
Scalable and Fault Tolerant Failure Detection and
Consensus∗

Amogh Katti, Giuseppe Di Fatta
School of Systems Engineering

University of Reading
Reading, RG6 6AY, UK

{a.p.katti, G.DiFatta}@reading.ac.uk

Thomas Naughton,
Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831-6173, USA
{naughtont, engelmannc}@ornl.gov

ABSTRACT
Future extreme-scale high-performance computing systems
will be required to work under frequent component failures.
The MPI Forum’s User Level Failure Mitigation proposal
has introduced an operation, MPI Comm shrink, to syn-
chronize the alive processes on the list of failed processes,
so that applications can continue to execute even in the
presence of failures by adopting algorithm-based fault toler-
ance techniques. This MPI Comm shrink operation requires
a fault tolerant failure detection and consensus algorithm.
This paper presents and compares two novel failure detec-
tion and consensus algorithms. The proposed algorithms are
based on Gossip protocols and are inherently fault-tolerant
and scalable. The proposed algorithms were implemented
and tested using the Extreme-scale Simulator. The results
show that in both algorithms the number of Gossip cycles
to achieve global consensus scales logarithmically with sys-
tem size. The second algorithm also shows better scalability
in terms of memory and network bandwidth usage and a
perfect synchronization in achieving global consensus.

Categories and Subject Descriptors
D.4.4 [Software]: Communications Management—message
sending, network communication; D.4.8 [Software]: Per-
formance—measurements, simulation; D.4.5 [Reliability]:
Fault-tolerance

∗This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government re-
tains and the publisher, by accepting the article for pub-
lication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide li-
cense to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will pro-
vide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroMPI ’15, September 21-23, 2015, Bordeaux , France
c© 2015 ACM. ISBN 978-1-4503-3795-3/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2802658.2802660

Keywords
Fault-tolerant MPI, User-level failure mitigation, Failure de-
tection, Consensus, Gossip protocols

1. INTRODUCTION
Resilience is a critical challenge as high-performance com-

puting (HPC) systems continue to increase component counts,
individual component reliability decreases (due to shrink-
ing process technology [1] and near-threshold voltage oper-
ation [12]), and software complexity increases [17]. In spite
of frequent faults, errors and failures, parallel application
correctness and execution efficiency are essential to ensure
the success of extreme-scale HPC systems.

As cost constraints limit resilience mitigation in hard-
ware, a cooperative approach between hardware and soft-
ware is needed to efficiently mitigate faults, errors, and fail-
ures at the appropriate layer. However, application-level
checkpoint/restart has been the dominant HPC fault toler-
ance method for decades. Every detectable uncorrectable er-
ror results in a complete application abort and restart from
previously saved checkpoint state, even if the error could
have been more efficiently handled by the application, e.g.,
using forward error correction with erasure codes [11].

Algorithm-based fault tolerance (ABFT) [9, 11, 13] may
be able to deal with loss of application state, such as caused
by a failing compute process or node, more efficiently through
reconfiguration and adaptation without the need for a more
drastic recovery measure, such as a global rollback. The
employed fault tolerance techniques by the application may
include error correction using data redundancy or encoding,
and re-execution using local checkpoints.

The Message Passing Interface (MPI) is the dominant par-
allel programming interface for facilitating communication
between compute processes in HPC. Despite its popularity,
MPI is not fault tolerant. Recent efforts in MPI fault tol-
erance focused on user-level failure mitigation (ULFM) [2].
The proposed ULFM extensions to the MPI standard enable
applications to be notified of MPI process failures, to cre-
ate a new MPI communicator object that excludes known
failed MPI processes from further communication using the
MPI Comm shrink() operation, and to achieve a uniform
agreement on a value among the non-failed MPI processes
using the MPI Comm agree() operation.

This paper particularly focuses on the implementation of
the proposed MPI Comm shrink() operation and its need
to perform an agreement on the group of failed MPI pro-
cesses among the non-failed MPI processes, even while MPI

process failures occur. More precisely, the new MPI commu-
nicator object created by the collective MPI Comm shrink()
operation contains a consistent group of MPI processes at
every participating MPI process that excludes at least every
failed MPI process that has previously raised a failure noti-
fication to the application. MPI processes that fail during
the MPI Comm shrink() operation may be excluded as well,
but consistently at every participating MPI process.

According to the ULFM proposal, only fail-stop process
failures are considered; when a process fails, it stops com-
municating with the rest of the processes. The method of
failure detection is not defined. However, the ULFM pro-
posal specifies that an operation involving a failed MPI pro-
cess must always complete in a finite amount of time. If
an operation does not involve a failed MPI process, it must
not raise a MPI process failure exception. This provides im-
plementers with different options for failure detection. For
example, a correct MPI implementation may provide fail-
ure detection only for MPI processes involved in an ongo-
ing operation and may postpone detection of other failures
until necessary. The knowledge about detected failed MPI
processes is local and only constructed as globally consis-
tent state in the form of a new MPI communicator object
using the MPI Comm shrink() operation, thus requiring a
fault-tolerant consensus algorithm to uniformly agree on the
group of failed MPI processes.

This paper investigates the use of Gossip-based protocols
to detect failures and disseminate this information in a con-
sistent manner to support the MPI Comm shrink() opera-
tion. The proposed consensus algorithm can also be used to
support the MPI Comm agree() operation.

Gossip-based (or Epidemic) protocols are a robust and
scalable communication paradigm to disseminate informa-
tion in a large-scale distributed environment using random-
ized communication. They have the advantage of inherent
robustness and scalability with respect to global communi-
cation schemes based on deterministic communication pat-
terns. Applications and services based on Gossip-based pro-
tocols for large- and extreme-scale systems have been pro-
posed in many fields of distributed computing. Recently,
Gossip-based protocols have also been applied in the con-
text of HPC [18, 19].

In this paper, two Gossip based failure detection and con-
sensus algorithms using randomized pinging have been de-
veloped and tested by means of simulations. The first al-
gorithm stores the system view in a matrix at each process
to facilitate consensus detection. It detects failures before
and during the execution of the algorithm and is hence com-
pletely fault tolerant. The second algorithm detects consen-
sus on the failed processes using a heuristic method based
on a list of failed processes, thus increasing the memory scal-
ability with respect to the first algorithm. It also transfers
less Gossip data as only the list of failed processes is sent and
hence consumes negligible network bandwidth. For both al-
gorithms, the number of Gossip cycles to detect consensus
scales logarithmically with the system size.

The paper is structured as follows. Section 2 details the
proposed Gossip-based failure detection and consensus algo-
rithms, where Section 2.1 focuses on failure detection using
stochastic pinging, Section 2.2 on achieving consensus using
global knowledge, and Section 2.3 on achieving consensus us-
ing heuristics. Section 3 presents experimental results and
Section 4 discusses related work. Section 5 concludes the

paper with a summary and a discussion of future work.

2. GOSSIP-BASED FAILURE DETECTION
AND CONSENSUS

The MPI Comm shrink() operation must implement a con-
sensus algorithm that achieves agreement on the set of failed
MPI processes that have previously raised a failure notifica-
tion, i.e., on the group of known failed MPI processes at
each participating MPI process at the start of the opera-
tion. MPI process failures that occur during the operation
will eventually be detected and corresponding failure notifi-
cations will be raised during successive MPI communication
operations. To avoid coarse-grain iterative agreement on
the group of failed MPI processes with successive calls to
MPI Comm shrink() by an application, the consensus algo-
rithm may additionally include an agreement on the group
of MPI processes that fail during the MPI Comm shrink()
operation, i.e., during the consensus algorithm.

In both cases, the consensus algorithm needs to be fault
tolerant, i.e., deal with already known or newly detected
MPI process failures. Also, in both cases, a complete failure
detector is implemented that detects fail-stop MPI process
failures by combining failure detection and consensus. Ev-
ery MPI process independently detects MPI process failures.
Consensus on the failed MPI processes is then achieved by
aggregating these MPI process failure detections with the
help of a consensus algorithm.

A straightforward way to detect MPI process failures dur-
ing the MPI Comm shrink() operation is pinging, wherein a
process asks another whether it is alive. A reply indicates a
positive response, while a failure notification from the under-
lying MPI runtime marks a negative response. The failure
detector in the MPI runtime can be based on a simple com-
munication timeout. In an alternative method, a process
periodically sends a heartbeat message to let another pro-
cess know that it is alive. The receiving process monitors the
incoming heartbeat messages and marks a process as failed
upon a failure notification from the underlying MPI runtime.
The failure detector can be based on a simple communica-
tion timeout for the periodic heartbeat. The work presented
in this paper is based on pinging for failure detection during
the MPI Comm shrink() operation, using the already exist-
ing MPI runtime reporting mechanism for process failures.

The consensus during the MPI Comm shrink() operation
involves all fault free processes agreeing on the group of
failed processes. In general, a solution to the consensus prob-
lem exists only in certain environments [20]. For instance,
consensus is not possible in completely asynchronous envi-
ronments [7]. However, in an asynchronous environment,
failures can still be detected with completeness and accu-
racy, leading to a uniform view of the system at each pro-
cess [5], although, group membership may not be agreed
upon [4]. In the context of MPI, the proposed ULFM exten-
sions are based on realistic assumptions, such as fail-stop,
no recovery, a synchronous model, and only short periods
with exceptionally high MPI process failure rates.

This paper proposes two scalable failure detection and
consensus algorithms for MPI Comm shrink() based on Uni-
form Gossiping. The Gossip messages are implicitly used to
implement stochastic failure detection. Consensus is achieved
and detected by maintaining the system state in a matrix or
by maintaining a failed process list at each process. Gossip

messages carry failure information with them and dissemi-
nate known failures at exponential speed. When a process
p sends a Gossip message to process q, this process q comes
to know about the failures that were directly detected by
p, thus detecting failures indirectly. This Gossip message
from p not only contains the failures directly detected by p,
but also indirectly detected failures through received Gossip
messages. These indirect detections of process p are prop-
agated as well to process q, resulting in exponential infor-
mation dissemination. When the failure information of a
process is disseminated to all fault free processes, consensus
on its failure is reached in a logarithmic number of Gossip
cycles (as shown in the experiments in Section 3).

The proposed failure detection and consensus algorithms
work under the following assumptions.

• Processes are assumed to be connected by a reliable com-
munication medium.

• A synchronous system model is assumed, i.e., a non-failed
MPI process responds to a message within a known, finite
amount of time.

• The fail-stop model is assumed, i.e., a failed MPI process
stops communicating.

• Faults are assumed to be permanent, i.e., a failed MPI
process does not recover.

• A process once detected as failed is detected to have failed
by all the processes eventually.

• Periods of system stability are assumed, i.e., MPI pro-
cess failures during the consensus algorithm will, at some
point, stop for a long enough period to reach consensus.

2.1 Failure Detection using Stochastic Ping-
ing

In this Section, we discuss the MPI process failure de-
tection feature of a MPI Comm shrink() operation using
stochastic pinging as part of a Gossip-based protocol. Every
process independently detects failures by pinging a random
process periodically. During a Gossip cycle of length TGossip

units, a process i randomly selects a process j to ping accord-
ing to a uniform probability distribution function. If process
j replies by the end of the current Gossip cycle, then process
i finds it to be alive; failed otherwise. Figure 1 shows the
pseudocode for the algorithm.

At process i
At each cycle (every TGossip time units):
1 j = getRandomProcess()
2 send a ping message to j
At event: received a ping message from j:
3 send a reply message to j
At event: timeout without receiving a reply from j:
4 mark j to have failed

Figure 1: Failure detection using pinging

During a cycle of Uniform Gossiping, the probability of
a process being selected as destination of zero, one or more
ping messages follows a binomial distribution. Ultimately
any failed process is quickly detected by one or more of the
non-failed processes, thus initiating the epidemic exponen-
tial propagation of information to achieve consensus. The
adopted Gossip-based approach can tolerate moderate-to-
low message loss rates and delays as it is intrinsically fault
tolerant.

2.2 Consensus using Global Knowledge
In this Section, we discuss achieving consensus on the set

of failed MPI processes during the MPI Comm shrink() op-
eration by maintaining global knowledge at each MPI pro-
cess. As shown in the algorithm of Figure 2 each process
p detects failures by pinging random processes and main-
tains a fault matrix Fp to store the status of all processes
as believed by it and also by all the other processes. An
entry Fp[i, j] in a process’s fault matrix indicates the sta-
tus of process j as detected by process i (1 if detected to
have failed; 0 otherwise). The algorithm can be divided into
four logical tasks according to the functions performed: (1)
initialization, (2) failure detection, (3) fault matrix update,
and (4) check for consensus.

At process p
Require: Fault Matrix Fp[j, k] where 0 ≤ j, k < n

Fp[j, k] - status of process k as detected by process j
Initialisation:

//all processes are assumed to be alive at start
1 for(j = 0, j < n, j ++)
2 for(k = 0, k < n, k ++)
3 Fp[j, k] = 0
4 endfor
5 endfor
At each cycle (every TGossip time units):

//failure detection using pinging
6 q = getRandomProcess()
7 send a message of type ping to q piggybacking Fp

8 set timeout event Eq =< TGossip, q > for receiving reply
message from q

9 for(k = 0, k < n, k ++) //check for consensus on k
10 temp = 0
11 for(j = 0, j < n, j ++)
12 if(Fp[j, k]||Fp[p, j])
13 temp = temp+ 1
14 endif
15 endfor

//consensus is reached when all fault free
//processes have detected the failed process

16 if(temp == n)
17 consensus reached(k)
18 endif
19 endfor
At event: received a message from r piggybacked

with Fr:
20 if(message type == ping)
21 send a message of type reply to r piggybacking Fp

22 endif
//merge the fault matrices

23 for(k = 0, k < n, k ++)
24 for(j = 0, j < n, j ++)

//propagation of remote failure detections
25 if(j 6= p)
26 Fp[j, k] = Fp[j, k]||Fr[j, k]
27 else

//indirect local failure detection
28 Fp[p, k] = Fp[p, k]||Fr[r, k]
29 endif
30 endfor
31 endfor
At event: timeout Eq and no reply message received

from q:
//mark q to have failed (direct failure detection)

32 Fp[p, q] = 1

Figure 2: Failure detection and consensus by main-
taining global knowledge (algorithm 1)

Every process initializes with the assumption that every

other process in the system is alive and no other process has
yet detected any failures (lines 1-5 of Figure 2).

To detect failures, every TGossip time units a process p
randomly selects a process q and sends a ping message to
it piggybacking the fault matrix Fp (lines 6-7). Sending the
entire matrix facilitates the propagation of not only process
p’s detections but also other processes’ detections known to
process p, thus exponentially propagating information. A
timeout event is then set to receive a reply from q during
the current Gossip cycle (line 8). An asynchronous reply
follows upon reception of this ping message (lines 20-22).
At the expiry of the current Gossip cycle if a reply message
from q has not been received by p, q is detected (directly)
to have failed (line 32).

Upon reception of a Gossip (ping or reply) message at p
from r, the local fault matrix Fp is updated by performing
an OR operation of the corresponding elements in Fr except
the row p (lines 23-31 except line 28). The row p in Fp is
updated to include the detections of process r (row r in Fr)
and thus performing indirect failure detections at p (line 28).

Finally, to check if consensus has been reached on the fail-
ure of a process k at p, a logical OR operation is performed
between the corresponding elements of the kth column of the
fault matrix and its pth row. Consensus is reached when all
fault free processes have detected the faulty one (lines 9-19).

In this algorithm processes have to maintain local knowl-
edge of the entire system state, with O(n2) memory require-
ment, in order to check for consensus. Network bandwidth
consumption is also high due to the transfer of this local
system state as part of the Gossip. Designing scalable con-
sensus algorithms, which achieve consensus without main-
taining global knowledge at each process and with moderate
network utilization, is a challenging task. Previous work [15]
has shown how to detect convergence in epidemic aggrega-
tion by means of heuristic methods, such as comparing local
state with a random sample of remote states or running mul-
tiple protocol instances locally. In the next section a similar
heuristic method for consensus detection with a more effi-
cient memory and bandwidth utilization is presented.

2.3 Efficient Heuristic Consensus
Maintaining a matrix of size n2 elements, where n is the

number of processes in the system, and sending it as part of
the Gossiping consumes a lot of memory and network band-
width. Storing only the failed processes in a list and sending
the same while Gossiping can avoid this. The algorithm in
Figure 3 uses a list instead of a matrix and detects consensus
using an heuristic method.

Each process maintains a fault list Lp to store the failed
processes known to it. An entry in this list is a 2-tuple
< r, ccnt >, where r is the rank of the failed process and
ccnt is the consensus count associated with it. ccnt is the
length of an unbroken sequence of pinged processes that have
r in their failed process list. The algorithm can be divided
into four logical tasks according to the functions performed:
(1) initialization, (2) failure detection, (3) updating the fault
list and (4) checking for consensus.

Every process starts with the assumption that every other
process in the system is alive and hence has its fault list
empty (line 1 of Figure 3).

To detect failures, every TGossip time units a process p
randomly selects a process q and sends a ping message to it,
piggybacking the fault list Fp (lines 2-3). A timeout event is

At process p
Require: Fault list Lp = {< r, ccnt >, ...}
Initialisation:
1 Lp ← {}
At each cycle (every TGossip time units):

//failure detection using pinging
2 q = getRandomProcess()
3 send a message of type ping to q piggybacking Lp

4 set timeout event Eq =< TGossip, q > for receiving reply
message from q:
//check for consensus

5 foreach entry < r, ccnt > in Lp

6 if((curr cycle > log(n)) && (ccnt ≥MIN CCNT))
7 consensus reached(r)
8 endif
9 end foreach
At event: received a message from r piggybacked

with Lr:
10 if(message type == ping)
11 send a message of type reply to r piggybacking Lp

12 endif
//merge the contents of the two lists and update ccnt of
//each entry (indirect failure detection)

13 Lp ← merge(Lp, Lr)
At event: timeout Eq and no reply message received

from q:
//mark q to have failed and add it to the list (indirect
//failure detection)

14 Lp ← Lp ∪ {< q, 0 >}

Figure 3: Efficient failure detection and consensus
(algorithm 2)

then set to receive a reply from q during the current Gossip
cycle (line 4). An asynchronous reply follows upon reception
of this ping message (lines 10-12). At the expiry of the
current Gossip cycle, if a reply message from q has not been
received by p, q is detected to have failed and is added to
the fault list with ccnt initialized to 0 (line 14).

Upon reception of a Gossip (ping or reply) message at p
from r, the remote fault list Fr is merged with the local fault
list Fp (line 13). This merge operation includes incrementing
the ccnt of an element < r, ccnt > in the local list if r is also
present in the received fault list. The ccnt of the element is
reset if the received fault list does not contain the element
< r, ccnt >. If the received fault list contains an element
< r, ccnt > not present in the local fault list, it is added to
the local fault list with ccnt set to 0.

Finally, to check if consensus has been reached on the fail-
ure of process r, the value of the associated ccnt is checked.
The gossiping is performed for at least log(n) number of cy-
cles to allow the spreading of the failure detection informa-
tion in the system. When a minimum value of the consensus
counter (MIN CCNT) is reached, consensus on the failure
of process r is detected (lines 5-9).

In algorithm 1, when a process p has detected consensus
on k it is certain that all processes have detected the fail-
ure of k, although they may not have detected consensus
yet. Whereas in algorithm 2 when a process p has detected
consensus on k, some processes may have not detected the
failure of k yet. The initial phase of log(n) cycles before
detecting consensus is used to avoid false consensus detec-
tions and a small value of the threshold MIN CCNT can
be adopted.

3. EXPERIMENTAL RESULTS
The algorithm for consensus using global knowledge and

the algorithm for consensus using the heuristic approach
were both implemented in the form of MPI applications,
using basic MPI point-to-point communication primitives.
The fault matrix of algorithm 1 is implemented as an inte-
ger matrix, whereas a failed process identifier in algorithm 2
is an integer. Fault injection was simulated by excluding a
process from further communication.

The experiments were performed on a Linux cluster com-
puter with one head node and 16 compute nodes. The head
node has two AMD Opteron 4386 3.1 GHz processors with
eight cores per processor and 64 GB RAM. The compute
nodes have one Intel Xeon E3-1220 3.1GHz processor with
four cores per processor and 16 GB RAM. The entire system
has a total of 80 compute cores. The nodes are connected by
Gigabit Ethernet. The system is running the Ubuntu 12.04
LTS operating system and Open MPI 1.6.5.

Experiments were executed using the Extreme-scale Sim-
ulator (xSim 0.5) [6, 14] atop the Linux cluster to eval-
uate the algorithms at significantly larger scale than the
available physical system. xSim is a performance investi-
gation toolkit that permits running MPI applications in a
controlled environment with a large number of concurrent
execution threads, while observing application performance
and resilience in a simulated extreme-scale system. Using a
lightweight parallel discrete event simulation, xSim executes
an MPI application on a much smaller system in a highly
oversubscribed fashion with a virtual wall clock time, such
that performance data can be extracted based on a proces-
sor and a network model. xSim is designed like a traditional
MPI performance tool, as an interposition library that sits
between the MPI application and the MPI library, using
the MPI profiling interface. In previous experiments, it has
been run up to 134,217,728 communicating MPI ranks using
a 960-core Linux cluster.

The simulator was deployed on the Linux cluster com-
puter by associating one simulator MPI process per physi-
cal processor core. Within each simulator MPI process, a
number of concurrent execution threads are executed, each
representing an individual MPI process that is located on
a processor core within a simulated HPC system. The exe-
cution timing of these simulated MPI processes is based on
a processor model with a 1-to-1 performance match to the
physical AMD processor core the simulator is running on
and a network interconnect model with a basic star topol-
ogy, 1 µs link latency, and infinite bandwidth. The model
parameters were set to nominal values as the experiments
investigate the number of Gossip cycles required to reach
consensus.

3.1 Consensus using Global Knowledge
The first part of the experiments investigated the charac-

teristics of the algorithm for consensus using global knowl-
edge. The maximum number of Gossip cycles in the experi-
ments was set to 5log(n), where n is the number of simulated
MPI processes. This is large enough to allow all the alive
processes to reach consensus on the injected failures as the
information dissemination speed of Gossip-based protocols
is exponential. The Gossip cycle length for a given system
size was set to allow the matrix merge operations to com-
plete within the cycle plus the round trip time between the
farthest processes in the system. This is necessary as matrix
merge operations consume substantial amount of the cycle
time. Experiments were carried out to test the algorithm’s

scalability and its fault tolerance property.
Failures were injected into randomly chosen simulated MPI

processes. In the first set of experiments, failures were in-
jected right before the failure detection and consensus al-
gorithm. In the second set of experiments, failures were
injected during its execution to test the fault tolerance prop-
erty of the algorithm. In all cases, the processes reach con-
sensus on the injected failure(s) at different cycles. Hence,
the cycle number of the last process reaching consensus is
recorded.

Figure 4 shows the relation between the number of cycles
taken to reach consensus and the system size for a single
failure injected before the algorithm. It is evident that the
number of cycles to reach consensus varies logarithmically
with the system size. Figure 5 shows the exponential spread-
ing of failure detection information at a particular process
for the injected failure. Both figures demonstrate the log-
arithmic complexity of the algorithm. Figure 6 shows the
distribution of the cycle number at which different processes
reach consensus. In Figure 7, multiple (four) failures were
injected before the algorithm and their effect on consensus
time was observed. It took only 1 or 2 cycles more than in
the single failure case (Figure 4). In Figure 8, multiple (four)
failures were injected into randomly chosen processes at ran-
dom cycles during the algorithm execution. The number of
cycles needed to reach consensus increased slightly.

 5

 10

 15

 20

 25

2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11

N
um

be
r o

f G
os

si
p

cy
cl

es

Number of processes

Figure 4: Number of cycles to achieve global con-
sensus after a single failure injection (algorithm 1)

3.2 Efficient Heuristic Consensus
The second part of the experiments investigated the char-

acteristics of the algorithm for consensus using the heuristic
approach. The maximum number of Gossip cycles to run
in the experiments was again set to 5log(n), where n is the
number of simulated MPI processes. It is large enough to
allow all the alive processes to reach consensus on the in-
jected failures. The length of each Gossip cycle was set to
allow the merge operation to complete within the cycle plus
the round trip time between the farthest processes in the
system. The MIN CCNT was set to 3.

Figure 9 shows the relation between the number of cycles
taken to reach consensus on a single injected failure and
the system size. It is evident that the number of cycles

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
on

se
ns

us
 p

er
ce

nt
ag

e

Gossip cycle number

Figure 5: Local consensus progress at a process af-
ter a single failure injection for system size of 2048
(algorithm 1)

 0

 10

 20

 30

 40

 50

 13 14 15 16 17 18 19

Pe
rc

en
ta

ge
 o

f p
ro

ce
ss

es

Gossip cycle number

Figure 6: Consensus detection spread for a system
size of 2048 (algorithm 1)

to reach consensus varies logarithmically with the system
size as expected. Moreover, in this case no variance in the
cycle number at which different processes reach consensus
was observed, thus achieving perfect synchronization.

The algorithm is scalable in terms of memory as it needs
to store only the list of failed processes at each process. The
two algorithms were compared for their bandwidth utiliza-
tion. The amount of data exchanged between simulated MPI
processes is reported by xSim. Figure 10 shows the band-
width consumed per process at increasing system sizes. It
can be observed that the heuristic-based algorithm transfers
a negligible amount of data and is significantly more efficient
than the algorithm using global knowledge.

4. RELATED WORK
This section discusses failure detection and consensus al-

gorithms that have been considered for HPC and compares
them with the proposed algorithms.

 5

 10

 15

 20

 25

2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11

N
um

be
r o

f G
os

si
p

cy
cl

es

Number of processes

Figure 7: Number of cycles to achieve global consen-
sus after multiple (4) failures, which were injected
before algorithm execution (algorithm 1)

 5

 10

 15

 20

 25

2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11

N
um

be
r o

f G
os

si
p

cy
cl

es

Number of processes

Figure 8: Number of cycles to achieve global consen-
sus with multiple (4) failures, which were injected
during algorithm execution (algorithm 1)

4.1 Failure Detection Algorithms
A failure detection algorithm, for fail-stop type failures,

using heartbeat messages was proposed in [16]. Every pro-
cess maintains a log, called Gossip list, that contains a num-
ber (called heartbeat value) for each member process to rep-
resent its aliveness. Every TGossip time units the process in-
crements its own heartbeat value in the list and gossips the
list to a randomly chosen process. When a process receives
a remote Gossip list, it updates its Gossip list by setting
the heartbeat value for each process to the maximum value
in the two lists. The Gossip list is monitored continuously
and if the heartbeat value for a process has not risen for
Tcleanup time units, it is suspected to have failed. There is,
however, chance of an alive process to be falsely suspected
as the algorithm is based on randomized Gossiping.

In the proposed algorithms, there is direct failure detec-
tion without passing through the suspicion phase of the
above Gossip-based failure detection. Also, since suspicions

 5

 10

 15

 20

 25

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20

N
um

be
r o

f G
os

si
p

cy
cl

es

Number of processes

Figure 9: Number of cycles to achieve global con-
sensus after a single failure injection (algorithm 2)

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

10^9

10^10

2^2 2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20

By
te

s
pe

r p
ro

ce
ss

Number of processes

Global Knowledge
Heuristic

Figure 10: Total bandwidth utilization of the con-
sensus algorithms with a single failure injection

become detections after a majority vote, the assumption
that no more than one third of processes do not fail during a
single Gossip iteration is relaxed in the proposed approach.

Another algorithm for failure detection was given in [8]
and is based on randomized pinging. A process p randomly
pings another process q. q is found to be alive if a reply is
received in time. Otherwise the p asks k randomly chosen
peers to ping q as well. If no peer receives a reply, p detects
q to have failed. This approach to failure detection takes
network link failures into account along with process failures.

4.2 Consensus Algorithms
Both centralized, i.e., using a coordinator, and completely

distributed consensus algorithms are available. Fault tol-
erant versions of the two-phase and three-phase consensus
algorithms are discussed in the following. Distributed con-
sensus algorithms based on Gossiping, which is inherently
fault tolerant, are also discussed.

4.2.1 Coordinator-based Approaches

Over a static tree structure.
A two-phase consensus algorithm to aggregate locally known

failures is given in [10]. Failures are presumed to be detected
prior to invoking the algorithm. It is a fault tolerant log-
scaling two-phase algorithm running over a tree topology. It
is based on reliable gather and broadcast operations, both
built on a multi-level, tree structure communication topol-
ogy. The coordinator is at the root of the tree and makes
the final decision based on the votes by the participants or-
ganized in the form of parent and children below it. Votes
from the participants at the leaves and intermediate levels
of the tree are gathered by the coordinator at the root go-
ing through the intermediate parent nodes and the decision
from the coordinator is broadcast in the reverse direction.
In the presence of faults, the parent of a failed participant
recursively adopts its children. A child, upon detection of
the failure of its parent, queries its grandparent to know
how it should continue in the algorithm. If it has not voted
yet, it will participate in the voting phase. If it has voted
but the parent failed before propagating the vote up, it will
cast the vote again; if the parent propagated the vote, it
will participate in the decision phase. A termination detec-
tion algorithm is invoked upon failure of the coordinator.
The parent directly below the coordinator decides the ter-
mination status: success with failed process list if it received
decision from the coordinator, or abort if it has not voted
yet. The participant, thus making the decision, propagates
it below the tree. However, the termination detection will
not be of any help if the coordinator failed without propa-
gating its decision after the voting phase. The tree is rebal-
anced with the new alive processes between invocations of
the algorithm and thus the approach involves maintenance
of the communication structure, which is not needed by the
algorithms proposed in this paper.

Failures that happen during the execution of the two-
phase consensus are not included in the final list and a co-
ordinator failure aborts the algorithm. Hence, it is not a
completely fault tolerant consensus algorithm. In contrast,
the approach presented in this paper is completely fault tol-
erant, as it allows for failures during the consensus.

Over a dynamic tree structure.
The approach in [3] assumes that a process knows of a

few failed processes (a failure detector is again assumed to
be readily available) to contribute towards the global list
of failed processes. It is built around a reliable broadcast
algorithm that dynamically constructs the broadcast tree
and a three-phase consensus algorithm.

In the BALLOTING phase, the root generates a ballot
(which is a sequence number to differentiate between itera-
tions) and broadcasts it, including the known list of failed
processes. The child, upon receipt of the broadcast mes-
sage, checks whether it has any new failed processes known
to it but not in the ballot it received. It sends a REJECT
message piggybacked with the ACK message including the
new failed processes if any; it accepts the ballot otherwise
and sends an ACCEPT message piggybacked with the ACK
message. The root starts the next phase if it receives AC-
CEPT message piggybacked with the ACK message from all
its children and if any child rejects the ballot it updates its
set of failed processes and tries again. In the second phase,
the root broadcasts the AGREE message with the ballot.
Now the participants know that the ballot has been agreed

upon by everyone and they agree to the ballot for the second
phase. Then the root starts the third phase by broadcasting
the COMMIT message. The participants upon receipt of
the COMMIT message commit to the ballot.

A failure of the root is checked by every process and when
a process detects that all processes with ranks lower than
itself have failed it appoints itself as the new root. The
new root restarts the algorithm from whatever state it is
in. Note that if the root fails when it is in the BALLOT-
ING state, the new root has to start all over again, wasting
all the iterations performed so far. Failures of participants
are handled by repeating phase one of the algorithm with
a new sequence number included in the ballot. When a
broadcast message belonging to an old iteration arrives at
a process, which is not in the BALLOTING state, a NAK
with AGREE FORCED is forwarded to the root to clean up
the old circulating broadcast messages. This message is also
used by the root to start Phase 2 of the algorithm (with the
assumption that process failures will subside and cease).

It was tested by injecting failures into randomly chosen
processes before and during the execution. The processes
that fail during the operation of the algorithm may or may
not be included into the final list of failed processes. More-
over, every failure that happens while the algorithm is run-
ning requires the algorithm to start all over again by rebuild-
ing the communication structure. The algorithms proposed
in this paper do not require any communication structure.

4.2.2 Gossip-based Approaches
In Gossip-based approaches, failure detection is performed

as explained in Section 2.1 and consensus is (in combina-
tion with failure detection) also implemented using Gossip-
ing [16], and hence completely fault tolerant. Each process
maintains a suspicion matrix S to store the status of pro-
cesses as detected by all the processes. An entry Si,j in
a process’s suspicion matrix indicates the status of process
j as detected by process i (1 if suspected to have failed 0
otherwise). It also maintains a fault vector F to store the
processes’ status as decided by all processes. An entry Fi in
this vector is 1 if the majority of the processes suspect pro-
cess i to have failed. The suspicion matrix is sent to other
processes as part of Gossiping. When a process receives this
suspicion matrix, it merges it with its own suspicion matrix.
A process updates its fault vector by examining the suspi-
cions of all processes. If the majority of the processes have
suspected a process to have failed, it decides that the process
has indeed failed and updates its fault vector to reflect this.
Consensus is reached when all processes have detected a pro-
cess to have failed. Upon detection of consensus a process
broadcasts consensus message to all the live processes.

Because every process needs to maintain a suspicion ma-
trix of O(n2), where n is the system size, this algorithm is
memory intensive and does not scale well. For increasing
process numbers (beyond 48) the consensus time was found
to increase exponentially. The first algorithm proposed in
this paper also uses a matrix at each process, but the second
algorithm uses only a list at each process. The algorithms
given in this paper scale logarithmically with system size.

The proposed approach in this paper bypasses the fail-
ure suspicion phase based on distributed diagnosis. Since
suspicions become detections after a majority vote, the as-
sumption that no more than one third of processes do not
fail during single Gossip iteration is relaxed in this approach.

Experiments in the state of the art HPC failure detection
and consensus literature, have featured not more than a few
thousand processes, whereas the proposed algorithm (algo-
rithm 2) scaled to hundreds of thousand processes on a small
cluster computer.

5. CONCLUSION AND FUTURE WORK
Failure detection and consensus for a fault-tolerant MPI

enable HPC applications to adopt algorithm-based fault tol-
erance techniques to cope with MPI process failures more
efficiently. Centralized methods for failure detection and
consensus are based on a coordinator and do not scale well
to very large and extreme-scale systems. Completely dis-
tributed algorithms based on Gossiping that were previously
proposed in the literature consume an inordinate amount of
time, memory and network bandwidth.

In this work two novel failure detection and consensus al-
gorithms that use randomized pinging were presented. The
first approach is based on global knowledge: each process
maintains a local view of the entire system state to achieve
consensus on failed processes. A Gossip protocol is used to
detect failures and to exponentially propagate them in the
system until the local views converge. The second algorithm
does not rely on global knowledge and adopts a heuristic
method to achieve consensus on failures.

Both algorithms were implemented as MPI applications
and tested using the Extreme-scale Simulator. The results
confirm their expected scalability and fault tolerance prop-
erties. In both algorithms, the number of Gossip cycles to
achieve consensus on failures scales logarithmically with the
system size. The second algorithm has significantly lower
memory and bandwidth utilization and has shown to be able
to achieve a perfect consensus synchronization as well.

The first algorithm can be implemented with boolean ma-
trices at each process to increase scalability. The second
algorithm’s memory scalability can be further improved by
maintaining the status of processes in a bit vector, if the
number of failures in the system is high. It would also be in-
teresting to investigate an efficient algorithm with a different
heuristic approach for detecting consensus asynchronously
and without the guaranteed initial propagation phase: this
would allow detecting consensus on failures that happen
both before and during the execution of the algorithm. In-
vestigating processes entering alive state from faulty state
is also interesting. This would avoid false positives and also
allow process recovery.

Further future work in this area focuses on implement-
ing MPI Comm shrink() and MPI Comm agree() with dif-
ferent approaches (static and dynamic tree, as well as, the
different Gossip-based variants) and compare them using
the Extreme-scale Simulator with architectural models of
future-generation HPC systems.

6. ACKNOWLEDGEMENTS
This material is based upon work supported by the U.S.

Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research.

The author Amogh Katti is supported by the Felix Schol-
arship for his PhD project.

7. REFERENCES

[1] R. C. Baumann. Radiation-induced soft errors in
advanced semiconductor technologies. IEEE
Transactions on Device and Materials Reliability
(TDMR), 5(3):305–316, 2005.

[2] W. Bland, G. Bosilca, A. Bouteiller, T. Herault, and
J. Dongarra. A proposal for user-level failure
mitigation in the mpi-3 standard. Department of
Electrical Engineering and Computer Science,
University of Tennessee, 2012.

[3] D. Buntinas. Scalable distributed consensus to
support mpi fault tolerance. In Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th
International, pages 1240–1249. IEEE, 2012.

[4] T. D. Chandra, V. Hadzilacos, S. Toueg, and
B. Charron-Bost. On the impossibility of group
membership. In Proceedings of the fifteenth annual
ACM symposium on Principles of distributed
computing, pages 322–330. ACM, 1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM (JACM), 43(2):225–267, 1996.

[6] C. Engelmann. Scaling to a million cores and beyond:
Using light-weight simulation to understand the
challenges ahead on the road to exascale. Future
Generation Computer Systems (FGCS), 30(0):59–65,
Jan. 2014.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM (JACM), 32(2):374–382,
1985.

[8] I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On
scalable and efficient distributed failure detectors. In
Proceedings of the twentieth annual ACM symposium
on Principles of distributed computing, pages 170–179.
ACM, 2001.

[9] K.-H. Huang and J. A. Abraham. Algorithm-based
fault tolerance for matrix operations. IEEE
Transactions on Computers (TC), C-33(6):518–528,
1984.

[10] J. Hursey, T. Naughton, G. Vallee, and R. L. Graham.
A log-scaling fault tolerant agreement algorithm for a
fault tolerant mpi. In Recent Advances in the Message
Passing Interface, pages 255–263. Springer, 2011.

[11] L. Kaplan, P. Briggs, M. Ohlrich, and W. Leslie.
Resilience to various failures for read-mostly
in-memory data structures. In 26th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS) 2012: Workshops, pages
1572–1580, 2012.

[12] H. Kaul, M. Anders, S. Hsu, A. Agarwal,
R. Krishnamurthy, and S. Borkar. Near-threshold
voltage (NTV) design: Opportunities and challenges.
In Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, pages 1153–1158, New York,
NY, USA, 2012. ACM.

[13] H. Ltaief, E. Gabriel, and M. Garbey. Fault tolerant
algorithms for heat transfer problems. Journal of
Parallel and Distributed Computing (JPDC),
68(5):663–677, 2008.

[14] T. Naughton, C. Engelmann, G. Vallée, and S. Böhm.

Supporting the development of resilient message
passing applications using simulation. In Proceedings
of the 22nd Euromicro International Conference on
Parallel, Distributed, and network-based Processing
(PDP) 2014, pages 271–278, Turin, Italy, Feb. 12-14,
2014. IEEE Computer Society, Los Alamitos, CA,
USA. Acceptance rate 32.6% (73/224).

[15] P. Poonpakdee, N. G. Orhon, and G. Di Fatta.
Convergence detection in epidemic aggregation. In
Euro-Par 2013: Parallel Processing Workshops, pages
292–300. Springer, 2014.

[16] S. Ranganathan, A. D. George, R. W. Todd, and
M. C. Chidester. Gossip-style failure detection and
distributed consensus for scalable heterogeneous
clusters. Cluster Computing, 4(3):197–209, 2001.

[17] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V.
Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose,
F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A.
Debardeleben, P. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson,
S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra,
T. Munson, R. Schreiber, J. Stearley, and E. V.
Hensbergen. Addressing failures in exascale
computing. International Journal of High
Performance Computing Applications (IJHPCA),
28(2):127–171, May 2014.

[18] P. Soltero, P. Bridges, D. Arnold, and M. Lang. A
gossip-based approach to exascale system services. In
Proceedings of the 3rd International Workshop on
Runtime and Operating Systems for Supercomputers,
page 3. ACM, 2013.

[19] H. Straková, G. Niederbrucker, and W. N. Gansterer.
Fault tolerance properties of gossip-based distributed
orthogonal iteration methods. Procedia Computer
Science, 18:189–198, 2013.

[20] J. Turek and D. Shasha. The many faces of consensus
in distributed systems. Computer, 25(6):8–17, 1992.

