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ABSTRACT
Ensuring the reliability of applications is becoming an increas-
ingly important challenge as high-performance computing (HPC)
systems experience an ever-growing number of faults, errors and
failures. While the HPC community has made substantial progress
in developing various resilience solutions, it continues to rely on
platform-based metrics to quantify application resiliency improve-
ments. The resilience of an HPC application is concerned with the
reliability of the application outcome as well as the fault handling
e�ciency. To understand the scope of impact, e�ective coverage
and performance e�ciency of existing and emerging resilience so-
lutions, there is a need for new metrics. In this paper, we develop
new ways to quantify resilience that consider both the reliability
and the performance characteristics of the solutions from the per-
spective of HPC applications. As HPC systems continue to evolve in
terms of scale and complexity, it is expected that applications will
experience various types of faults, errors and failures, which will
require applications to apply multiple resilience solutions across
the system stack. The proposed metrics are intended to be useful
for understanding the combined impact of these solutions on an
application’s ability to produce correct results and to evaluate their
overall impact on an application’s performance in the presence of
various modes of faults.

CCS CONCEPTS
• General and reference → Reliability; Metrics; • Software
and its engineering → Software reliability; Software fault
tolerance; • Computer systems organization → Dependable
and fault-tolerant systems and networks;
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1 INTRODUCTION
The resilience of high-performance computing (HPC) systems to
frequent fault events is a critical challenge as extreme-scale systems
continue to increase component counts while the individual com-
ponent reliability decreases (due to shrinking process technology
and near-threshold voltage operation), and as software complexity
continues to increase. Resilience is concerned with the correctness
of an HPC application in lieu of, or even at the expense of, the relia-
bility of the system [6]. Resilience solutions are designed to enable
e�ective and cost e�cient management of faults, errors and failures
in systems. Therefore, the application correctness and execution
e�ciency are the essential aspects of a resilience solution. Yet the
HPC community continues to rely on metrics that don’t adequately
provide a quantitative assessment of this perspective about HPC
resilience.

In the design and engineering of fault tolerant systems, the term
dependability refers to a property of a system that indicates whether
the system is operating properly. The term is formally de�ned as
the quality of delivered service by a computing system such that re-
liance can justi�ably be placed on the service [8]. Since the notion of
dependability is concerned with a system’s ability to deliver service,
the criteria used when deciding whether a system is dependable is in
terms of the system’s ability to avoid service failures. To quantify de-
pendability, we use attributes such as availability, reliability, safety,
integrity, maintainability, etc. For each of these attributes there are
mathematical measures that provide a de�nitive perception about
the system’s dependability. The various dependability attributes
are shown in Figure 1 [2]. It is important to stress the di�erence be-
tween an attribute and its measurement. A measurement quanti�es
an attribute of a system; the term metric is a standardized method
to measure an attribute. For example, the reliability attribute is
described in terms of continuous service accomplishment, or the
time to failure from a reference point in time, and is measured in
terms of the system’s mean time to failure (MTTF) and mean time
to repair (MTTR). The metrics for the availability attribute provide
a measure of the service accomplishment with respect to the al-
ternation between the two states of service accomplishment and
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interruption (expressed as the ratio of MTTF to MTTF + MTTR).
Both of these metrics are based on a service-based view of the com-
puting platform. While the MTTF and MTTR are appropriate for
measuring the reliability and availability of a computing platform,
the use of these metrics to measure an HPC application’s resilience
incorrectly imposes a service-based view on the application’s ex-
ecution as well, and these metrics are therefore not suitable for
quantifying the resilience of an HPC application. Even a metric
such as the application’s mean time to fatal error (AMTTFE) [5] is
in reality a system-based metric, since it is based on the assumption
that the MTTF of the hardware and system software components
is equivalent to the time to failure of an application running on
the system. Furthermore, these metrics do not take into account
the fact that not every fault and error results in fatal failure, or
the fact that an HPC application might be able to survive partial
system failures and continue executing towards a correct outcome
at a degraded performance level.
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Figure 1: Dependability Attribute Tree

Resilience is also a dependability attribute that encompasses the
properties of reliability and performance. However, the concept of
resilience in HPC is based on an application-centric paradigm. Re-
silience solutions are designed to ensure the �delity of the scienti�c
output of simulation, modeling and analysis applications without
the expectation of correct operation from the HPC hardware and
software environment. The solutions seek to ensure that the pres-
ence of faults and failures minimally impact the computation and
communication of the application. The performance e�ciency of
handling the fault events is also an important aspect of a resilience
solution. Therefore, for evaluating and quantifying the impact of a
resilience solution in these terms, the most commonly used plat-
form reliability metrics, including the MTTF (and its variants such
as mean time to interrupt (MTTI)) and MTTR, are not suitable.

As the scale and complexity of HPC systems continues to grow,
it is vital to clearly articulate the resilience through metrics for the
application’s reliability and performance attributes. Our quest for
resilience metrics is driven by the need to accurately measure the
ability of an application running on an unreliable HPC system to
complete with correct results in a performance e�cient manner
independent of whether the event is a fault, error or failure. The
metrics are intended to complement platform-based metrics such as
MTTF (and its variants). We develop outcome-based metrics called

the resilience factor (RF) and resilience factor yield (RY) to measure
the impact of fault events on the application’s ability to produce
correct results and the e�ciency of detecting and recovering from
errors and failures. The metrics enable HPC designers, program-
mers and users to contemplate about questions such as: (i) how do
the inclusion of speci�c hardware or software-based solutions improve
an application’s ability to deliver a correct outcome and its e�ect on
the application’s performance (independent of the improvement in
platform dependability)? (ii) how does the combination of multiple
resilience solutions implemented across multiple layers of the system
stack impact application reliability and performance? This paper
examines both of these questions and explores how the proposed
metrics quantify application resilience. We also demonstrate the
utility of the designed metrics by applying them to a linear solver
application, which is enhanced with a multilayered resilience solu-
tion to evaluate its reliability and performance characteristics in
the presence of hard and soft errors.

2 MEASURING HPC RESILIENCE
While the term resilience generally refers to the ability of a com-
puting system to withstand or recover from anomalous e�ects or
behaviors, di�erent domains of computing use it in subtly di�erent
ways. For example, the dependable computing community de�nes
resilience as the persistence of service delivery that can justi�ably
be trusted, when facing changes [7]. The changes here may refer to
unexpected threats, accidents, or failures. In computer networking,
resilience is de�ned broadly as a combination of trustworthiness
(dependability, security, performability) and tolerance (survivability,
disruption tolerance, and tra�c tolerance) [1]. In computer secu-
rity, the concept of resilience is used in relation to the concepts of
privacy, integrity and con�dentiality [3].

In the context of HPC, resilience is concerned with the reliability
and performance attributes of an HPC application. HPC resilience
solutions are built on the assumption that the hardware and system
software platform that the application runs on is unreliable, and
are therefore focused on ensuring the reliability of an application’s
computation and the correctness of its outcome. Additionally, HPC
resilience places as much emphasis on the e�ciency of managing
the impact of fault events as on the correctness of the HPC appli-
cation’s execution. Therefore, the key attributes that de�ne the
property of HPC resilience are application reliability and perfor-
mance.

The development of metrics that capture these attributes is di�-
cult for two reasons. First, the nature of the operating environments
of HPC systems are such that faults often develop during the course
of regular system operation resulting in bit �ips in the system com-
ponents. However, simply the occurrence of a fault event in a HPC
system does not result in fail-stop behavior. Certain faults events
never activate, and produce no error noti�cations. Such faults are
called benign faults. Other faults may activate and result in an error
condition. It may be possible to detect, and even correct errors. By
including capabilities to only detect an error and not correct it, we
avoid generating incorrect outputs. When an error is detected and
corrected, a fatal application failure may be prevented. A failure in
HPC systems is typically observed through an application abort. In
some circumstances, an error remains undetected and its impact
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is only observed in the erroneous output of an application. Such
errors are called silent data corruptions (SDC). In some instances, a
failure may be experienced after a long interval following the fault
that caused it. Due to the complexity of hardware and software
environment of HPC systms, diagnosing the root cause and identi-
fying the activation of a fault and the propagation of the resulting
error leading to an incorrect result or fatal failure is di�cult. Due
to these challenges in categorizing the severity and understanding
the impact of various types of faults on an application’s execution
and outcome, developing standardized metrics that measure an
application’s reliability is hard.

Second, the HPC workload consists of scienti�c simulation, mod-
eling and analysis computations, many of which are �oating point
intensive. These computations tend to be naturally tolerant to data
errors since their algorithmic behavior might simply �lter the occa-
sional incorrect value, as is the case with many numerical iterative
algorithms, or they might rely on pseudorandom processes, as is the
case with Monte Carlo techniques. Many scienti�c and engineering
codes that use numerical analysis methods tend to tolerate errors
that result in limited loss in �oating point precision. While the
occurrence of errors may lead to variations in the outputs, often
these perturbations are within an allowable range of correctness.
Therefore, precisely de�ning notion of application reliability of
HPC applications is highly contextual: for certain scenarios, the
reliability of an application is de�ned by its ability to reproduce
state precisely, whereas in other contexts the reliability may be
de�ned in terms of application outcomes that are within a rounding
error of the correct result. This makes it di�cult to characterize
and measure the application reliability.

With the growing scale and complexity of HPC systems, the
concern is that the faults in the system and the resulting errors and
fatal failures will increase exponentially, which could prevent fu-
ture generations of extreme-scale HPC systems from running long
enough for users to run their applications. The current generation
of supercomputers already experience hundreds of faults per day.
Therefore, resilience in HPC systems is becoming an important
primitive along with performance and power e�ciency. To evalu-
ate the usefulness of existing and new resilience solutions for HPC
applications and to optimize their implementations, it is important
to quantify resilience in terms of its key attributes of application re-
liability and performance. There are several speci�c and commonly
recognized needs and drivers for developing application-centric
resilience metrics:

• In a typical multicomponent HPC environment, there are
various types of fault, error and failure events, which im-
pact an application with di�erent levels of severity. The
need to holistically analyze the impact on the appli-
cation’s performance and reliability independent of
the nature of the fault, its root cause and its location
is important to quantify application resilience.

• The need to quantify application resilience indepen-
dently from the platform’s dependability measures,
since the platform MTTF and application MTTF may be
di�erent. Certain types of fault events in the system don’t
a�ect an application’s correctness or performance signi�-
cantly, while other types are fatal. For example, based on

its location, an uncorrectable memory error may cause an
application abort, but the system may still continue run-
ning. Likewise, during partial failures in a HPC system
an application may be able to run to correct completion
without interruption.

• The practical need to analyze the merits of new reliability
solutions, whether hardware or software on an applica-
tion’s resilience. In order to perform a cost-bene�t analysis,
resilience metrics must quantify the improvement in
an application’s resilience and the performance e�-
ciency of the solution.

• HPC applications are a�ected by di�erent types of faults,
and must often be supported by multiple resilience solu-
tions to ensure comprehensive protection. The need to
understand the combined e�ects of employing mul-
tiple solutions on the application reliability and per-
formance is important. For example, a good resilience
metric should be able to quantify the net improvement
in application resilience achieved by the combination of
a checkpoint/restart solution in concert with algorithm-
based fault tolerance routine.

• The need to quantify the performance and reliability
impact of self-correcting algorithmic solutions. Various
applications tolerate the presence of faults by accepting a
loss in precision, or provide algorithmic solutions that take
additional cycles to converge to a solution without raising
an interrupt. Resilience metrics must be able to articulate
the cost of delivering inexact but acceptable outcomes to
the application.

• Cross-layer resilience solutions, which use capabilities at
multiple layers of the system stack, are increasingly be-
ing employed. Thus, the need to quantify the improve-
ment in application resilience as result of combining
partial detection, containment and mitigation solutions
from di�erent layers of the system stack into complete
resilience solutions.

• The need to quantify the impact of running on de-
graded platforms or software environments on an ap-
plication’s performance and reliability. For example, the
user-level fault mitigation (ULFM) library provides the
ability to transparently reconstruct the MPI communicator
upon occurrence of a MPI process failure. Although a paral-
lel application is recovered by shrinking the communicator,
the failure of a process causes loss of computing capacity
as well as loss of application state. A resilience metric must
quantify the reliability and performance impact of the fail-
ure of one or more system resources.

3 RESILIENCE METRICS
An application’s performance analysis normally ignores the behav-
ior of the application in the presence of faults in the system, and
therefore tends to be optimistic. On the other hand, the reliability
analysis focuses on understanding the impact of faults, and the
protection coverage, and therefore does not adequately capture the
impact of faults on an application’s performance. For a complete
assessment of an application’s resilience, it is important to evaluate
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both the reliability and performance attributes. These attributes
can be measured in many di�erent ways.

Due to the complexity of modern HPC environments, under-
standing the chain of events from the activation of a fault, the
propagation of the resulting error, and the ultimate impact on an
application’s execution is hard. The models that describe individual
component reliability and performance behavior are often impre-
cise when applied to the entire system. Furthermore, HPC systems
tend to experience various types of faults and errors, which a�ect
an application running on the system in di�erent ways (ranging
from having no e�ect at all to causing the application to abort). De-
veloping formal methods for the measurement of the reliability and
performance impact for every possible fault type rapidly becomes
a complex problem.

Our goal is to develop metrics that provide a measure of the
resilience of an application in a manner independent of the type and
severity of fault events. We also seek to use the metric to evaluate
the e�ectiveness of new solutions that claim to improve resilience,
independent of the layer of abstraction at which the solution is
deployed. Therefore, we have developed outcome-based metrics for
quantifying the resilience of an application. In general, outcome
metrics are based on the end results of a process that follow from
a set of preceding events, and they are used to assess the ultimate
impact of the events on the outcome of a system. These metrics
are often used to evaluate competing objectives that may require
tradeo�s. For our purposes, outcome-based metrics enable us to
quantify the tangible impact of any fault event on an application’s
overall performance and reliability attributes.

3.1 Resilience Factor
We de�ne an outcome metric called Resilience Factor (RF) to mea-
sure application resilience. Since the resilience of an application
is concerned with the integrity of the output state and the perfor-
mance e�ciency of achieving the outcome in the presence of fault
events, the RF has two distinct forms: the RFPer f ormanceEf f iciency
(RFPE ) and the RFValueEf f iciency (RFV E ).

The RFPE is calculated as the ratio of the time to solution in the
absence of fault events to the time to solution in the presence of
fault events. This is a relative e�ciency measure, which measures
the extent to which the performance of an application is impacted
by the occurrence of fault events:

RFPE =
time − to − solutionevent−f r ee

time − to − solutionevents
(1)

The term time-to-solutionevents captures the overhead to the
time to solution associated with dealing with faults events. It ac-
counts for the performance overhead for the detection, diagnosis,
and mitigation actions. However, since the RFPE is an outcome
metric, the term time-to-solutionevents is agnostic to the type of
event, i.e., whether the event is a fault, error or failure, its root
cause, or its location. The term also accounts for scenarios in which
an application a�ected by an event continues running on a sys-
tem operating in a partially failed or degraded mode. The time-to-
solutionevent−f r ee term can be obtained from an application run
that is provably fault free, or by averaging the execution time for

statistical con�dence of several runs that produce a known correct
outcome.

The RFPE may also be used to measure the performance e�-
ciency of introducing a new resilience technique for a given ap-
plication. Here the RFPE ratio captures the performance overhead
incurred by the detection and mitigation mechanisms used by the
solution. Therefore, the RFPE is calculated as the ratio of the time
to solutions of the original application to a version enhanced using
a resilience solution X, with the assumption that both terms are
measured for identical fault rates.

RFPE =
time − to − solutionOriдinal

time − to − solutionSolutionX
(2)

The RFPE ≤ 1 and a value of RFPE closer to 1 indicates higher
intrinsic e�ciency. Because the RFPE expresses the ratio of the time
to solution in the absence of fault events to the time to solution with
fault events, describes the measurement of the intrinsic reliability
of an application and the performance overhead of managing the
faults.

The de�nition of resilience emphasizes the critical transforma-
tion of application data into scienti�c results. The impact of fault
events on an application’s data is measured by the RFV E metric. It
is used to measure the reliability of an application by computing
the relative value e�ciency of a program variable. The RFV E is
based on the basic idea of measuring application data e�ciency as
a distance from a known correct or approximated value function.
At a conceptual level, the RFV E provides a comparison between
the value of a program variable when the application is a�ected by
a fault event to a notional perfect value derived from an event-free
application execution.

RFV E =
ProдramValueevent−f r ee

ProдramValueevents

=
Vx

Vx+ | σ |

(3)

The Vx is the expected correct value of a program variable.
Similar to the time-to-solutionevent−f r ee , the Vx can be obtained
from an application run that is known to be correct, or by averaging
the variable value for statistical con�dence from runs that produce
an acceptable outcome. Theσ represents the variance in a program’s
value due to the occurrence of fault events during its execution.
Since the value e�ciency metric is designed to measure the impact
of faults on scienti�c outcome of an application, it is suitable only
for application data values, and is not applicable to any control �ow
variables, pointer and address values.

Using only the RFPE to measure performance e�ciency does not
provide a measure of the impact of faults on the reliability of the
application. On the other hand, the RFV E only measures reliability
of application data values, and by itself does not account for the fault
handling e�ciency. However, for evaluating application resilience
the two metrics when viewed in context help the HPC designers
and users to compare and contrast the suitability of alternative
resilience solutions, and select the most appropriate one for their
application.
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3.2 Resilience Factor Yield
To summarize the resilience properties of an application using a
single number, the resilience factors must be combined in a way
that measures the combined e�ect of all RFs. Because the RF is a
ratio that calculates performance and value e�ciency rather than
an absolute execution time or absolute data value, the average
resilience of an application is computed by taking a geometric mean
of the RFs. We call this measure the Resilience Factor Yield (RY),
and it may be applied to summarize RFPE and RFV E . The geometric
mean has the property that the geometric mean of the ratios is the
same as the ratio of the geometric means, and it provides a measure
of central tendency.

When an HPC application consists of a set of tasks T = {T1, T2,
T3 . . . TN } and the RF for each individual task is computed as RFTn ,
the overall application resilience may be calculated using the RY:

RY = n
√
RFT 1RFT 2...RFTn (4)

Since an HPC application is vulnerable to multiple types of fault
events, it may be possible that several distinct resilience solutions
are combined to enhance its overall resilience. The RY is an ap-
propriate metric for understanding the overall improvement in
application resilience on account of multiple solutions. For a set
of solutions S={S1, S2, S3 ... SN } that each provide fault resilience
for an application, the RYPE provides a measure of their combined
impact on the performance characteristics. These solutions may be
implemented at any layer of the system stack.

Similarly, the RYV E enables the measurement of aggregate e�ect
of multiple fault models, or the combination of resilience solutions
on the e�ciency of an application data value:

RYV E =
n
√
RFV E1RFV E2 ...RFV En (5)

Since the RFV E metric is used to measure the e�ciency of a single
application data value, the RY may also be used to average the RF of
more than one application data value. For example, in a matrix data
structure, the RY provides a single value e�ciency measure for the
matrix by taking the geometric mean of the RFV E of each element
of the matrix. When the RY is applied to several application data
values, there is an implicit assumption of independence between
the values. For a simple application that contains only two variables
A and B, both of these are vulnerable to errors, and the RFA and
RFB measures the impact of any perturbations of each value on the
outcome of the application. The cumulative e�ect, i.e., the errors in
A and B is computed by calculating the RY.

4 APPLYING THE RESILIENCE METRICS
In this section, we demonstrate the use of the resilience measures
for a linear solver application.

4.1 Measuring Soft Error Resilience
We use the RF to measure the resilience of an iterative linear solver
application to silent errors (also known as silent data corruptions).
Since the SDCs typically remain undetected, the MTTI of the ap-
plication does not capture the impact of the SDCs on the solver. In
solving a linear system of equations A.x = B, the iterative solver be-
gins with an approximation of the solution and progressively re�nes

the solution until the residual error is below a speci�ed threshold.
The injection of a silent data corruption within the solver may
impact the outcome of the application in di�erent ways depending
on the location of the error. The silent error may be benign and
not a�ect the outcome of the application, may be detected by the
system, cause abnormal termination of the solver, or may remain
undetected but a�ect the correctness of the �nal outcome.

For our study, we injected the SDCs in only the solution vector
’x’ of the solver during execution of the application. Therefore, the
SDCs are unlikely to cause the application to fail, but they may
a�ect its correctness and its time to solution. The RFPE indicates
the impact of SDCs on the performance of the iterative linear solver.
Figure 2 (a) illustrates the RFPE for application runs during which
upto 8 SDCs were injected into the solution vector. The time to
solution terms used in the calculation of the RFPE are for runs
that complete correctly. Despite the fact that there is no algorithm-
based detection or mitigation available for these application runs,
the RFPE > 0.9 since the algorithm requires a limited number of
additional iterations to converge to correct solutions due to the
intrinsic resilience of the solver.

To improve the resilience of the iterative linear solver using
algorithm-based fault tolerance techniques, we incorporate SDC
detection by tracking the residual norm of the solver. For a correct
solution, it is expected the residual monotonically reduces every
iteration of the solver. Therefore, the detection algorithm �ags the
presence of a SDC when the montononicity condition is violated.
For the recovery of the solver, the iterations performed until the
detection of the error condition are discarded, and the solver is
restarted from an initialized state. This avoids the need to maintain
checkpoints of the variable as the solver progresses. Figure 2 (b)
shows the impact of the ABFT detection and mitigation on the
RFPE of the solver. The RFPE for the linear solver is still > 0.9 since
the algorithmic detection is fairly inexpensive. The RFPE being
> 0.9 even for higher SDC injection rates suggests that not every
SDC causes a violation of the monotonicity norm of the residual.
Therefore, although the recovery entails discarding the iterations
of the solver, such action is not invoked for every SDC.

Figure 3 summarizes the resilience factor in terms of the precision
for the iterative linear solver. For these SDC injection experiments,
we measure the impact on the residual value. The Figure 3 shows
the RFV E for the residual for multiple SDC injection rates. For
these runs there is no algorithm-based detection or mitigation. The
distribution of RFV E illustrates the variance in the residual resulting
from the silent data corruptions. For most runs, the RFV E values
are clustered above 0.9, which con�rms inherent resilience of the
solver algorithm and the limited impact of the multiple SDCs on
the residual value.

4.2 Measuring Hard Error Resilience
We also use the RF to evaluate the resilience of the solver to hard
errors that result in process failures. For an MPI implementation of
the solver, we rely on the primitives supported by the User-level Fail-
ure Mitigation (ULFM) interface. ULFM extends the MPI standard
with primitives that enable support for handling process failures,
which enable parallel applications to recover from the failure of
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Figure 2: Resilience FactorPE for SDC a�ected linear solver
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Figure 3: Resilience Factorvalue for linear solver residual

MPI ranks. The solver uses error codes returned from MPI rou-
tines to detect the presence of failed ranks. The MPI_Comm_revoke
revokes the communicator, and for recovery of the application,
the MPI_Comm_shrink primitive is used to shrink a communica-
tor, which excludes all known failed MPI ranks. The MPI process
failure recovery mechanism requires the solution vector state on
each processor rank to be copied to a neighbor rank during normal
operation.

The results for the RFPE for the linear solver in Figure 4 compare
the resilience factor, i.e., the performance outcome ratio between
a failure free execution of the solver to the performance in the
presence of multiple MPI process rank failures. The results indicate
the ine�ciency of the ULFM-based recovery and the performance
impact of continuing the solver on partially failed communicator.
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Figure 4: Resilience Factorper f for solver a�ected by MPI
process failures

4.3 Measuring Hard and Soft Error Resilience
One of the key bene�ts of the RF is that it enables the quanti�ca-
tion of an application’s reliability and performance characteristics
independent of the fault model. Therefore, the metric captures the
combined impact on these application attributes in a single number.
In order to evaluate the combined e�ect of solutions that provide
hard and soft error resilience for the linear solver application, we
rely on the algorithm-based detection and mitigation for transient
silent errors and the ULFM MPI interface for tolerating process
failures. The RFPE for the linear solver shown in Figure 5 shows
the results for application execution runs, which are injected with
SDCs and hard errors that result in MPI rank failures. For these
experiments, the application uses 32 MPI ranks and each run is
injected with 1 hard error and multiple SDCs. Despite the single
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Figure 5: Resilience Factorper f for linear solver with hard
and soft errors

failure per run, the solver shows rapid decrease in the RFPE as the
number of SDCs injected is increased.

4.4 Calculating the Resilience Factor Yield
The RFPE provides a measure of the impact of incorporating a
resilience solution for distinct fault types on the application per-
formance. Similarly the RFV E measures the improvements in an
application’s reliability due to a speci�c solution. However, calcu-
lating the RF separately provides an incomplete assessment of the
overall application resilience. To understand the combined e�ect
of using the algorithmic solution for SDC detection and mitigation
and the ULFM-based solution for handling process failures, we ap-
ply our Resilience Factor Yield metric. We calculate the RFPE−SE
using experiments in which the solver application is enhanced with
the algorithm-based detection and mitigation and the application
execution is subjected to only SDCs. Similarly, the RFPE−HE is
calculated using experiments in which the ULFM primitives are
used for the detection of process failures and recovery of the MPI
communicator. The RY, which is calculated as the geometric mean
of the RFPE−SE and RFPE−HE , provides a single �gure of merit
for application resilience to SDC and fail-stop errors. We correlate
this calculated RY with the RFPE−HE+SE , which is measured using
experiments in which the application code contains the algorithm-
based mechanisms as well as the ULFM primitives and the appli-
cation is simultaneously subjected to hard and soft errors. For the
measurement of the RFPE−HE+SE , the application is injected with
a single hard error and multiple SDCs. For the calculation of the
RY, the application runs are subjected to the same number of SDCs
for the individual measurement of the RFPE−SE and injected with
a single hard error per run for calculating the RFPE−HE . Figure 6
shows the correlation between the RY calculated using the equation
5 and the actual RFPE−HE+SE . The strong correlation between the
RY and RFPE−HE+SE for similar fault injection rates justi�es the
use of our resilience factor yield to measure the overall impact
on application resilience of multiple disparate fault types and the
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Figure 6: Correlating the Resilience Factor Yield for hard
and soft errors

composition of resilience solutions implemented at multiple layers
of the system.

5 RELATEDWORK
While the MTTF and MTTR are the most widely used metrics
for quantifying the reliability of a system, several variations of
these metrics have been developed. For example, with the recogni-
tion that not every anomalous event in a system results in failure,
the measure of mean time to interrupt (MTTI) is used in place of
MTTF for intervals between errors. However, the MTTI does not
for account for silent errors, which escape detection but result in
incorrect application outcomes or premature termination of an ap-
plication. Other variations of the MTTF are the job MTTF (JMTTF),
the system MTTF (SMTTF), which accounts for the full HPC sys-
tem and node MTTF (NMTTF) for individual nodes [16]. These
reliability metrics provide a measure of the continuous service
accomplishment, whereas availability provides a measure of the
service accomplishment as a ratio that includes the time to repair
a system and resume service. Note that reliability and availability
are quanti�able metrics, rather than synonyms for dependability.

The Architectural Vulnerability Factor (AVF) [10] was de�ned
as the probability that a fault in a microarchitectural structure will
result in a visible error in the �nal output of a program. The Timing
Vulnerability Factor (TVF) provides a measure of the fraction of
time a circuit node or device is susceptible to soft error upsets. The
Program Vulnerability Factor (PVF) is a program-level metric that
allows insight into the vulnerability of a software resource to hard-
ware faults [15]. The Data Vulnerability Factor (DVF) was proposed
as a metric to model the vulnerabilities of individual application
data structures to support quantifying the impact of algorithm op-
timization [17]. The vulnerability factors provide an assessment of
how sensitive a system is to a speci�c type of event. The derating
factor was de�ned as the inverse of total error rate to represent
an application’s resilience against transient faults in memory [4].
Therefore, a derating factor of 10 implies that one out of every
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10 transient faults in the system memory would lead to system
failure. The normalized memory derating factor (NMDF) metric
was developed to account for the size of the memory footprint, and
is calculated as the inverse of total error rate divided by the size of
the footprint [9].

Performability metrics have been developed to study the relia-
bility and performance indices of a system in a composite manner
[12]. Workload e�ciency is a system-centric metric, which is a
ratio of the wall clock running time for an idealized failure-free
execution of a mix of several jobs to the actual wall clock time that
includes scheduled and unscheduled system downtime [14]. The
Total Productivity Factor (TPF), which is inspired by the de�nition
of productivity and utility in economics, is de�ned as the ratio of the
total cost of ownership of a HPC system to the value of productive
scienti�c research achieved from the lifetime of the system [13].
The Failure Index (FI) has been proposed to study HPC application
log �les since it highlights the �uctuations in the failure intervals of
an HPC system in contrast to statistical mean of all failure intervals
provided by MTTF, which tends to ignore the outlier values. The
FI is inspired by the Gini and Atkinson indices, which provide a
measure of dispersion and inequality rather measure of central
tendency of failure rate [11].

6 CONCLUSION
The resilience of high-performance computing applications to the
presence of frequent faults, errors and failures in the system is one
of the key challenges as systems use components manufactured
using deeply scaled transistor devices, which are inherently less
reliable than previous generations, and as system architectures and
the software stack becomes progressively more complex. The HPC
community has de�ned term resilience using an application centric
paradigm, which places greater emphasis on the correctness of
an application and the performance e�ciency of managing any
fault, error or failure events during its execution. However, we
have continued to rely on system-based dependability metrics for
reliability and availability. In this paper, we proposed metrics for
quantifying resilience. In developing these new metrics, we advo-
cate for an outcome-based approach to quantify resilience in terms
of the performance and reliability implications of fault events on
HPC applications. Outcome metrics attempt to consider the overall
impact of fault events on an application’s performance and the
reliability of its computation. The resilience factor (RF) provides a
measure of the impact of events in terms of performance and relia-
bility outcomes. When applications are protected using resilience
mechanisms, the RF metric provides a consistent method to mea-
sure the overall improvement in the reliability, and the penalty for
detection, containment and mitigation of events, independent of the
fault model and whether the resilience mechanism is a hardware or
software-based solution. The resilience yield (RY) provides a mea-
sure of the e�ective resilience by combining the RFPE and RFV E of
the individual aspects of an HPC application. We demonstrated the
utility of the designed metrics by applying them to a linear solver
application subjected to transient errors in the form of SDCs and
hard errors that result in MPI process failures. The RF and RY were
shown to provide simple, consistent ways to quantify the resilience
of HPC applications.
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