is to eliminate the impact of

design bugs during the implementation of a (sub-)system. The pattern enables systems to

tolerate errors/failures due to design faults that may arise on account of incorrect interpretation

of the specifications by designers, mistakes made during implementation, or due to bugs in

the tools. The detection and correction of error/failures is possible due to the independent

design processes reducing the likelihood that the same flaw emerges in the alternative versions

of a (sub-)system. The pattern is based on the assumption that the system has a well-defined

specification for which multiple implementation variants may be created. The versions of the

(sub-)system specification may be applied to a system in a time or space redundant manner.

The replica (sub-)systems are provided with identical inputs, and their respective outputs

are compared in order to detect and potentially correct the impact of an error or a failure in

either replica of the systems. The protection domain of the pattern extends to the scope of the

system that is described by the design specification. However, designing multiple variants of the

same (sub-)system specification requires significantly higher verification and validation effort.

The design diversity solution is used in the validation of the results produced by scientific

applications, particularly those that require high-precision floating point arithmetic. Such

applications may be compiled and executed using alternative implementations of compiler

toolchains, message passing libraries, numerical analysis libraries to verify the application results.

4.3. Structural Patterns

4.3.1. Monitoring Pattern

The various types of errors in HPC environments occur as a result of underlying defects in

hardware or software components. Identifying the defects before they cause an error, which may

result in a failure of one or more components, prevents incorrect behavior of a (sub-)system. The

Monitoring Pattern is a specialization of the Fault Diagnosis architectural pattern, which

consists of a monitoring system that observes specific parameters of a monitored system to

discover the presence of anomalies in its behavior. The monitoring system may approach the

problem of fault detection using two strategies:

• Effect-Cause Diagnosis: This approach entails observation of the parameters of the (sub-

)system for anomalies. When a (sub-)system parameter deviates from a range of values

considered normal, the monitoring system attempts to determine the root cause. The

monitoring system logically partitions the system into modules and progressively eliminates

the modules known to be fault-free. Through this process, it narrows the search for the

fault in the (sub-)system.

• Cause-Effect Diagnosis: This approach is based on a set of known fault models and the

monitoring system compares the (sub-)system parameters with a model developed using

fault free system operation, or using simulations. When the observed set of parameters

deviates from a model, the presence of and the type of fault may be inferred.

Based on these inferences, the pattern enables the monitored system to report the presence of

a fault and to analyze its root cause and location. The (sub-)system design or configuration must

include a monitoring (sub-)system. When the monitoring system is extrinsic to the monitored

system, the design effort may be simplified, but the interfaces between the (sub-)systems must be

well-defined. However, when the monitoring system is intrinsic to the design or configuration of

the monitored system, the complexity of the design process increases. The Monitoring pattern

only infers the presence of a defect and reports it, but does not remedy the defect. Various

HPC system installations use the monitoring pattern through tools for collecting performance-

or health-related data about the system. Popular solutions include: Ganglia Monitoring System

[44], Nagios [1] and OVIS Lightweight Distributed Monitoring System [3].

4.3.2. Prediction Pattern

The accurate prediction of where faults are likely to occur in a (sub-)system enables reduc-

tion in the costs of a resilience solution by preemptively enhancing the (sub-)system’s capabilities

to handle any resulting errors or failures. The Prediction Pattern, which is also a derivative of

the Fault Diagnosis architectural pattern, develops models that estimate future faults based

on the observations of the parameters of a (sub-)system, or based historical trend analysis of

these parameters. For prediction, the pattern may use: (i) Rule-based methods that build rules

of association to capture the causal correlations between system parameter values and fault

events, or (ii)Statistical-based methods that discover probabilistic characteristics of potential er-

rors/failures in a system using statistical inference techniques to examine correlations between

previous events. The monitoring system of this pattern contains the following components:

• Filter/Preprocessor : removes incomplete fault data and duplicates and produces a consis-

tent format for analysis.

• Regression: seeks to analyze the parameter values and establish relationships between

them.

• Knowledge Base: storage component that maintains the rules or statistical properties

and models, which may be used for online prediction of fault events using real-time data

captured from the monitored system.

Much like the Monitoring Pattern, the Prediction pattern only infers the presence of

a defect and reports it, but does act to remedy the fault. Based on the prediction method

and accessibility of the system parameters selected for observation, the prediction may not be

very precise, which leads to false positive outcomes, or unforeseen events that are missed by the

prediction algorithm. However, when errors or failures are predicted at a high degree of accuracy,

avoidance or preventative actions may be applied. For example, event prediction may be used

for proactive management in large-scale clusters [51].

4.3.3. Restructure Pattern

The occurrence of a fault, error, or failure event sometimes impacts a system in a way

that affects the correctness of the interactions between sub-systems in an HPC environment,

which causes further errors, or a failure of the system. The Restructure Pattern, a derivative

of the Reconfiguration pattern, modifies the configuration between the interconnected sub-

systems to isolate the specific sub-system affected by a fault, error or failure. The reconfiguration

pattern alters the organization of the (sub-)systems to work around the affected (sub-)system,

or it excludes the affected (sub-)system from interacting with the remaining (sub-)systems (i.e.,

the restructured system includes N-1 sub-systems). In either case, the pattern seeks to maintain

(sub-)system functionality equivalent to that before the occurrence of the fault, error or failure

event.

The protection domain of the pattern spans the part of (sub-)system whose constituent

sub-systems may be reconfigured. While the pattern seeks to restructure the sub-systems in an

operating state that is functionally equivalent to the fault-free state, the pattern may result in

the operation of the system in degraded condition, which incurs additional time overhead to

the system. Existing solutions that restructure the system in response to an event include the

ULFM extension to the MPI standard [7], which allows parallel applications to get notifications of

process failures. ULFM provides a set of routines to revoke and restructure a MPI communicator

that consists of the remaining active processes. Dynamic page retirement is another instantiation

of the restructure pattern solution, in which pages that have an history of frequent memory errors

are removed from the pool of available pages.

4.3.4. Rejuvenation Pattern

When a (sub-)system in an HPC environment behaves incorrectly on account of a fault,

error or failure, the correctness of the full system may be compromised. The Rejuvenation

Pattern, which is also a derivative of the Reconfiguration pattern, isolates the specific part

of the (sub-)system affected by a fault, error or failure and restores it to an operating state that

is free of any effects of the event. Only the affected part of the system is rejuvenated to ensure

correct operation of the system by the pattern. The pattern requires the system operation to be

halted to identify the part of the system affected by the event.

The protection domain of the pattern spans the part of system whose state may be rejuve-

nated. The rejuvenation is often a slow process that requires substantial additional overhead to

identify the part of the system affected by the fault, error or failure, and to selectively reinitialize

the system, in addition to overhead incurred due to any lost work. The rejuvenated system may

not maintain the level of performance as before the occurrence of an event. Examples of reju-

venation include the Mini-Ckpts framework, which recovers fatal operating system crashes by

rejuvenating only the kernel data structures, which are preserved in persistent memory, without

affecting the HPC application state [31]. Algorithm-based recovery methods for data corruptions

in structures used in numerical analysis problems use interpolation of neighboring data values

to rejuvenate data values in error state. Such methods have been demonstrated in the context

of the HartreeFock algorithm used in computational chemistry codes [20].

4.3.5. Reinitialization Pattern

The impact of a fault, error or failure may sometimes be irreversible such that the

affected (sub-)system cannot be restored to a form that permits correct operation. The

Reinitialization Pattern, also a derivative of the Reconfiguration pattern, simply restores

the system to its initial state. This causes system operation to restart with a pristine reset of

state, which implicitly cleans up the effects of the fault, error or failure in the system. The pat-

tern is applied in conditions in which the mitigation or recovery from the fault, error or failure

event is deemed impossible, or excessively expensive in terms of overhead to performance. The

pattern expects the fault, error or failure in the system to be detected; the pattern offers no

implicit fault monitoring, prediction, or error/failure detection capability. The restoral of the

system state to the initial state causes lost work, but guarantees the impact of the event is

completely removed before service is resumed. Various cluster management software systems,

such as the Cray Hardware Supervisory System (HSS) [18], enable malfunctioning nodes in the

cluster to be reset. The HSS initiates a reboot sequence for a failing node without disrupting

the remaining nodes in the system.

4.3.6. Rollback Pattern

Following an error or a failure event, the (sub-)systems in a HPC environment often lose all

work performed until the occurrence of the event. The Roll-back Pattern, which derives from

the Checkpoint Recovery architectural pattern, periodically captures the progress of the system

and maintains these as system snapshots on a persistent storage system during the error/failure-

free operation of the system. The rollback recovery is performed by restoring the system state

based on the last known stable version of (sub-)system state. The solution provides rollback

recovery, i.e., based on a temporal view of the system’s progress, the system state restored

during the error/failure recovery process is a previous error/failure-free state of the system. For

a system that is deterministic, the pattern creates checkpoints of the system, which requires

the capability to export the current (sub-)system state and import a new state during recovery.

When the system design consists of several sub-systems, the pattern must coordinate the process

of checkpointing. The instantiation of the pattern may apply the following coordination policies:

• Coordinated rollback recovery protocol : The (sub-)systems coordinate the process of creat-

ing checkpoints, creating globally consistent checkpoint states, which simplify the recovery.

• Uncoordinated roll-back recovery protocol : The (sub-)systems each independently decide

when to create their respective checkpoints. This approach has the potential to cause the

full-system to propagate roll-backs to the initial system state to ensure that all dependen-

cies are met (called the domino effect).

• Communication-based rollback recovery protocol : The protocol enables each (sub-)system

to create local checkpoints, but periodically also enforces coordinated checkpoints between

all (sub-)systems. Such a hybrid strategy helps avoid the domino effect.

For systems with non-deterministic events, the pattern employs log-based protocols, which

use a combination of checkpointing and logging of non-deterministic events in the (sub-)system.

The log-based rollback recovery is based on piecewise deterministic assumption, in which the

system identifies and records the nondeterministic events and information necessary (encoded

in tuples called determinants) to replay the event during recovery. The pattern may use the

following logging protocols:

• Pessimistic: The protocol assumes that a failure occurs after a nondeterministic event

in the system. Therefore, the determinant of each nondeterministic event is immediately

logged to stable storage.

• Optimistic: The determinants are held in a volatile storage and written stable storage

asynchronously. This protocol makes the assumption that the logging is completed before

the occurrence of an error or failure. The error- or failure-free overhead of the optimistic

approach is low.

• Causal : The protocol provides a balanced approach by avoiding immediate writing to

stable storage (much like the optimistic protocol in order to reduce event free overhead),

but each sub-system commits output independently (much like the pessimistic protocol

in order to prevent creation of orphan sub-systems in the context of a multicomponent

environment).

The protection domain for a Rollback pattern is determined by the extent of state captured

during checkpoint operation and/or the number of system operations that can be recovered

from the log of events. The time overhead introduced by the use of the pattern during error-

free operation is correlated with the frequency of taking checkpoints. The rollback leads to loss

of work due to the need to recover the system from a previous version of the system state.

The amount of lost work is also correlated with the frequency of the checkpointing/logging.

The worst-case scenario for recovery using this pattern is a roll-back to the initial state of

the system. In the context of HPC systems, checkpoint and restart capabilities in the software

layers, including various library-based and operating system-based solutions, enable recovery

from process errors/failures and rollback of the applications. Well-known solutions that employ

the rollback recovery pattern include the CoCheck checkpoint-restart for MPI [56], as well as

BLCR [25] and SCR [48]. Message logging protocols have been implemented in OpenMPI to

support faster failure recovery [10].

4.3.7. Roll-forward Pattern

When an error or failure event occurs in an HPC environment, a (sub-)system incurs loss

of the work performed prior to the occurrence of the event. The Roll-forward pattern is a

derivative of the Checkpoint Recovery pattern that avoids loss of work by using checkpoints

to recover the (sub-)system to a stable state immediately before the error or failure event. Like

the Rollback pattern, the solution entails the creation of snapshots of the system state and

maintenance of these checkpoints on a stable storage system during the error- or failure-free

operation of the system; log-based protocols use a combination of checkpointing and logging of

non-deterministic events in the (sub-)system. However, the pattern uses the previously captured

checkpointed state and/or logging information to recreate a stable version of the (sub-)system

state identical to the one right before the error or failure occurred. This prevents the need for re-

execution of all (sub-)system operations from the last stable checkpoint. The pattern must select

checkpointing based on the policies similar to those used by the Rollback pattern: coordinated,

uncoordinated, or communication-based.

The pattern may use the following protocols for roll forward:

• Log-based protocols: Based on the piecewise deterministic assumption, in which the (sub-

)system uses the determinants to recreate state. The logging mechanisms may be based

on pessimistic, optimistic, or causal protocols.

• Online recovery protocols: Do not rely on event logging for roll forward of the (sub-)system;

rather, they use inference methods to recreate state, or may permit the state to self-correct

after restart.

The protection domain of a Roll-forward pattern is determined by the extent of state

captured during checkpoint operation and/or the number of system operations that can be

recovered from the log of events. The pattern solution is not dependent on either the type of

event, or the precise semantics of the error propagation; therefore, the design complexity in using

this pattern in any HPC (sub-)system design in low. For the pattern to be effective in an HPC

environment, the overhead to bring the system state to the most recent state before the error

or failure must be less than or equal to the overhead of rollback recovery. In the context of HPC

systems, software solutions typically implement roll-forward recovery using algorithm-specific

knowledge. For example, Global View of Resilience (GVR) [13] uses versioning of distributed

arrays supports, in which roll-forward recovery is based on application-specified mechanisms for

each array structure.

4.3.8. N-modular Redundancy Pattern

An error or failure of a (sub-)system in an HPC environment may cause loss in system

capability or capacity, which prevents correct operation, or failure, of the full system. The

N-modular Redundancy Pattern, which is a derivative of the Redundancy architectural pattern,

remedies the effect of the error or failure by isolating the affected (sub-)system and compensating

for its removal from the system design or configuration with a replica module. The solution entails

creation of a group of N replicas of a (sub-)system. The replicated versions of a (sub-)system

enables their use in various configurations to support errors or failures in one of the replicas,

including fail-over, active comparison for error detection, or majority voting for detection and

correction by excluding the replica whose outputs fall outside the majority. The pattern applies

to a system with a modular design that has a well-defined scope and set of inputs and outputs.

The scope of the pattern may be a sub-system in the HPC hardware or software architecture,

or it may even encompass the complete system scope. Each of the N modules of the system

exist simultaneously; the modules may be active at the same time (spatial replication), or

may operate in succedent order (temporal replication), or the (sub-)system may activate the

redundant modules on-demand. The protection domain of the pattern extends to the scope of the

module that is replicated. Implementations of the MPI standard use these forms of redundancy

for MPI messages, or even by replicating MPI process ranks; the MR-MPI [28], rMPI [29] and

RedMPI [30] are well-known MPI implementations using the n-modular redundancy approach.

4.3.9. Forward Error Correction Code Pattern

When the state information of a (sub)-system is affected by an error, the incorrect state

often leads to malfunctioning of the (sub-)system, which may lead to the failure of the full sys-

tem. The Forward Error Correction Code Pattern, which is a derivative of the Redundancy

architectural pattern, maintains redundant information about (sub-)system state. The pattern

applies to a system whose state may be represented using a sequence of symbols. The solution

consists of an encoder and a decoder module. In the simplest form, the encoder repeats each

symbol that represents the (sub-)system state. The decoder module checks both instances of

each state symbol. The general form of this pattern uses an encoder module that accepts k

state information symbols and separately appends a set of r redundant symbols that are de-

rived from the symbols representing (sub-)system state. The output of the encoder module is

a (n, k) code, in which n = k+r. While the encoded redundant state information is a complex

function of the original state, the encoder module does not modify the state information. The

decoder module extracts the original state from the encoded state symbols. The availability of

redundant state information enables recovery of system from corruption in symbols that repre-

sent the (sub-)system state by using the redundant information to reconstruct the original state

information.

The protection domain of the pattern extends to the scope of the (sub-)state that is encoded

and decoded using the forward error correction code. The number of errors that are detectable

and correctable is limited by the amount of redundant information contained in the error cor-

rection code. Since every operation that affects the system state requires encoding/decoding

operations, the pattern introduces penalty in terms of time (increase in state information access

latency), and space (increase in resources required to store state information) independent of

whether an errors or failure occurs. There are various schemes that enable forward error correc-

tion in memory devices, storage systems, as well as in communication channels in HPC systems.

Examples of forward error correction code (FEC) in HPC environments include parity bits,

checksums, Hamming codes, hash function codes; more elaborate schemes such as systematic

cyclic block codes include binary BCH, Reed-Solomon, Cyclic redundancy checks (CRC). The

use of ECC in memory DIMMs is another well-known example of FEC for compensation of bit

flip errors within the DRAM memory lines [49]. Algorithm-based methods use FEC schemes

such as checksums to detect and correct errors in application data structures [37].

4.3.10. N-version Design Pattern

When a design bug exists in a (sub-)system design or configuration, the resulting error or

failure is often unavoidable. Therefore, the detection and mitigation of the impact of such errors

or failures is critical. The N-version Design Pattern, which is a derivative of the Design

Diversity pattern, applies distinct implementations of the same design specification created

by different individuals or teams. The pattern applies N (N ¿= 2) independently implemented

versions in a time or space redundant manner. The N versions of the (sub-)system are operated

simultaneously, and a majority voting logic is used to compare the results produced by each

design version. Due the low likelihood that different individuals or teams make identical errors

in their respective implementations, the pattern enables compensating for errors or failures

caused by a bug in any one implementation version.

The pattern applies to a system that has a well-defined specification for which multiple

implementation variants may be designed. The protection domain extends to the scope of the

system that is described by the design specification. The extent to which each of the n versions

are different affects the ability of the pattern to tolerate errors/failures in the system. The use

of the n-version design pattern requires significant effort for design, implementation, testing and

validation of the independent versions of a (sub-)system specification. Differences in the design

may cause differences in timing in generating output values for comparison and majority voting;

these differences incur overhead to the overall (sub-)system operation.

4.3.11. Recovery Block Pattern

The errors and failures caused by design bugs prevent HPC (sub-)systems from operating in

conformance with the (sub-)system specification. Yet, the application of the N-version Design

pattern may be impractical in various contexts. The Recovery Block Pattern, which is also

a derivative of the Design Diversity pattern, introduces an alternative implementation of

the same design specification to perform detection and mitigation of errors. The pattern is

a specialization of the N-version Design pattern since the solution also relies on multiple

variants of a design that are functionally equivalent but designed independently. The recovery

block is invoked when the result from the primary version of the system fails an acceptance test,

which often indicates the presence of an error or failure. The instantiation of this pattern may

sometimes include the function that performs the acceptance test. The consequence of applying

the pattern in an HPC environment results in (sub-)system designs that consist of a module

that implements the primary design and a module that serves as an exceptional case handler,

i.e., the recovery block. There is also an adjudicator that applies an acceptance test to validate

the results produced by the primary system. If the adjudicator does not accept the results of the

primary system, it invokes the exception handler subsystem, which indicates that the primary

system could not perform the requested service operation. The protection domain of the pattern

extends to the scope of the primary system, i.e., the scope for which the recovery block is created.

Examples of the recovery block pattern in HPC include the Containment Domains (CD) [14]

programming construct, which provides a recovery routine initiated upon detection of an error

in the execution of the block of code encapsulated by the CD. This enables the CD to constrain

the detection and correction of errors to the boundary of the domain.

4.4. State Patterns

4.4.1. Static State Pattern

The Static state pattern encapsulates all aspects of a system’s state that is computed when

the system is initialized, but is not modified during the system operation. The static state outlives

the process that creates and initializes it. From the perspective of an HPC application, the

static state includes program instructions and variable state that is computed upon application

initialization. The correctness of the static state at all times is essential to the correct execution

and outcome of a program. The invariant property of this state enables the use of a resilience

behavioral pattern that can leverage this property to detect and recovery errors/failure of such

state. For example, various algorithm-based fault tolerance methods leverage the property of

invariance in the static state. These methods maintain replicas of the application variables in

the static state pattern; recovery entails setting these variables to their default data values. A

well-known application of this pattern is in the context of algorithm-based resilience techniques

used in the design of iterative linear solvers. For the solution of a system of equations A.x

= b, the static data structures such as the operand matrix A, the right-hand side vector B,

or the preconditioner are computed once in the initialization phase of the application and are

unchanged after. Errors in these structures are recovered using maintaining checksums [37].

4.4.2. Dynamic State Pattern

The Dynamic State pattern encapsulates the state that changes as the system makes for-

ward progress. In an HPC application, the pattern refers to all aspects of the program state that

changes as an application program executes. The dynamic state includes the data variables that

are modified by the algorithm, as well as the control-flow variables that enable forward progress

of the system. The dynamic feature of this state pattern implies that any faults or errors in

such state amounts to lost work. Separating the dynamic state enables the identification of the

appropriate behavioral resilience patterns to detect and correct errors in such state. Due to the

transitory nature of the variables in the dynamic state patterns, the behavioral patterns often

require preservation of the state pattern, or repetition of operations from a known stable point

to recreate a version of the variables in the state pattern that are free from the effects of any

errors. The most well-known method for protecting dynamic state is using checkpointing-based

roll-back recovery methods [27].

4.4.3. Environment State Pattern

The Environment State Pattern encapsulates the system state that plays a supporting

role in the operation of the system. The pattern defines the scope of the system state that

provides a common set of services in support of the primary function of the system. The en-

vironment also facilitates and coordinates the operation of various sub-systems in a system. In

general, HPC systems navigate complexity through the definition of abstractions that hide the

details of specific functions behind well-defined interfaces. When executing an HPC application,

the overall system state may be partitioned into the aspects that are related to the application

program state and those that provide access to the system resources and services that enable

the application to fulfill its function. The pattern enables the resilience behavior of the environ-

ment state to be reasoned about separately from the resilience behavior of the primary system

state, i.e., an HPC application. The separation of the environment state enables designers to

instantiate behavioral patterns that are independent of the design of the algorithms of HPC

applications. Any changes in the environment due an error or failure event directly affects the

application program operating within the environment. While an application program does not

normally have complete control over its environment, it may exert partial control to affect the

environment through well-defined interfaces. The Environment state pattern defines the scope

of the state that support resource sharing, coordination and communication between the various

(sub-)systems. In a typical HPC system stack, the environment state pattern includes productiv-

ity tools and libraries, the runtime system, the operating system, file systems, communication

libraries, etc. For example, operating-system based resilience mechanisms are independent of

the resilience features of the application program and solely focus on the correctness of the data

structures within the kernel. Mini-Ckpts is a known example of a framework that emphasizes the

recovery of the OS environment by preserving kernel structures in persistent memory [31]. Sim-

ilarly, the ULFM MPI provides recovery of the communication environment from the failure of

processes by reconstructing the MPI communicator by creating consensus among the remaining

set of processes [7].

4.4.4. Stateless Pattern

The Stateless pattern enables the definition of resilience solutions that are independent of

system state. Since every resilience solution consists of at least a state and behavior pattern, the

Stateless pattern provides the construct of null state in order to create solutions that have a

well-defined notion of behavior, but don’t define a scope for the behavior. From the perspective

of an HPC application, the definition of the Stateless pattern permits the definition of the

scope of operations that perform detection or recovery without explicitly specifying the variable

state of the program that is affected by the operations. The solutions that are based on a

Stateless pattern may include: (i) applications that consist of predominantly memory load

operations that rarely contain state-modifying memory and I/O operations; these applications

typically perform reduction operations over large number of data elements, and (ii) applications

that yield imperfect results since their algorithms are based on approximation and iterative

refinement, or use noisy input data to begin with. The stateless pattern is utilized together

with behavioral resilience patterns whose actions do not necessitate modifying any particular

aspect of the system state during the detection or recovery. However, the resilience solution

that uses a stateless pattern must select and instantiate a behavioral pattern that is capable of

dealing with any additional side-effects due to the inclusion of the stateless pattern. The use

of the transaction model to provide resilient behavior is an example of the Stateless pattern.

Transactions support execution of a sequence of operations that may complete as a unit, or

fail; the notion of partial execution is not supported. For example, in the Relax framework, the

idempotence property guarantees that any region can be freely re-executed, even after partial

execution, and still produce the same result. Relax supports language-level constructs as well

as compiler-based techniques that enable the definition of idempotent regions of execution; the

recovery of such regions are stateless [43].

5. Building Resilience Solutions using Design Patterns

5.1. Components of Resilience Solutions

Each pattern in the resilience design pattern catalog presents a solution to a specific problem

in detecting, containing or mitigating a fault, error or failure event. However, ensuring that an

HPC application executes to result in a correct solution despite the occurrence of the events

in the systems requires that a resilience solution be constructed using multiple such patterns

Figure 2. Elements of a resilience solution for HPC systems and applications

Capability

Fault model

Protection domain

Implementation Mechanisms

Interfaces

Figure 3. Design Spaces for construction of resilience solutions using patterns

that are organized in a well-defined system of patterns. The artifacts of a design process that

uses design patterns are complete resilience solutions that confront a specific type of event and

provide detection, containment and mitigation capabilities over a well-defined protection domain.

Therefore, the first step in the design of a solution is the selection of patterns for each of these

capabilities. Therefore, a complete solution consists of at least one state pattern (defining scope

of the protection domain) and one or more behavioral patterns (supporting a combination of

detection, containment and mitigation solutions). These key constituents of a complete solution

are shown in Figure 2.

The pattern descriptions allow for instantiating each pattern in the catalog at any layer of

the system stack. The individual patterns that make up a complete solution can be implemented

across layers the system stack. The architecture of a HPC system consists of various types of

processor, memory, storage and networking components, and its software stack is a complex

multicomponent environment consisting of communication and threading libraries, productiv-

ity software and tools, including numerical libraries, runtime systems, profiling tools, etc. To

construct resilience solutions for the hardware and software components requires methodically

selecting resilience patterns that may be conveniently incorporated into the design of these com-

ponents. The coordination between the resilience patterns, particularly when implemented across

layers of abstraction, requires well-defined activation and response interfaces for each pattern.

5.2. Design Spaces

For hardware and software designers to make practical use these patterns in the development

of resilient versions of their designs, a set of guidelines are necessary to combine the patterns and

refine their interactions. The hierarchical classification scheme articulates only certain aspects

of the pattern selection and integration process by categorizing the patterns based on the type

of event they handle and the core technique employed. However, the selection of patterns solely

on the basis of their detection, containment and mitigation capabilities leaves much to skills

of the designer in terms of finalizing the design and the implementation of the component or

system. To build practical resilience solutions various other factors must be considered, includ-

ing the layer of abstraction for their implementation, scalability of the solution, portability to

other architectures, dependencies on any hardware/software features, flexibility to adapt the

solution to accelerated fault rates, capability to handle other types of fault and error events, the

performance and performance overheads.

To enable a systematic assessment of the suitability of a resilience pattern to a specific

context and to integrate patterns into composite solutions, we develop a design framework.

The framework enables the creation of an initial outline of the resilience solution that identifies

the strategy patterns and the captures the dimensions and capabilities solution resulting from

the composition of the patterns. The framework is based on design spaces that are arranged

in a hierarchy. Each design space progressively refines the relationships between the patterns

and optimizes the overall solution, which allows for a structured approach for constructing

customized designs. By navigating over the design spaces, the framework enables the designer

to approach the various issues that must be addressed in the process of developing practical

resilience solutions. The framework, which is illustrated in Figure 3, consists of the following

design spaces:

• Capability: This design space is concerned with identifying the patterns that support

capabilities for the detection, containment, mitigation of a specific type of fault, errors or

failure event. Based on the system context, this design space also considers the organization

of the overall structure of the solution.

• Fault model: By identifying the root causes of fault and understanding the impact and

propagation through the system enables deciding the architecture patterns. The design

space emphasizes the selection of architecture patterns and the distribution of responsibil-

ity among the chosen patterns.

• Protection domain: This design space concentrates on the definition of the protection

domain by deciding the state patterns and their composition. This enables a clear encap-

sulation of the system scope over which the resilience patterns operate.

• Interfaces: The identification and implementation of the activation and response inter-

faces for behavioral patterns affect the propagation of fault/error/failure event information.

Within this design space, the layer of abstraction appropriate for the instantiation of the

pattern, as well as the performance and power overheads are considered. The design space

explores various implementation constructs that facilitate the coordination between the

various patterns, particularly across system layers.

• Implementation mechanisms: This design space is concerned with low-level implemen-

tation details of how patterns are embedded within a hardware structure, or in software

code. It considers the constraints imposed by specific features of hardware, execution or

programming models, software environment and how the various pattern implementations

coordinate their behavior in this context.

The design spaces represent the most important aspects of a resilience solution that a de-

signer must contemplate in order to create effective and efficient resilience solutions. As a designer

Figure 4. Case Study: Checkpoint & Restart-based Recovery

navigates through these design spaces, they are able to develop a clearer understanding of the

solution profile and the general constraints, which enables them to select the appropriate pat-

terns from the catalog and decide on implementation alternatives. The use of resilience patterns

in the context of the framework provided by the design spaces enables HPC system designers,

users and application developers to evaluate the feasibility and effectiveness of novel resilience

techniques, as well as analyze and evaluate existing solutions. They provide a structured flow

to the design process the design spaces articulate the critical decision points in the design of a

resilience solution, providing guidelines for the selection of the appropriate patterns based on

the requirements of protection and the cost of using specific patterns.

Designers may use various approaches to navigate the design spaces, including a strictly

top-down approach, in which the design is driven by the event type and model that a system

must be protected against, and the implementation of the system is adapted to enable the

system to survive the different ways in which the event may impact the reliability of the system.

Alternatively, in a bottom-up approach, the resilience capability must be woven into the existing

hardware or software component designs and interfaces, and additional components are included

to enhance the protection coverage, or to handle specific fault model behaviors. Often, designers

may be required to take a hybrid approach, in which the design spaces are revisited in an effort

to refine a design, to optimize the features of a solution, and to enable designers to overcome

constraints imposed by any hardware or software system features.

6. Case Studies

This section explores use cases for the application of resilience design patterns to the sys-

tematic design and analysis of resilience solutions. We use the pattern-based approach for un-

derstanding existing solutions with the view to adapt the solution to future generations of HPC

systems as well as for exploration and assessment of novel cross-layered solutions. The case stud-

ies describe the pattern-based design process for different fault models on a notional architecture

and software environment of a HPC system.

6.1. Checkpoint and Rollback Solution for Process Failures

For this case study, we aim to develop a resilience solution that enables an HPC application

to survive process failures. In an HPC environment, the diagnosis of the precise root cause of

these failures is difficult due to the lack of sufficient hardware-level debugging information. For

designing a purely software-based solution, the fault model is a process crash or hang whose

cause is unknown. This type of failure results from the presence of a fault in the processor

or memory that activates, which causes an error in the form of an illegal instruction, or an

invalid address in the program state. When the program execution encounters the address in

the program state that is in error state, the process may crash or hang.

Checkpoint and restart (C/R) solutions are the often used to support resilience to pro-

cess failures in HPC systems. We reexamine this well-known software-based solution using the

structured pattern-based approach to analyze composition of the constituent patterns needed to

design this solution. Such analysis will be useful for adapting C/R solutions to future systems

and evaluate their performance characteristics. The goal of a complete C/R solution is to recover

a failed process such that the application may resume from an error-free state. This requires

that the solution capture the image, or snapshot, of a running process and preserves it for later

recovery. For parallel applications, the C/R framework’s coordination protocols produce a global

snapshot of the application by combining the state of all the processes in the parallel application.

Since most parallel applications using the message passing interface (MPI) define a MPI process

to be a POSIX process, the protection domain of the solution must cover the complete POSIX

process state. Therefore, we fuse the Persistent and Dynamic and Environment state patterns,

which extends the domain of our system-level checkpointing solution to the entire memory as-

sociated with a process. In a Linux-based environment, the protection domain covers the total

virtual address space of a Linux process.

For the detection of a process failure, we require instantiation of the Fault Treatment

strategy pattern. Specifically, our solution requires a Fault Diagnosis architecture pattern to

discover the location of the failure and the type of event, which is enabled by a Monitoring struc-

tural pattern. The instantiation of the Monitoring pattern is a kernel-level heartbeat monitor,

which is deployed in the system to detect whether the process is alive.

For the selection of a recovery pattern, there are key two considerations: (i) the frequency of

node failures; and (ii) the performance and resource overhead of applying the pattern. The space

overhead incurred by instantiating a Compensation strategy pattern for recovery is substantial

due to the need to replicate the protection domain. For systems that experience process failures

infrequently, the use of a compensation-based solution proves prohibitively expensive. Therefore,

for the failure recovery we select the Recovery strategy pattern. The Checkpoint-Recovery

architectural pattern is appropriate since Linux provides the capability for a running process

to be interrupted and its context to be written to disk. Also, the process state is deterministic

and defined by the state of the program counter and the registers; therefore, the Roll-back

structure pattern is suitable for implementation at the operating system level. With the selection

of this pattern protection domain of the failure to be limited to a single process context, which

implicitly defines the containment pattern. The implementation of the recovery pattern requires

a disk storage system, to which the checkpoint, i.e., the process state captured during failure-free

operation is exported. The performance overhead of these patterns during failure-free operation

and the recovery time are dependent on bandwidth available between memory and the disk

system.

Figure 5. Case Study: Proactive Process Migration

The implementation of the patterns, which is illustrated in Figure 4, is implemented using

the Berkley Lab’s Checkpoint/Restart (BLCR) [25] framework. Since BLCR does not provide a

failure detection mechanism, the Monitoring pattern is implemented by a kernel-level module

that uses heartbeat monitoring to check for process liveness. BLCR provides a completely trans-

parent checkpoint of the process, which saves the current state of a Linux process. The framework

uses a coarse-grain locking mechanism to momentarily interrupt the execution of all the threads

of the process, giving them a global view of its current state. The entire state is saved, including

the CPU registers, the virtual memory map as well as the function call stack. From the perspec-

tive of an application programmer, the checkpoint routine returns with a different error code,

to let the caller know if this function call returns from a successful checkpoint or from a suc-

cessful restart. The Roll-back pattern handles recovery after the detection of a process failure

by restoring the context file set from the stable storage, and recreating the process on the same

hardware, with the same software environment. BLCR also provides an API for applications

programmers to manage pattern behavior through hooks that allow the application to block off

code sections where checkpoints are not permitted. These hooks also give applications a chance

to respond to checkpoint/requests and take appropriate action, which provides an application

programmer with explicit control over the pattern’s activation and response interfaces.

6.2. Proactive Process Migration for Failure Avoidance

In HPC environments, various fault indicators indicate the imminence of error or failure

events. The goal of this case study is to design and implement a proactive resilience solution

using the structured design pattern-based approach. In contrast to a reactive solution that seeks

to recover from an error or a failure event after the fact, a proactive solution identifies faults

in a system and seeks to remedy the anomaly or defect to prevent their activation to result in

errors or failures. This analysis of this solution is intended to identify the patterns that must

instantiated for a proactive design approach, and to articulate the protection domain of the

solution.

The key to designing a proactive strategy is the identification of fault indicators that can

sufficiently predict the activation of an error or failure. The fault model for this case study is a

defect in the system that has the potential to result in an error or failure. We consider faults

that are known to cause errors, which result in application crashes. Using design patterns, we

seek to develop a software-based solution that can preemptively migrate parts of an application

away from system resources that are about to fail. In a HPC system, the failure of a compute

node causes termination of the application processes running on that node. Since the presence of

a fault does not impact the correctness of an application program until it activates, the solution

supports proactive failure avoidance from the application’s perspective. We select the protection

domain by fusing the Persistent and Dynamic and Environment state patterns. Much like the

C/R solution, the protection domain covered by these patterns includes the complete POSIX

process state in a Linux environment. The ultimate objective of the solution is to preemptively

migrate the application processes from compute nodes where a failure is likely to cause them to

crash to another node in the system.

To anticipate the occurrence of a failure, the solution must observe critical indicators that

will predict the likelihood of a failure. We apply the Fault Treatment strategy pattern, which

is instantiated as a Fault Diagnosis pattern in every node of the HPC system. This pattern

is instantiated as a Prediction structural pattern, which enables estimating the possibility of

an imminent error or failure event. Its activation interface reads health monitoring data for the

various components in each compute node and its response interface signals the possibility of

a node failure. The prediction pattern creates a control feedback-loop such that a mitigation

pattern can take preventive action to avoid failure of the processes running on the node. Since the

solution addresses faults in the computes nodes, it requires the instantiation of another Fault

Treatment pattern for mitigation rather than a Recovery strategy pattern. For this solution,

we assume that the number of nodes allocated for an application run are determined during

startup and are fixed for the lifetime of the application run. If the application uses all nodes

in the allocation at initialization and leaves no spare nodes, the inclusion of a Compensation

strategy pattern is not a suitable alternative. The Reconfiguration architectural pattern is

applied, which is instantiated in the form of a Restructure structural pattern that isolates

a failing node and migrates the application processes to an alternative compute node in the

system. The containment is implemented by a kernel level module provides containment for the

fault by identifying the process that is executing on the node which the Prediction pattern has

assessed vulnerable due to a specific set of changes in operating conditions of the node.

The overall structure of the pattern-based design is illustrated in Figure 5. The implemen-

tation of the Prediction pattern is realized as a per-node health monitoring mechanism that

uses various platform-level indicators in the system. It uses platform data available through

the Intelligent Platform Management Interface (IPMI) interface, which relies on the baseboard

management controller (BMC) to collect sensors readings for health monitoring, including the

data on temperature, fan speed, and voltage. The response interface of the pattern notifies

the scheduler when the sensors indicate deterioration of a node’s health. Since the behavior

of the Recovery strategy pattern used by this solution entails performing a live migration of

a POSIX process in the context of the MPI execution environment, the implementation of the

Restructure pattern is realized within the system’s job scheduler. The pattern identifies healthy

nodes in the system as potential destinations for the process migration. Once a destination node

has been identified, the pattern initiates the migration of the process from source to destination

node. It is imperative the entire context of a process be migrated when the presence of a fault is

inferred on a compute node. Therefore, the migration entails transfer of the process image, which

Figure 6. Case Study: Cross-Layer Design using Algorithm-based Fault Tolerance to comple-

ment Hardware-level Error Correction Codes

occurs by a page-by-page copy of the address space. The implementation then synchronizes all

the MPI processes to a consistent state, after which the in-flight data in the MPI communication

channels is drained. Once all the MPI processes reach a consistent global state, the remaining

dirty pages, which includes the registers, signal information, pid, files, etc. to the destination

node. Once the mapping of the processes to nodes in the system has been restructured, the

communication channels and the previously saved in-flight messages are restored. The migrated

processes resume execution on the destination node. The implementation of the patterns in this

solution ensure the transparency of the proactive migration to the HPC application.

6.3. Cross-layer Hardware/Software Solution for Soft Error Resilience

In this case study, we use design patterns as building blocks to explore novel resilience

solutions that leverage capabilities from various layers of the system stack. By navigating the

design spaces of the resilience design pattern framework, we can evaluate the effectiveness of

instantiating a detection, containment or mitigation pattern at a specific level in the system

stack and systematically construct a cross-layer resilience solution that connects patterns from

multiple layers. The structured approach supported by the framework also enables refining the

cross-layered solution. The aim of this case study is to develop a solution that provides soft error

detection and correction for HPC application data structures. The fault model that we consider

is transient errors in memory structures that cause multiple bit flips in the application’s data or

control variables, which may result in outcomes ranging from incorrect results to fatal program

crashes.

The DRAM memory chips used in HPC systems use error correcting codes (ECC) to detect

and correct bit flip errors. Similarly, algorithm-based fault tolerance techniques are available that

maintain checksums for data structures to detect and correct data value errors at the application

level. However, the lack of formal methods to combine these solutions often precludes cross-layer

hardware-software designs that cooperative protect the application data. Our proposed solution

is designed to support transient error resilience for a scientific application that uses an iterative

linear solver method. In general, these methods solve a system of linear equations represented

as A.x = B, where x is the solution vector, A is the operand matrix and b is a known vector.

The iterative algorithm begins with an initial approximation of the solution x, and refines this

solution until the residual norm is below a certain error bound. Therefore, the matrix A and

vector b are scoped within Static state patterns, the solution vector x in a Dynamic state

pattern, and the remaining variable state is contained within an Environment pattern. While

the solution vector is often tolerant to perturbations due to the iterative nature of the algorithm,

any transient errors within the scope of the two Static state patterns affects the correctness

of the solver. Therefore, we define the protection domain of our cross-layer solution to include

only these static patterns.

For achieving error detection and correction in digital data, the general approach is to add

redundant information to discover errors and reconstruct the original data. This approach fits

the Compensation strategy pattern, which may be instantiated in the form of a Forward Error

Correction pattern. For the detection of the transient errors, we assume that this pattern

is implemented in the form of ECC in the DRAM modules, which supports single-bit error

correction and double-bit error detection. Therefore, the instantiation of this structural pattern

handles both detection and mitigation for single-bit errors. Double-bit errors result in an ECC

violation on the memory line, which is asynchronously communicated by the Forward Error

Correction pattern to the operating system via its response interface by raising a machine check

exception. For the containment of the double-bit error, we deploy a Fault Treatment pattern in

the operating system, since the OS views the double-bit corruption as a fault. Since the pattern

must discover whether the double-bit corruption maps to the protection domain specified by the

state patterns, it is instantiated as a Fault Diagnosis pattern, specifically as a Monitoring

structural pattern. For recovery of variable state scoped by the Static state pattern, the solution

instantiates the Compensation strategy pattern. It uses the Redundancy architecture pattern and

structures the solution based on the Forward Error Correction pattern.

The instantiation of the patterns across the system stack is illustrated in Figure 6. The

Monitoring pattern for containment is implemented as a kernel-level module that maps the

physical address to the virtual address space to discover whether the fault may be contained

within the Static state pattern. The pattern’s response interface treats the presence of the fault

in the state pattern as an application error and notifies the numerical library. When the error

is outside the scope of the Static state pattern, the response interfaces indicates to the kernel

module that the error is unrecoverable, which results in the OS killing the application. Besides

the Forward Error Correction pattern in ECC for single-bit error recovery, another instance

of this pattern type is implemented in the numerical library to handle double-bit errors. The

implementation maintains a set of checksums for the matrix A and vector b. The checksums

enable the identification of the element of the matrix affected by the error, and substitution of

that element with a correct value using the remaining uncorrupted elements in the row/column

and the checksum values. The instantiation of the Forward Error Correction pattern at the

application library level provides context about the significance of the error to the overall ap-

plication, and is able to employ an algorithm-specific fault tolerance detection and correction

method, which is more cost effective for double-bit error mitigation than system-level bulk reli-

ability provided by hardware-level solution such as an enhanced ECC that supports double-bit

correction. Therefore, the cooperation between patterns across system layers supports a flexible

memory protection mechanism to single and double-bit memory errors, which allows the appli-

cation to resume operation towards completion rather than experience a fatal crash with higher

performance and energy efficiency.

7. Related Work

The original concept of design patterns was developed in the context of civil architecture and

engineering problems where patterns were defined with the goal of identifying and cataloging so-

lutions to recurrent problems and solutions in the building and planning of neighborhoods, towns

and cities, as well as in the construction of individual rooms and buildings [4]. In the domain

of software engineering, patterns were introduced in an effort to bring discipline to the art of

programming and create reusable designs. The intent of software design patterns isn’t to provide

a finished design that may be transformed directly into code; rather, these patterns are used to

systematize the software development process by using proven paradigms and methodologies in

software engineering practice [12]. With the use of design patterns, there is sufficient flexibility

for software developers to adapt their implementation to accommodate any constraints, or issues

that may be unique to specific programming paradigms, or the target platform for the software.

Related to software design patterns, the concept of algorithmic skeletons was introduced [16]

and further refined [17]. In the context of object-oriented (OO) programming, design patterns

provide a catalog of methods for defining class interfaces and inheritance hierarchies, and estab-

lish key relationships among the classes [34]. In many OO systems, reusable patterns of class

relationships and interactions between objects are used to create flexible, elegant, and ultimately

reusable software design. Pattern systems have also been developed for cataloging concurrent

and networked object-oriented environments [54], resource management [41], and distributed

systems [11].

In the pursuit of quality and scalable parallel software, patterns for programming paradigms

were developed [45] as well as a pattern language, called Our Pattern Language (OPL) [40].

These describe the computation and communication patterns in various parallel algorithms and

therefore useful for designing and implementing scalable parallel applications. For engineering

parallel applications for shared-memory many-core processors, parallel programming patterns

simplify the process of expressing parallelism using a number of programming interfaces such as

OpenMP, OpenCL, Cilk Plus, ArBB, Thread Building Blocks (TBB) [46]. Patterns also support

the implementation of parallel algorithms that automatically avoid unsafe race conditions and

deadlocks [47].

Design patterns have been discovered in a variety of other domains and used to codify the

best-known solutions, which include patterns for natural language processing [57], user interface

design [8], web design [26], visualization [36], and software security [23]. Patterns have also been

defined for enterprise applications that involve data processing in support or automation of

business processes [32] in order to bring structure to the construction of enterprise application

architectures. In each of these domains of design, the patterns capture the essence of solutions

in a succinct form such that they may be easily applied to other contexts.

Previous efforts to develop design patterns for fault tolerance have defined a number of pat-

terns for error detection, recovery and mitigation. These patterns are developed based on well-

known fault tolerance solutions that are used in mission-critical systems such as telecommuni-

cation systems and space programs [35], distributed systems [52] and enterprise data processing

systems [33]. The fault tolerant version of the Common Object Request Broker Architecture

(CORBA) [50] applies patterns in the design of the middleware to improve the performance of a

range of fault tolerance strategies that provide applications with capabilities for rapid recovery

from service failures, including request-retry, redirection, active and passive replication. While

the capabilities of some of the patterns in these domains overlap with the resilience patterns

described in this document, they solve problems that are significantly different from those en-

countered in HPC environments in terms of the system architectures, the software stack, and

the nature of the applications. The patterns in this document specifically address the challenges

for maintaining resilient operation for HPC systems and their applications.

8. Summary

In this paper, we introduce the concept of resilience design patterns, which support a sys-

tematic approach to designing and implementing resilience solutions. The structured approach

to the design of HPC resilience solutions is useful to reduce the complexity of the design pro-

cess, and is particularly relevant for the future generations of extreme-scale parallel systems and

their applications. The resilience design patterns are based on well-known and well-understood

solutions that have been applied in HPC systems and provide solutions to specific problems

encountered in the management of resilience. The patterns presented in this document support

detection, containment, masking and recovery capabilities. The resilience patterns may be used

by designers as reusable templates when building and refining new resilience solutions and for

reengineering existing solutions for future generations of HPC systems. The paper also presents

a classification scheme that organizes the resilience patterns in a layered hierarchy in order to

expose the relationships between the various patterns in the catalog and their capabilities. The

hierarchical organization of the patterns enables system hardware and software architects to

approach the solution at an abstract level, while individual component designers and software

developers may restrict their work to the level that directly impacts their portion of the solu-

tion. We have also developed a design framework to simplify the composition of design patterns

into complete resilience solutions. The framework is useful for navigating the various design chal-

lenges and constraints encountered by designers and enables the creation of flexible and portable

resilience solutions. The resilience patterns and the pattern-oriented framework also facilitates

the exploration of alternative solutions, the refinement and optimization of solutions, and the

investigation of the effectiveness and efficiency of solutions. This structured approach aims to

address the resilience challenge for extreme-scale HPC systems through a systematic design of

solutions with an emphasis on optimizing the trade-off, at design time or runtime, between the

key system design factors: performance, resilience, and power consumption.

This material is based upon work supported by the U.S. Department of Energy, Office of

Science, Office of Advanced Scientific Computing Research, program manager Lucy Nowell,

under contract number DE-AC05-00OR22725.

References

1. Nagios monitoring system (1999), https://www.nagios.org/

2. Lustre file system, high-performance storage architecture and scalable cluster file system,

white paper. Tech. rep., Sun Microsystems, Inc. (December 2007)

3. Agelastos, A., Allan, B., Brandt, J., Cassella, P., Enos, J., Fullop, J., Gentile, A., Monk,

S., Naksinehaboon, N., Ogden, J., Rajan, M., Showerman, M., Stevenson, J., Taerat, N.,

Tucker, T.: Lightweight distributed metric service: A scalable infrastructure for contin-

uous monitoring of large scale computing systems and applications. In: Proceedings of

https://www.nagios.org/

IEEE/ACM International Conference for High Performance Storage, Networking, and Anal-

ysis (SC14). IEEE/ACM (2014)

4. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Con-

struction. Oxford University Press, New York (August 1977)

5. Avižienis, A.: Toward systematic design of fault-tolerant systems. Computer 30(4), 51–58

(April 1997)

6. Batchu, R., Dandass, Y.S., Skjellum, A., Beddhu, M.: Mpi/ft: A model-based approach to

low-overhead fault tolerant message-passing middleware. Cluster Computing 7(4), 303–315

(2004)

7. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-failure recovery of mpi

communication capability: Design and rationale. International Journal of High Performance

Computing Applications 27(3), 244–254 (2013)

8. Borchers, J.: A Pattern Approach to Interaction Design. John Wiley & Sons, Inc., New

York, NY, USA (2001)

9. Borkar, S.: Designing reliable systems from unreliable components: the challenges of tran-

sistor variability and degradation. IEEE Micro 25(6), 10–16 (November 2005)

10. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model for high

performance. Concurrency and Computation: Practice and Experience 22(16), 2196–2211

(2010), http://dx.doi.org/10.1002/cpe.1589

11. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture - Vol-

ume 4: A Pattern Language for Distributed Computing. Wiley Publishing (2007)

12. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-

ware Architecture - Volume 1: A System of Patterns. Wiley Publishing (1996)

13. Chien, A., Balaji, P., Dun, N., Fang, A., Fujita, H., Iskra, K., Rubenstein, Z., Zheng,

Z., Hammond, J., Laguna, I., Richards, D., Dubey, A., van Straalen, B., Hoemmen, M.,

Heroux, M., Teranishi, K., Siegel, A.: Exploring versioned distributed arrays for resilience in

scientific applications: global view resilience. The International Journal of High Performance

Computing Applications (2016)

14. Chung, J., Lee, I., Sullivan, M., Ryoo, J.H., Kim, D.W., Yoon, D.H., Kaplan, L., Erez,

M.: Containment domains: a scalable, efficient, and flexible resilience scheme for exascale

systems. In: Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis. pp. 58:1–58:11 (2012)

15. Clustering, P.H.A.: Pvfs2 development team (June 2004), www.pvfs.org/cvs/

pvfs-2-8-branch-docs/doc/pvfs2/pvfs2-ha-heartbeat-v2.php

16. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT

Press, Cambridge, MA, USA (1991)

17. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel

programming. Parallel Computing 30(3), 389–406 (Mar 2004)

http://dx.doi.org/10.1002/cpe.1589
www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc/pvfs2/pvfs2-ha-heartbeat-v2.php
www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc/pvfs2/pvfs2-ha-heartbeat-v2.php

18. Cray Inc.: Cray xe6 computing platform (2010), http://www.cray.com/sites/default/

files/resources/CrayXE6Brochure.pdf

19. Cray Inc.: Cray xc40 computing platform (2014), http://www.cray.com/Assets/PDF/

products/xc/CrayXC40Brochure.pdf

20. van Dam, H.J.J., Vishnu, A., de Jong, W.A.: A case for soft error detection and correction

in computational chemistry. Journal of Chemical Theory and Computation 9(9), 3995–4005

(2013)

21. Dell, I.H.P.N.: Intelligent platform management interface (ipmi), v2.0 specification (2015),

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html

22. Dongarra, J., Beckman, P., Moore, T., et al.: The International Exascale Software Project

Roadmap. International Journal on High Performance Computing Applications pp. 3–60

(February 2011)

23. Dougherty, C., Sayre, K., Seacord, R., Svoboda, D., Togashi, K.: Secure design patterns.

Tech. Rep. CMU/SEI-2009-TR-010, Software Engineering Institute, Carnegie Mellon Uni-

versity, Pittsburgh, PA (2009)

24. Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Near-threshold

computing: Reclaiming moore’s law through energy efficient integrated circuits. Proceedings

of the IEEE 98(2), 253–266 (February 2010)

25. Duell, J., Hargrove, P., Roman, E.: The design and implementation of berkeley lab’s linux

checkpoint/restart. Tech. rep., Lawrence Berkeley National Lab (LBNL) (December 2002)

26. Duyne, D.K.V., Landay, J., Hong, J.I.: The Design of Sites: Patterns, Principles, and

Processes for Crafting a Customer-Centered Web Experience. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA (2002)

27. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery

protocols in message-passing systems. ACM Computing Surveys 34(3), 375–408 (Sep 2002)

28. Engelmann, C., Böhm, S.: Redundant execution of HPC applications with MR-MPI. In:

Proceedings of the IASTED International Conference on Parallel and Distributed Comput-

ing and Networks (PDCN). pp. 31–38 (February 2011)

29. Ferreira, K., Riesen, R., Oldfield, R., Stearley, J., Laros, J., Pedretti, K., Brightwell, R.:

rmpi: increasing fault resiliency in a message-passing environment. Tech. rep., Sandia Na-

tional Laboratories, Technical Report SAND2011-2488 (2011)

30. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.: Detection

and correction of silent data corruption for large-scale high-performance computing. In:

Proceedings of the International Conference on High Performance Computing, Networking,

Storage and Analysis. pp. 78:1–78:12. SC ’12 (2012)

31. Fiala, D., Mueller, F., Ferreira, K., Engelmann, C.: Mini-ckpts: Surviving os failures in per-

sistent memory. In: Proceedings of the 2016 International Conference on Supercomputing.

pp. 7:1–7:14. ICS ’16 (2016)

http://www.cray.com/sites/default/files/resources/CrayXE6Brochure.pdf
http://www.cray.com/sites/default/files/resources/CrayXE6Brochure.pdf
http://www.cray.com/Assets/PDF/products/xc/CrayXC40Brochure.pdf
http://www.cray.com/Assets/PDF/products/xc/CrayXC40Brochure.pdf
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html

32. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA (2002)

33. Friedrichsen, U.: No crash allowed - patterns for fault tolerance. In: The Conference for

Java and Software Innovation (October 2012)

34. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

(1995)

35. Hanmer, R.: Patterns for Fault Tolerant Software. Wiley Publishing (2007)

36. Heer, J., Agrawala, M.: Software design patterns for information visualization. IEEE Trans-

actions on Visualization and Computer Graphics 12(5), 853–860 (Sep 2006)

37. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix operations. IEEE

Transactions on Computers C-33(6), 518–528 (June 1984)

38. Hukerikar, S., Engelmann, C.: Resilience design patterns: A structured approach to re-

silience at extreme scale (version 1.1). Tech. Rep. ORNL/TM-2016/767, Oak Ridge National

Laboratory, Oak Ridge, TN, USA (December 2016), http://www.christian-engelmann.

info/publications/hukerikar16rdp-11.pdf

39. Hursey, J., Mattox, T.I., Lumsdaine, A.: Interconnect agnostic checkpoint/restart in open

mpi. In: HPDC ’09: Proceedings of the 18th ACM international symposium on High Per-

formance Distributed Computing. pp. 49–58. ACM, New York, NY, USA (2009)

40. Keutzer, K., Mattson, T.: Our pattern language (opl): A design pattern language for

engineering (parallel) software. In: ParaPLoP Workshop on Parallel Programming Patterns

(2009)

41. Kircher, M., Jain, P.: Pattern-Oriented Software Architecture, Volume 3: Patterns for

Resource Management. John Wiley & Sons, Inc., New York, NY, USA (2004)

42. Koren, I., Su, S.Y.H.: Reliability analysis of n-modular redundancy systems with intermit-

tent and permanent faults. IEEE Transactions on Computers 28(7), 514–520 (July 1979)

43. de Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: an architectural framework for soft-

ware recovery of hardware faults. In: Proceedings of the 37th annual international sympo-

sium on Computer architecture. pp. 497–508. ISCA ’10 (2010)

44. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design,

implementation, and experience. Parallel Computing 30(7), 817 – 840 (2004)

45. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison-

Wesley Professional, first edn. (2004)

46. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns for

Efficient Computation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st

edn. (2012)

http://www.christian-engelmann.info/publications/hukerikar16rdp-11.pdf
http://www.christian-engelmann.info/publications/hukerikar16rdp-11.pdf

47. McCool, M.D.: Structured parallel programming with deterministic patterns. In: Proceed-

ings of the 2Nd USENIX Conference on Hot Topics in Parallelism. pp. 5–5. HotPar’10,

USENIX Association, Berkeley, CA, USA (2010)

48. Mohror, K., Moody, A., Bronevetsky, G., de Supinski, B.R.: Detailed modeling and eval-

uation of a scalable multilevel checkpointing system. IEEE Transactions on Parallel and

Distributed Systems 99, 1 (2013)

49. Moon, T.K.: Error correction coding: Mathematical methods and algorithms (2005)

50. Natarajan, B., Gokhale, A., Yajnik, S., Schmidt, D.C.: Doors: towards high-performance

fault tolerant corba. In: Proceedings of the International Symposium on Distributed Objects

and Applications. pp. 39–48 (2000)

51. Sahoo, R.K., Oliner, A.J., Rish, I., Gupta, M., Moreira, J.E., Ma, S., Vilalta, R., Sivasub-

ramaniam, A.: Critical event prediction for proactive management in large-scale computer

clusters. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. pp. 426–435. KDD ’03, ACM, New York, NY, USA (2003)

52. Saridakis, T.: A system of patterns for fault tolerance. In: Proceedings of 2002 European

Conference on Pattern Languages of Programs (EuroPLoP) (2002)

53. SchedMD: Slurm workload manager (2003), https://slurm.schedmd.com/

54. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-

ture: Patterns for Concurrent and Networked Objects. John Wiley & Sons, Inc., New York,

NY, USA, 2nd edn. (2000)

55. Shalf, J., Quinlan, D., Janssen, C.: Rethinking hardware-software codesign for exascale

systems. Computer 44(11), 22–30 (November 2011)

56. Stellner, G.: Cocheck: checkpointing and process migration for mpi. In: Proceedings of

International Conference on Parallel Processing. pp. 526–531 (Apr 1996)

57. Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N., Měch, R.: Learning design patterns

with bayesian grammar induction. In: Proceedings of the 25th Annual ACM Symposium on

User Interface Software and Technology. pp. 63–74. UIST ’12, ACM, New York, NY, USA

(2012)

https://slurm.schedmd.com/

	Introduction
	Design Patterns for HPC Resilience
	Classification of Resilience Design Patterns
	State Patterns
	Behavioral Patterns

	The Resilience Design Pattern Catalog
	Strategy Patterns
	Fault Treatment Pattern
	Recovery Pattern
	Compensation Pattern

	Architectural Patterns
	Fault Diagnosis Pattern
	Reconfiguration Pattern
	Checkpoint Recovery Pattern
	Redundancy Pattern
	Design Diversity Pattern

	Structural Patterns
	Monitoring Pattern
	Prediction Pattern
	Restructure Pattern
	Rejuvenation Pattern
	Reinitialization Pattern
	Rollback Pattern
	Roll-forward Pattern
	N-modular Redundancy Pattern
	Forward Error Correction Code Pattern
	N-version Design Pattern
	Recovery Block Pattern

	State Patterns
	Static State Pattern
	Dynamic State Pattern
	Environment State Pattern
	Stateless Pattern

	Building Resilience Solutions using Design Patterns
	Components of Resilience Solutions
	Design Spaces

	Case Studies
	Checkpoint and Rollback Solution for Process Failures
	Proactive Process Migration for Failure Avoidance
	Cross-layer Hardware/Software Solution for Soft Error Resilience

	Related Work
	Summary

