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Abstract—
For high-performance computing (HPC) system designers and

users, meeting the myriad challenges of next-generation exascale
supercomputing systems requires rethinking their approach to
application and system software design. Among these challenges,
providing resiliency and stability to the scientific applications
in the presence of high fault rates requires new approaches
to software architecture and design. As HPC systems become
increasingly complex, they require intricate solutions for detec-
tion and mitigation for various modes of faults and errors that
occur in these large-scale systems, as well as solutions for failure
recovery. These resiliency solutions often interact with and affect
other system properties, including application scalability, power
and energy efficiency. Therefore, resilience solutions for HPC
systems must be thoughtfully engineered and deployed.

In previous work, we developed the concept of resilience design
patterns, which consist of templated solutions based on well-
established techniques for detection, mitigation and recovery. In
this paper, we use these patterns as the foundation to propose
new approaches to designing runtime systems for HPC systems.
The instantiation of these patterns within a runtime system
enables flexible and adaptable end-to-end resiliency solutions for
HPC environments. The paper describes the architecture of the
runtime system, named Plexus, and the strategies for dynamically
composing and adapting pattern instances under runtime control.
This runtime-based approach enables actively balancing the cost-
benefit trade-off between performance overhead and protection
coverage of the resilience solutions. Based on a prototype im-
plementation of PLEXUS, we demonstrate the resiliency and
performance gains achieved by the pattern-based runtime system
for a parallel linear solver application.

Index Terms—resilience, runtime systems, high-performance
computing, exascale computing, software patterns
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I. INTRODUCTION

High-performance computing (HPC) systems provide the
computational capabilities for driving the simulation, modeling
and analysis in various areas of scientific research. Driven
by the quest for greater computational performance and by
rapid technological changes, the complexity of node and sys-
tem architectures of modern supercomputing systems, which
are massively parallel systems, has rapidly increased over
the past decade. For the next generation of exascale HPC
systems, ever increasing levels of parallelism and emerging
heterogeneity of computational and memory resources are
forcing a reevaluation of the current approaches to designing
the application and system software for HPC systems. In
addition to harnessing the parallelism for scalable applica-
tion performance, the software stack must also contend with
the challenges of resiliency, power and energy efficiency. In
particular, managing the resilience of future extreme-scale
systems is a complex, multidimensional challenge. Various
types of faults are expected to increase significantly in high-
performance computing (HPC) systems as the number of
system components increases and use technologies that include
smaller feature sizes, near-threshold voltage, which make the
components inherently less reliable. As HPC systems approach
exaflops scale, the sheer frequency of occurrence of faults and
errors in these systems in addition to the scale of the systems
makes the detection and mitigation of faults and recovery
from failures a difficult challenge [1] [2]. The need for fault
management solutions to be cognizant of the often-divergent
objectives of robust computation, scalable performance and
power efficiency requires careful thought when selecting and
deploying resilience solutions in HPC systems.

In previous work, we developed the concept of resilience
design patterns [3] to foster a structured approach to address
the resilience challenge in HPC systems. The patterns are
descriptions of well-established solutions that are used to
address the various types of faults, errors and failure events
in HPC systems. Inspired by design patterns used in object
oriented programming [4] and architecture [5], the patterns
are templated solutions that formalize the set of techniques978-1-7281-8003-8/20$31.00 ©2018 IEEE
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Fig. 1. Classification of Resilience Design Patterns

used to deal with specific types of faults, errors or failure.
The patterns enable the design of flexible resilience solutions
through integration of multiple patterns into composite solu-
tions. However, the resilience design patterns are described
in [3] at a sufficiently high level of abstraction such that
they are free of any implementation details. In this work,
we leverage the resilience patterns to develop a new ap-
proach to designing runtime systems that emphasize resilient
operation in HPC systems, called Plexus. At the heart of
our approach is the instantiation of an intricate network of
resilience design patterns in the runtime system to provide
flexible end-to-end resilience for HPC applications. Given the
key role of runtime systems play in supporting the OS in
optimizing various application and system parameters, they
are well-positioned to systematically manage the instances of
the resilience design patterns. Plexus defines an architecture,
a set of runtime components and associated mechanisms that
constitute a framework for building resilient HPC software
environments. The main contributions of this work are:

• We present the architecture of the Plexus runtime system,
which implements pattern instances to provide a resilient
environment for HPC applications while supporting exist-
ing numerical and domain specific libraries, other runtime
systems and frameworks (Section III)

• We develop strategies for the resilience patterns to be
instantiated, modified and destroyed by the runtime based
on static and dynamic policies to meet the resiliency
needs of HPC applications (Section IV)

• We present a prototype implementation and evaluate the
cost and benefit of these runtime techniques with the
instancing of failure detection and recovery patterns for
a large-scale parallel application (Sections V and VI)

II. RESILIENCE DESIGN PATTERNS

In this section, we provide a description of the concept of
resilience design patterns, the motivation behind the devel-
opment of the patterns, their classification scheme and brief
synopses of the patterns to enable to reader to understand
the remainder of the paper. The complete specification of the
resilience design patterns is detailed in [6]. These resilience

patterns capture solutions that have been developed for HPC
systems and evolved over time. Every HPC resilience solution
consists of the following core capabilities: (1) Detection: Iden-
tifying the presence of an anomaly in the data or control value,
or the discovery of error or failure events in a HPC system;
(2) Containment: When an error or failure is discovered in a
system, containment strategies assist in limiting the impact of
the event on other components in the system; (3) Recovery:
The elimination of the error or failure condition, or isolation
and bypassing of a subcomponent with the error or failure.
Solutions that provide these capabilities have been developed
and optimized for large-scale HPC systems and the essential
techniques they employ will continue to be relevant for future
generations of supercomputing systems. A resilience design
pattern formalizes these proven techniques and the trade-offs
involved when using them.

Through extensive surveys and studies of HPC resilience
techniques, we captured the descriptions of the HPC resilience
design patterns, which are written down in a standardized
template form. Each design pattern describes a solution to
a recurring HPC resilience problem under a set of clearly
defined assumptions about the type of the fault, error or failure
it deals with and the constraints about the system behavior
it guarantees. Yet the resilience design patterns are specified
at a high level of abstraction and describe solutions that are
free of implementation details. Expressing resilience solutions
as abstract design patterns makes them more accessible to
hardware and software designers of new HPC systems. From
the collection of patterns we compiled a comprehensive pattern
catalog [3] [6] in which, we codify the resilience design
patterns in a layered hierarchy, which classifies the patterns
in the catalog, and clearly conveys the relationships among
them. The classification is illustrated in 1. In this hierarchical
organization, the high-level patterns describe the outline of the
solution in abstract, and lower level patterns provide additional
guidelines and constraints that are encountered during the
implementation of the pattern in an HPC environment. This or-
ganization suggests a number of ways in which these patterns
can be combined to develop complete resilience solutions and
also makes it easy to choose between design alternatives [7].
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Fig. 2. Plexus: Pattern-Oriented Runtime System Architecture

The resilience patterns in the catalog are broadly classified
into State patterns and Behavioral patterns. The State patterns
(not shown in Figure 1) encapsulate the protection domain
of a resilience solution, i.e., they define the aspects of the
application and/or system state for which the detection and
mitigation applies. They also define the containment scope,
i.e., the scope of how far a fault or error event propagates.
The Behavioral patterns contain solutions that enables the
system that instantiates them to cope with the presence of fault,
error, or failure events by providing detection, containment
and/or recovery capabilities. These patterns are hierarchically
classified into: (i) Strategy patterns, which define high-level
policies of a resilience solution and whose descriptions are
deliberately abstract to contemplate the overall organization of
a resilience solution; (ii) Architecture patterns, which convey
specific methods necessary for the construction of a resilience
solution and provide the outline of the actions necessary to
handle a fault event and, (iii) Structural patterns, which
provide concrete descriptions of the solution that are intended
to guide the implementation of a resilience solution. This
hierarchy is illustrated in 1.

The Fault Diagnosis pattern is a behavioral pattern
that identifies the presence of the fault and determines its
root cause. The solution consists of deploying an auxiliary
monitoring system. The Reconfiguration pattern entails
maintaining logical groupings of the sub-systems and modify-
ing their interconnections to isolate the affected (sub-)system
in response to failures. The Checkpoint-Recovery pat-
tern, which is a formalization of well-known solution for
handling system failures, is based on the creation of snapshots
of the system state and maintenance of these checkpoints on a
persistent storage system during the error- or failure-free op-
eration of the system; these snapshots are used to recreate last

known correct system state. The N-modular Redundancy
and Forward Error Correction Code patterns offset
the effects of an error/failure by provisioning excess re-
sources or information in the system design. The N-modular
Redundancy pattern employs additional resources to re-
cover system operation by replacing subsystems that have
encountered errors or have failed; the Forward Error
Correction Code pattern uses some form of redundant in-
formation about the system to detect and correct corruptions of
the system state. The Design Diversity pattern creates
distinct but functionally equivalent versions of the same design
specification. The versions are created by different individuals
or teams, or developed using different tools with intent of elim-
inating design bugs in the system. The detailed descriptions of
resilience design pattern solutions, including structure of the
solution, scenarios where the pattern is applicable, pitfalls and
consequences, implementation hints as well as the relatedness
to the other patterns in the layered hierarchy are included in
the full pattern catalog [6]. Complete resilience solutions that
offer detection, containment and recovery capabilities for a
specific component or the complete HPC system, are often
composed by combining one or more patterns in the catalog.

III. PLEXUS

A. Design Principles

In modern large-scale HPC systems, runtime systems are
a critical part of the software stack that complement the
operating system (OS), the application programming interface
(API) and the compiler frameworks. Runtime systems provide
adaptive means to guide resource management and optimize
application execution through the use of static and dynamic
policies. They exploit knowledge about the status of the
application and gather information about the system hardware



operation to make decisions about task scheduling, synchro-
nization, message-driven communication, power optimization,
etc. The role of the runtime system in the HPC software stack
is to bridge the gap between the system capabilities and the
actual achievable performance for realistic HPC applications.
Designing a runtime system that supports resiliency for large-
scale HPC systems requires carefully balancing the efficiency,
scalability, productivity, and portability properties provided by
existing libraries and runtime systems in the software stack
with the capabilities that provide detection, containment and
recovery. For example, the Message Passing Interface (MPI)
has been the dominant standard for writing parallel applica-
tions that run on HPC platforms; productivity libraries such
as BLAS and LAPACK are widely used for highly-optimized
numerical linear algebra routines; and, the OpenMP API and
runtime system are used for shared memory multithreaded
processing. One of the primary goals of this work is to ensure
that the runtime system maintains interoperatibility with these
runtime systems and library frameworks while providing a
resilient environment for HPC applications by managing the
detection, containment and recovery capabilities based on the
requirements of the applications and the state of the HPC
system. Additionally, for addressing the different types of
fault, error and failure events, separate resiliency solutions may
need to be deployed by the runtime system. The selection of
these solutions may be driven by static and dynamic policies
that are driven by the needs of the application, the system
architecture and the state of the available system resources.
The implementations of the solutions may require varying
levels of engagement from the system user and application
programmer. Therefore, the high-level design goals of the
runtime system architecture are:

• Flexibility in adapting resiliency capabilities based on the
needs of the HPC application

• Integration with existing HPC programming models and
leveraging existing libraries and runtimes

• Modularity in defining the scope and capabilities of the
solutions

• Opportunistic selection of resiliency solutions among
alternatives

• Interoperatibility with existing runtime systems and pro-
gramming interfaces

B. Runtime System Architecture

To design a resilience-oriented runtime system that is cog-
nizant of these objectives, we define the architecture of the
PLEXUS runtime system that is based on leveraging the
design patterns to create resilient environments for applications
running on HPC systems. For a specific type of fault event,
the solution for its detection, containment and recovery by
the runtime system will typically require instantiation and
combination of several resilience patterns. While the im-
plementation of individual patterns in the catalog may be
independently customized to the needs of the solution being
designed, the behavior of the composite of patterns may need
to be dynamically adapted and modified to meet the needs

of the HPC application and adapted to constraints of the
system architecture and software environment. Therefore, the
runtime instantiation and adaptation of an intricate network
of various patterns from the catalog to handle the multitude
of fault, error and failure types that occur in HPC systems
is central to the design philosophy of the PLEXUS runtime
system. We believe that the instantiation and management of
the resilience design patterns under the control of the runtime
system offers opportunities to create adaptable and flexible,
end-to-end resilience solutions for HPC systems.

The Plexus runtime manages the creation of the resilience
patterns. This entails providing detection or recovery capabili-
ties within the runtime system or leveraging the capabilities of
existing library frameworks that provide resilience capabilities.
The seamless integration of the interfaces of such library
frameworks and the APIs used by the HPC application are
managed by the Plexus runtime. Based on the rate of fault
events in the system, or other static or dynamic policies,
the pattern behavior may need to be adapted dynamically to
modulate its resiliency properties. The Plexus runtime also
manages the properties of instantiated patterns depending on
the extent to which the application programmer or system user
is involved in creating and modifying the policies. Certain
group of patterns are instantiated, modified and destroyed
under complete runtime control without any engagement with
the HPC application program; other patterns are created and
modified at the application level using Plexus runtime inter-
faces.

To cater to these various modes of managing the pattern-
based resilience solutions, the architecture of the Plexus run-
time is based on an extensible library that: (i) implements
a core set of detection, containment and recovery functions;
these functions are exposed to the HPC applications as a
set of Plexus APIs (ii) provides a set of basic interfaces
for extensibility, which allow for the integration of other
libraries and frameworks that provide these capabilities; and
(iii) contains interfaces that modify pattern behavior based on
static or dynamic policies. These interfaces enable applica-
tions to request the invocation and termination of patterns
and modification of policies for the patterns’ behavior. The
instantiation of a pattern under runtime control entails invoking
one of the native Plexus routines for providing the resiliency
functions for an application object, or setting extension objects
to use other library functionality. Metadata about the pattern
is also maintained by the Plexus runtime to manage the
pattern behavior and to create logical groups of patterns. This
architecture of Plexus facilitates the creation of resilience
solutions that address specific fault models by invoking and
managing the patterns as logical groups. It also permits the
integration of other libraries and runtimes to leverage their
respective productivity and optimization features. The Plexus
interfaces to define the static and dynamic policies for the
pattern management enables the resilience solutions to be
applied based on well-defined rules, or opportunistically in
response to error or failure events in the system.



C. Components

The PLEXUS runtime system is based on a component-
based architecture. This design approach allows the runtime
system to achieve the flexibility to introduce newer capabilities
for new fault types and develop new policies tailored to
application requirements and system architecture. The archi-
tecture of PLEXUS also enables rapid integration of other
productivity libraries and runtime systems, which continuously
evolve to leverage the advancements in the hardware and
software systems. Associated with each component is a set
of functions related to the role of the component in managing
the pattern instances. Figure 2 shows the conceptual design
of Plexus and its components. The key components of the
PLEXUS runtime system are:

Pattern Factory
The Pattern Factory is the component that is responsible
for instantiating the patterns. It exposes a set of routines
for intializing native resiliency functionality in Plexus and
provides the extensibility interfaces that allow the integration
of other library frameworks. This component activates the
metadata for each pattern instance and links related patterns
during instantiation to enable creation of composite pattern
solutions.

Pattern Modifier
The Pattern Modifier adapts the behavior of the already
instantiated patterns based on policy decisions. The properties
of the pattern and rules for its behavior are derived from
the pattern metadata. The component’s routines permit HPC
applications to specify static or dynamic policies about pattern
behavior.

Pattern Recycle
The Pattern Recycle destroys the patterns when the resilience
capabilities are no longer required. The recycle of a pattern in-
stance by the runtime allows it to only maintain pattern object
instances and related state information for patterns relevant to
the HPC application and those that minimize the overhead to
system resources. The recycle entails the termination of the
pattern object, unlinking any external library objects, and the
clean up of any resources allocated and metadata related to the
pattern instance. The metadata and policy information related
to the pattern are also removed.

Interface Adapter
The Interface Adapter component serves as the gateway for
function calls made by the HPC application program. This
entails invocation of the native Plexus runtime-based resilience
modules. This component also provides routines for exten-
sibility, which enables other library objects to be integrated
and handles forwarding of requests to these libraries with the
appropriate policy parameters to tune the required resiliency
features provided by the libraries.

Pattern Property Manager
This component is responsible for maintaining the metadata
for the active resilience patterns in the runtime system. It also

maintains the policies related to groups of linked patterns. The
component’s routines allow the pattern policies to be initial-
ized and dynamically modified during application execution.

IV. PARADIGMS FOR RUNTIME SYSTEM-DRIVEN PATTERN
MANAGEMENT

The composition of a set of patterns provide a complete
resilience solution for specific fault model. As the Plexus
runtime instantiates several such groups of patterns, the net-
work of patterns becomes fairly complex. In an effort to
systematically organize the patterns, we explore organizational
paradigms for the patterns to effectively managed by the
runtime. The paradigms outline guidelines for how patterns are
interconnected and how they interact and influence the strate-
gies for instantiating, modifying and destroying the patterns.
We develop three paradigms: the Integrated, Interception,
Service-Oriented. A collection of patterns linked together in
accordance with one of these paradigms forms a logical group-
ing of patterns. The organizational paradigms also determines
how the HPC application interacts with the Plexus runtime
system. These paradigms are inspired by similar fault tolerance
strategies used for objects in the Fault Tolerant CORBA (FT-
CORBA) standard [8].

A. Integrated Resilience Pattern Paradigm

The patterns in this paradigm are organized to provide
the HPC application with explicit control over the pattern
instantiation and behavior. This requires the application code
to include the Plexus routines that interact directly with the
runtime components. The workings of the integrated resilience
strategy is illustrated in Figure 3. With this pattern organiza-
tion, the application defines the state pattern, i.e. the scope of
the protection domain, and is aware of its resiliency properties
since it explicitly selects the behavioral patterns for detection
and recovery.
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B. Interception Resilience Pattern Paradigm

In this organization of the patterns, the HPC application
is oblivious to the presence of the pattern-based capabilities
provided by the Plexus runtime. The distinctive advantage of
this paradigm is the transparency of the resiliency features; the
application code requires no modification or recompilation.



The management of the patterns is completely under the
control of the runtime system. However, the Iterface Adapter
component contains a shim library that transparently intercepts
API calls made by the application. The pattern instantiation
entails tracking the scope of the protection domain based on
the arguments of the API calls and setting up fault detection
and recovery functionality by invoking native Plexus routines
or another library integrated through the extensible interface.
Figure 4 shows interception-based paradigm in the runtime
system.
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C. Service-Oriented Resilience Paradigm

In this paradigm the pattern instances that are created by the
runtime are decoupled from the HPC application and the other
components in the software environment. The key benefit of
this pattern organization is ability to activate and deactivate the
pattern-based detection, containment and recovery capabilities
dynamically and to modify their properties as required. The
patterns are activated under set of runtime parameters that
define policies for the behavior of the patterns.The instanti-
ation and management of the patterns is completely under the
control of the runtime system. The pattern-based capabilities
can also be disabled during the application execution. The
workings of this paradigm of pattern management is shown in
Figure 5.
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V. PROTOTYPE IMPLEMENTATION

We developed a prototype of the Plexus runtime that
addresses two of the most important classes of faults that
occur in large-scale HPC systems: (i) process failures on
account of one or compute nodes malfunctioning, and (ii)
silent data corruption in the application program data on
account of transient faults in the system. For each type of
fault, we instantiate a set of patterns that provide detection,
containment and recovery functions; however, the patterns for
the process failures and transient faults are organized using
different paradigms.

For addressing the process failures, we aim to develop a
pattern-driven solution that provides transparent failure recov-
ery, which calls for the use of the Interception paradigm. The
dominant model of parallel computation in HPC applications
is based on message passing based on the MPI standard.
However, most implementations of MPI such as OpenMPI
and MPICH are not capable of gracefully handling process
failures. The default response in case of even a single process
failure is to crash the application since the library’s default
error handler is MPI ERRORS ARE FATAL. In our Plexus
implementation, the Interface Adapter component implements
a shim library that transparently intercepts MPI library calls. It
also instantiates failure detection and recovery patterns, which
are realized using the User Level Failure Mitigation (ULFM)
[9] library. ULFM includes a set of functions and primitives
that are proposed extensions to be included in a future MPI
standard, which enable tolerating process failures. While the
ULFM extensions are concise, they require applications to
make significant modifications to their application codes to
leverage the fault tolerance features. By invocation of the
patterns under the control of the Pattern Factory, much of
the complexity of detection and recovery is handled by the
patterns allowing an HPC application to run on a large-scale
system unmodified, providing the abstraction of a failure-free
system.

Fatal errors that cause process failures in MPI programs are
discovered by Detection pattern. The default response in case
of MPI process failure is to crash the application since the
default error handler is MPI ERRORS ARE FATAL.
The detection pattern implementation leverages the
primitives offered by the ULFM implementation of
MPI: the MPI COM AGREE, MPI COMM REVOKE,
MPI COMM FAILURE ACK. ULFM guarantees that all
MPI communications should return an ERR PROC FAILED
error code if the runtime detects a process failure in the
communicator. The notification of failures to other processes is
propagated through constructs such as MPI ERR REVOKED
and MPI ERR PROC FAILED. The Recovery pattern
isolates a failed process from the MPI communicator,
and rebuilds the communicator with the exclusion of the
failed process. The implementation uses ULFM extension
MPI COMM SHRINK primitive for this purpose. The scope
of the protection domain, i.e., the state pattern encompasses
all processes in the MPI communicator



For the detection and correction of silent errors in the
program state caused by transient faults, the application
programmer is well-positioned to understand the resiliency
needs for the application variables. Therefore, we employ the
Integration strategy by providing Plexus routines for memory
allocation and deallocation. These routines enable the runtime
to define the scope of the protection domain. During pattern
instantiation by the Factory, checksum vectors for matrix
and vector data structures are established (an instance of
the Forward Error Code Pattern). For pointer variables, the
runtime instantiates N-modular Redundancy patterns, creating
triple modular redundant copies of the pointers. The detection
pattern implementation is embedded in the Plexus routines
for read and write operations that enable the patterns in the
runtime to check validity of the checksums or compare the
redundant copies of the pointer variables. The recovery pattern
repairs a corrupted data value from the checksum or the
redundant copies of pointer variables.

VI. EXPERIMENTAL EVALUATION

A. Test Application

The linear system solver, which solves a problem of form A
· x = b, makes up an important kernel of many scientific com-
puting applications. The Conjugate Gradient (CG) method,
which is useful when the operand is a sparse matrix, expresses
x as a linear function of n vectors p1, p2, ... pn, where each
pair of vectors in the set are conjugate in A. With an initial
approximation x0; the residual r0 = b − A · x0, which is
the direction of the error in x0, serves as the first conjugate
vector, p0. Subsequent iterations compute the residual rk and
use it to compute the next conjugate vector pk. The process
is repeated until rk falls below some threshold. We use an
MPI-implementation version of the application, which uses
detection and recovery patterns under the control of the Plexus
runtime for process failure and transient faults.

B. Experiment Setup

We use an HPC system consisting of a 40 compute node
Linux cluster, where each compute node has 2 AMD Opteron
processors with 12 cores per chip (total of 24 cores per node)
and 64 GB memory, for a total of 960 processor cores. The
nodes are connected with a dual-bonded 1 Gbps Ethernet
interconnect. The patterns instantiated by PLEXUS runtime
that support detection and recovery of process failures rely
on ULFM release 1.1, which is derived from Open MPI-
1.7.1, which provides the primitives for failure detection,
notification, and rebuilding failed communicators. For the
evaluation of pattern-based detection and recovery, we perform
extensive fault injection experiments. Hard error events that
cause MPI processes to fail are simulated by terminating an
MPI process during application execution. This is done by
randomly sending a kill signal to one of the MPI processes
in the communicator. Transient fault injection is performed
by separate fault injection process forked on every node;
this process sends an interrupt signal to one of the compute

Fig. 6. Results: Process Failure Recovery Time For Single Failure Recovery

processes and perturbing a random data variable in the process
state.

C. Results

Figure 6 shows the results from the fault injection experi-
ments. We perform our fault injection experiments with 32, 64,
128, 256, 512 and 1024 MPI ranks. The results are averaged
across random injections from 10000 experiment runs. In these
experiments, a single failure event is generated during the
application execution. The recovery pattern isolates the failed
process, shrinks and rebuilds the MPI communicator. From
the application’s perspective, the recovery after the failure of a
process causes the application to execute with N-1 processes.
This affects the load balance of the work across processes
causing a larger overhead to total time to solution for small
number of processes. However, the time for the ULFM library
to communicate the failure to the remaining processes and
rebuild the communicator scales with the number of processes
leading to a proportional higher increase in overhead for large
number of processes. The overhead is in the range of 12 to
18%, which is related to the time required for the repair of
the MPI communicator. We also compare the overhead of
the runtime system in a failure-free scenario. Figure 7 shows
the overhead of deploying the patterns at runtime under the
control of the runtime. The comparison is between a baseline
implementation using the standard MPI library and a modified
version that uses Plexus.

In the transient fault injection experiments, we explore the
pattern-based protection for variables separately. This requires
the specific data structures that need to be protected by the
Plexus-based runtime to be allocated and referenced through
the Plexus library routines. The detection and recovery patterns
are only instantiated for these structures. The remaining struc-
tures are allocated using the standard memory allocation inter-
faces. The application allocates the matrix A, the vector b and
the solution vector x. Additionally, the conjugate vectors p and
the residual vector r are also referenced during each iteration
of the algorithm. The CG algorithm being iterative by nature



Fig. 7. Results: Plexus Managed Failure Detection and Recovery Pattern
Overhead for a Failure-Free Scenario

is inherently tolerant to certain transient error without loss of
correctness in the final outcome of the solver. Therefore, the
protection of operand matrices A, B and solution vector x have
successful outcome in >70% transient fault injections without
any detection/recovery capabilities. With the protection of
these structures using patterns that implement checksums for
detection and recovery, the percentage of success increases by
20% as shown in 8(a). The baseline case is the completion rate
in the presence of transient faults, but without any detection
or recovery capability for the structure. When the intermediate
vectors p and r are protected, we achieve a 40% increase in
application resiliency. The most significant increase in rate
of successful outcomes is achieved when the pattern-based
detection and recovery are applied to the pointers and address
structures. These are highly sensitive to transient faults since
these cause they cause misaligned or illegal memory accesses,
which are fatal to the applications. When all variables are
protected using the patterns, the rate of successful outcomes
becomes as high as 97%.

The burden on performance overhead by protecting dif-
ferent application structures is shown by the results in 8(b).
Protecting the large, sparse matrices using checksums incurs
30% increase in time to solution, which yields an increase
of 20% in ratio of successful outcomes. The highest return
on investment is achieved by protecting the critical address
and pointer variables, which despite the use of a pattern
that implements triple modular redundancy, incurs only 7%
increase in time to solution, but provides an increase of over
80% in rate of successful outcomes. The important benefit of
the pattern-based management is that it permits this trade-off
between overhead and benefit to the application’s resiliency to
be exploited by the Plexus runtime system.

VII. RELATED WORK

Historically, HPC systems have limited the use of runtime
systems for avoiding overheads imposed by the inclusion of
such software in the system stack. In order to optimize the
parallelism in applications various lightweight runtime systems

have been employed. This includes runtime control employed
by the most widely used programming interfaces of OpenMP
[10] and MPI [11]. The Charm++ runtime [12] optimizes the
scheduling of tasks by supporting dynamic load balancing.
The HPX-5 runtime [13] provides support for distributed
asynchronous multi tasking (AMT) in HPC systems. At the
node-level, runtime systems that support Cilk [14], Intel TBB
[15], OpenMP 4.0 [16] and Habanero [17] implement task
scheduling algorithms that optimize the scheduling of threads
in many-core systems. The Argo project [18] proposes a
distributed runtime system for extreme-scale HPC systems
that consists of various services that communicate through a
global information bus for resource monitoring and configu-
ration of system services and job scheduling. The GEOPM
runtime framework [19] enables optimization of performance
and energy efficiency by discovering patterns in application
execution to control certain hardware-level settings.

Supporting resilience capabilities at the runtime level has
been previously explored. For example, the Scalable runTime
Component Infrastructure (STCI) [20] runtime contains en-
tities called agents; fault tolerance is achieved by assigning
the roles of task execution and task control to different
agents. To handle process failures transparently for parallel
MPI applications, process recovery has been implemented for
the PMIx runtime [21]. At the node level, the Rolex [22]
runtime system provides detection and thread-level recovery
capabilities in support of language extensions that capture the
application programmer’s knowledge about the resiliency of
program variables and code regions. However, the PLEXUS
approach of composing solutions through combinations of
patterns offers distinct advantages of modularity of solutions
for specific fault types, ability to handle multiple fault models,
the flexibility to invoke and modify the solutions dynamically.

VIII. CONCLUSION

In this paper, we presented a new approach to architecting
runtime systems for extreme-scale HPC systems based on re-
silience design patterns. The emergence of resilience as one of
the key challenges for the next generation of supercomputing
systems has motivated the need to explore new approaches
to the design of HPC software. Runtime system software
is an important component of the HPC stack that offers
opportunities to augment the resiliency of applications. The
PLEXUS runtime system is based on the runtime instantiation
of the resilience patterns and their management through static
and dynamic policies. We developed three new strategies for
runtime pattern management. We defined the architecture of
the PLEXUS runtime system and detailed the roles of the key
components of the runtime that that lend the organizational
structure for the strategies to be realized in a HPC software
stack. The paper also defined the PLEXUS interfaces and
describes a prototype implementation that implements these
components and services in support of parallel MPI-based
linear solver-based application.

We demonstrated that the PLEXUS runtime instantiated
pattern-based solutions for MPI rank failure detection and
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Fig. 8. Results for Transient Fault Injection Experiments: (a) Successful Outcomes with Pattern-based Protection for differnt application variables; (b) Overhead
of Transient Fault Detection and Correction on Performance

recovery delivers effective resilience in the presence of actual
failure events and incurs very low implementation overhead.
The key benefit of the pattern-based approach is highlighted
by the seamless integration and runtime management of sev-
eral pattern instances that provided resilience capabilities for
different fault types; yet the subset of patterns for each type is
modularly controlled by the runtime. The prototype implemen-
tation also demonstrates that pattern-based architecture of the
runtime allows an application to leverage the capabilities of an
existing MPI library as well as utilize the PLEXUS runtime’s
native resilience capabilities. Therfore, the pattern-based ap-
proach to designing runtime-driven resilience solutions and the
extensible nature of the PLEXUS runtime provides a roadmap
for the runtime to stitch together solutions for a range of
faults, errors, and failures, as well as to dynamically consider
alternatives between patterns towards performance, power and
energy efficiency.
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