
Models for Resilience Design Patterns
Mohit Kumar and Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract—Resilience plays an important role in supercomput-
ers by providing correct and efficient operation in case of faults,
errors, and failures. Resilience design patterns offer blueprints
for effectively applying resilience technologies. Prior work fo-
cused on developing initial efficiency and performance models for
resilience design patterns. This paper extends it by (1) describing
performance, reliability, and availability models for all structural
resilience design patterns, (2) providing more detailed models that
include flowcharts and state diagrams, and (3) introducing the
Resilience Design Pattern Modeling (RDPM) tool that calculates
and plots the performance, reliability, and availability metrics of
individual patterns and pattern combinations.

Index Terms—high-performance computing, resilience, design
patterns, models

I. INTRODUCTION

Resilience in extreme-scale high-performance computing
(HPC) systems is a critical challenge. With each new su-
percomputer generation, component counts increase, com-
ponent reliability decreases (e.g., due to shrinking process
technology), and hardware and software complexity increases
(e.g., due to heterogeneous computing, complex data, and
workflows) [1]–[4]. Recent reports about serious reliability
problems also include unexpected issues, such as bad solder,
dirty power, and early wear-out [5], [6].

Resilience design patterns [7], [8] offer a structured hard-
and software design approach for improving resilience, such
that parallel applications running on these supercomputers
generate accurate solutions in a timely and efficient manner.
Frequently used in computer engineering, design patterns
identify problems and provide generalized solutions through
reusable templates. The novel resilience design pattern con-
cept identifies and evaluates repeatedly occurring resilience
problems and coordinates solutions throughout hardware and
software components in supercomputers.

Prior work focused on (1) identifying and formalizing the
resilience design patterns in production HPC systems and
recent resilience technologies [7]–[9], (2) developing a proof-
of-concept prototype for demonstrating the resilience design
pattern concept using a fault-tolerant generalized minimal

This work was sponsored by the U.S. Department of Energy’s Office of
Advanced Scientific Computing Research. This manuscript has been authored
by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the
U.S. Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

residual method (FT-GMRES) linear solver with portable
resilience [10], [11], (3) creating new, outcome-based metrics
for HPC resilience [12], and (4) developing initial performance
and reliability models for resilience design patterns [13].

This paper extends the previous work in initial performance
and reliability models by (1) describing performance, relia-
bility, and availability models for all structural patterns, (2)
providing more detailed models with flowcharts and state
diagrams, and (3) introducing the RDPM tool to study the
characteristics of patterns and pattern combinations.

II. BACKGROUND

This section summarizes the used terminology and metrics
and briefly describes the concept of resilience design patterns.

A. Terminology and Metrics

The taxonomy in this document is largely based on prior
work in definitions for dependability in computing systems [3],
[8], [14], [15].

A fault is a defect in a system that has the potential to cause
an error. It can be dormant. When activated, it leads to an error
that causes an illegal system state. A failure occurs when an
error reaches the service interface of a system, resulting in
system inconsistent behavior with its specification.

Reliability is the probability of a system not experiencing a
fault, error, or failure during operation 0 ≤ t (Eq. 1). The fault,
error, or failure distribution is the probability of such an event
in the system during 0 ≤ t (Eq. 2). The probability density
function (PDF) f(t) is its relative likelihood. The fault, error,
or failure rate λ is the frequency at which a system experiences
such an event. The mean-time to error (MTTE) is its expected
time to error, while the mean-time to failure (MTTF) is its
expected time to failure (Eq. 3).

Given a large population of identical systems, the rate λ
for this population displays the “bathtub curve”. The initial
period has a high but rapidly decreasing rate (wear-in). Then
a roughly constant rate can be observed for a prolonged period
of time. Finally, the rate begins to increase again (wear-out).
A normalized exponential PDF of λe−λt with a constant rate
λ is typically assumed for the prolonged center period of the
“bathtub curve” (Eqs. 4-6).

R(t) = 1− F (t) =

∫ ∞
t

f(t)dt (1)

F (t) = 1−R(t) =
∫ t

0

f(t)dt (2)

MTTF =

∫ ∞
0

R(t)dt (3)

R(t) = e−λt (4)

F (t) = 1− e−λt
(5)

MTTF = 1/λ (6)

http://energy.gov/downloads/doe-public-access-plan


Fault Treatment Recovery Compensation

Fault
Diagnosis Reconfiguration Checkpoint

Recovery Redundancy Design
Diversity

M
on

ito
rin

g

Pr
ed

ic
tio

n

R
es

tru
ct

ur
e

R
ei

ni
tia

liz
at

io
n

R
ej

uv
en

at
io

n

R
ol

lb
ac

k

R
ol

lfo
rw

ar
d

Fo
rw

ar
d 

Er
ro

r
C

or
re

ct
io

n 
C

od
e

N
-M

od
ul

ar
R

ed
un

da
nc

y

N
-V

er
si

on
 D

es
ig

n

R
ec

ov
er

y 
Bl

oc
k

Stateful

St
ra

te
gy

Ar
ch

ite
ct

ur
al

St
ru

ct
ur

al

Behavioral State

En
vi

ro
nm

en
t S

ta
te

D
yn

am
ic

 S
ta

te

St
at

ic
 S

ta
te

St
at

el
es

s

Self-Stabilization

Self-
Masking

N
at

ur
al

 T
ol

er
an

ce

Se
lf-

H
ea

lin
g

Self-
Correction

Se
lf-

Aw
ar

e

Ac
tiv

e/
St

an
db

y

Fig. 1. Classification of resilience design patterns

N systems depending on each other exhibit serial reliability
(Eq. 7) and N systems redundant to each other have parallel
reliability (Eq. 8). Serial and parallel reliability can be sim-
plified for identical systems (Eqs. 9 and 10). Assuming an
exponential PDF for system i of λe−λit, serial and parallel
reliability and identical serial and parallel reliability can be
simplified (Eqs. 11-14).

R(t)s =

N∏
n=1

Rn(t) (7)

R(t)p = 1−
N∏
n=1

(1−Rn(t))

(8)

R(t)is = R(t)N (9)

R(t)ip = 1− (1−R(t))N (10)

R(t)s = e−λst, λs =

N∑
n=1

λn

(11)

R(t)p = 1−
N∏
n=1

(1− e−λnt)

(12)

R(t)is = e−λtN (13)

R(t)ip = 1− (1− e−λt)N (14)

Availability is the proportion of time a system provides
a correct service, with planned uptime (PU) tpu, scheduled
downtime (SD) tsd, and unscheduled downtime (UD) tud
(Eq. 15). Performance is the time required to successfully
execute a task, including PU, SD, and UD. The mean-time to
repair (MTTR) is the expected time to repair a system and can
be used with the MTTF to calculate the mean-time between
failures (MTBF) (Eq. 16). MTTR, MTTF, and MTBF can also
be used to calculate availability (Eq. 17), if there is no SD.
Systems depending on each other exhibit serial availability
(Eq. 18) and systems redundant to each other have parallel
availability (Eq. 19). Serial and parallel availability can be
simplified for identical systems (Eqs. 20 and 21).

A =
tpu

tpu + tsd + tud
(15)

MTBF =MTTF +MTTR
(16)

A =
MTTF

MTTF +MTTR
(17)

=
MTTF

MTBF

As =

N∏
n=1

An (18)

Ap = 1−
N∏
n=1

(1−An) (19)

Ais = AN (20)

Aip = 1− (1−A)N (21)

B. Resilience Design Patterns
Design patterns describe generalizable solutions to recurring

problems. They are often derived from best practices and
contain the essential elements of design problems and their
solutions. Design patterns provide designers with a template
on how to solve a problem in different situations. They may
also describe design alternatives to a specific problem.

Resilience design patterns [7] address the issues of deal-
ing with faults, errors, and failures in computing systems,
specifically in extreme-scale HPC. They identify the problems
caused by such events and the solutions to handle them. The
catalog of resilience design patterns [8] may be used by ar-
chitects and developers as essential building blocks. It permits
exploration of design alternatives and optimization of the cost-
benefit trade-offs between performance, protection coverage,
and power consumption of different resilience solutions.

The latest pattern classification (Fig. 1) features 21 behav-
ioral patterns: 4 strategy, 7 architectural, and 15 structural. It
also includes 5 state patterns. This paper extends the previ-
ous work [13], which introduced performance and reliability
models for 6 resilience design patterns (Fault Diagnosis, Re-
configuration, Redundancy and Design Diversity architectural,
Rollback, and Rollforward), to all 15 structural patterns.

III. RELATED WORK

Reliability and performance modeling, analysis, and opti-
mization can be categorized [16] into: structural, state-space,
and hierarchical models. Structural models highlight the re-
lationships between systems using block diagrams, reliability
graphs, and fault trees. State-space models describe depen-
dencies between systems using Markov chains. Hierarchical
models balance the speed of analysis with its accuracy by com-
bining abstract structural models with detailed Markov models.
In addition, performability analysis [17] models the interaction
between failure recovery behavior and performance.

Checkpoint/restart (C/R), represented by the Rejuvenation,
Rollback, and Rollforward pattern, is the main resilience
strategy in HPC. Much of the reliability and performance
modeling work in C/R has focused on the optimum checkpoint
interval [18], [19] and on applying it in practice to systems
with a non-constant MTBF [20], different failure distribu-
tions [21], and multilevel C/R solutions [22]. Research in the
redundancy area is not used in production HPC and mostly
focused on solutions and models for modular redundancy at
the Message Passing Interface (MPI) [23], [24].

IV. RESILIENCE DESIGN PATTERN MODELS

This section describes the performance, reliability, and
availability models for each of the 15 structural resilience
design patterns. They can be used to design and deploy
resilient systems by understanding the different trade-offs. We
assume an exponential PDF for fault, error, and failure.



Start

Monitor (Sub-)
System Parameters

End

Cause/Effect or
Effect/Cause AnalysisDeviation?

Finished?
No

Yes

No

Yes

Tm

Ta

Raise Notification
with Type and

Location
TnFault Condition?

Yes

No

(a) Monitoring Flowchart

Monitor (Sub-)
System Parameters

Cause/Effect or
Effect/Cause Analysis TmTa

Raise Notification
with Type and

Location
Tn

Started

FinishedNormal

Deviation

Finished

Fault

No Fault

Notified

Finished

(b) Monitoring State diagram

Start

Monitor (Sub-)
System Parameters

End

Raise NotificationFault Condition?

Finished?
No

Yes

No

Yes

Tmon

Tn

Filtering

Regression

Statistical/Rule-
based Modeling

Tf

Tr

Tmod

(c) Prediction Flowchart

Monitor (Sub-)
System Parameters

Raise Notification

Monitored

Tmon

Tn

Filtering

Regression

Statistical/Rule-
based Modeling

Filtered

Analyzed

Tf

Tr

TmodFault

Normal

Started

Finished

Finished

Notified

(d) Prediction State diagram
Fig. 2. Monitoring and Prediction pattern flowchart and state diagram

TABLE I
MONITORING PATTERN PARAMETERS

Parameter Definition

Tm
Time to monitor (sub-) system parameters, including wait
and probe times

Ta Time to perform the cause/effect or effect/cause analysis
Tn Time to raise notification with type and location

A. Monitoring

The Monitoring pattern supports methods to recognize the
presence of a defect or anomaly within a monitored system.
The solution requires a monitoring system, which may be a
subsystem of the monitored system or an external independent
system. The flowchart of the pattern is shown in Fig. 2a, the
state diagram in Fig. 2b, and its parameters in Table I.

When the monitoring system is a part of monitored system,
the failure-free performance Tf=0 of the monitoring pattern
is defined by the task’s total execution time without any
resilience strategy TE and the time to monitor sub-system
parameters, including wait and probe times Tm with the total
number of input-execute-output cycles P . The performance
under failure T is defined by Tf=0, plus the time Ta to perform
the cause/effect or effect/cause analysis and the time Tn to
raise notification with type and location, where the total time
to perform the cause/effect or effect/cause analysis and to raise
notification with type and location is number of faults time Ta
and Tn. The number of faults can be calculated by dividing
TE by MTTF (M ). Assuming constant times Tm (tm for P
input-execute-output cycles), Ta, and Tn, T can be defined by
Eq. 22. As the Monitoring pattern is not impacted by error
or failure, the reliability remains the same as per Eq. 4. The
availability of the Monitoring pattern can be calculated using
the task’s total execution time without the Monitoring pattern
TE and the performance with the Monitoring pattern T (Eq.
15). TE is PU and T is PU , SD and UD.

T = TE + P (tm) +
TE
M

(Ta + Tn) (22)

B. Prediction

Prediction supports methods to recognize the potential of
a future defect or anomaly within a monitored system. The

TABLE II
PREDICTION PATTERN PARAMETERS

Parameter Definition

Tmon
Time to monitor (sub-) system parameters, including wait
and probe times

Tf Time to perform the filtering
Tr Time to perform the regression

Tmod Time to perform the statistical/rule-based modeling
Tn Time to raise notification

solution requires a monitoring system, which may be a sub-
system of the monitored system or an external independent
system. The flowchart of the pattern is shown in Fig. 2c, the
state diagram in Fig. 2d, and its parameters in Table II.

When the monitoring system is a part of the monitored
system, the failure-free performance Tf=0 of the prediction
pattern is defined by the task’s total execution time without
any resilience strategy TE , the time to monitor sub-system
parameters, including wait and probe times Tmon, the time
to perform the filtering Tf , the time to perform the regression
Tr, and the time to perform the statistical/rule-based modeling
Tmod with the total number of input-execute-output cycles P .
The performance under failure T is defined by Tf=0, plus the
time Tn to raise notification with type and location, where the
total time to raise notification with type and location is number
of faults time Tn. Assuming constant times Tmon (tmon), Tf
(tf ), Tr (tr), Tmod (tmod), and Tn, T can be defined by Eq. 23.
Like the Monitoring pattern, the reliability remains the same
and availability is defined by Eq. 15.

T = TE + P (tmon + tf + tr + tmod) +
TE
M

(Tn) (23)

C. Restructure

Restructure alleviates the impact of a fault, error, or failure
on system operation by changing the interconnection between
the subsystems in the overall system. It has a detection com-
ponent that is similar to the Monitoring or Prediction pattern
and an additional containment and mitigation component that
acts upon the notification from the detection component. The
flowchart of the pattern is shown in Fig. 3a, the state diagram
in Fig. 3b, and its parameters in Table III.

In case when monitoring system is a part of monitored
system, the failure-free performance Tf=0 of the restructure



Start

Detect

End

Isolate Affected
Sub-Systems

Yes

No

Td

Execute

Detected?

Finished?

Yes

No

Te

Remove Affected
Sub-Systems

Ti

Tr

(a) Flowchart

Detect Isolate Affected
Sub-System(s)

Td

Executed

Execute

Restructured

Te
Remove Affected

Sub-Systems

Isolated

Ti

Tr

Detected

Finished

Started

(b) State diagram
Fig. 3. Restructure pattern flowchart and state diagram

TABLE III
RESTRUCTURE PATTERN PARAMETERS

Parameter Definition
Te Time to execute system progress
Td Time to detect or predict a fault, error or failure
Ti Time to isolate the affected subsystem(s)
Tr Time to remove the affected subsystem(s)

pattern is defined by the task’s total execution time without any
resilience strategy TE and the time to detect or predict a fault,
error or failure Td with the total number of input-execute-
output cycles P . The performance under failure T is defined
by Tf=0, plus the time Ti to isolate the affected subsystem(s)
and the time Tr to remove the affected subsystem(s), where the
total time to isolate the affected subsystem(s) and to remove
the affected subsystem(s) is number of faults, errors, or failures
time Ti and Tr. Assuming constant times Td (td), Ti, and Tr,
T can be defined by Eq. 24.

Given that the Restructure pattern enables the resumption
of correct operation after an error or failure, the reliability of
a system employing it is defined by errors and failures that are
not handled by the pattern, such as failures of the persistent
storage system. The reliability after applying the Restructure
pattern R(t) can be obtained using the performance under
failure T and the failure rate λu (or MTTF Mu) of the
unprotected part of the system (Eq. 25). The availability is
defined by Eq. 15.

T = TE + P (td) +
TE
M

(Ti + Tr) (24)

R(t) = e−λuT = e−T/Mu (25)

D. Rejuvenation

Rejuvenation alleviates the impact of a fault, error, or failure
on system operation by restoring the affected subsystem or
system to a known correct state. It has a detection component
that is similar to the Monitoring or Prediction structural pat-
terns and an additional containment and mitigation component
that acts upon the notification from the detection component
and is similar to the Rollback or Rollforward structural pat-
terns. The flowchart of the pattern is shown in Fig. 4a, the
state diagram in Fig. 4b, and its parameters in Table IV.

Rejuvenation pattern detection component is same as the
Monitoring pattern (Eq. 22). The containment and mitigation
component impact the task total execution time same as in
Rollback or Rollforward pattern (described later). We define
performance using the Rollback pattern. We calculate perfor-
mance under failure T by adding the time to detect or predict

Start

Detect

End

Isolate Affected
Sub-System(s)

Yes

No

Td

Execute

Detected?

Finished?

Yes

No

Te
Restore or

Recreate the
State of Affected
(Sub-) System(s)

Ti

Tr

(a) Flowchart

Detect Isolate Affected
Sub-System(s)

Td

Executed

Execute

Rejuvenated

Te

Restore or
Recreate the

State of Affected
(Sub-) System(s)

Isolated

Ti

Tr

Detected

Finished

Started

(b) State diagram
Fig. 4. Rejuvenation pattern flowchart and state diagram

TABLE IV
REJUVENATION PATTERN PARAMETERS

Parameter Definition
Te Time to execute system progress
Td Time to detect or predict a fault, error, or failure
Ti Time to isolate the affected subsystem(s)

Tr
Time to restore or replace the state of the affected subsys-
tem(s)

a fault, error, or failure Td with the total number of input-
execute-output cycles P in Eq. 30. Tl, Tr, and Ts represent Ti
time to isolate the affected subsystem(s) and Tr time to restore
or replace the state of the affected subsystem(s). Assuming
constant times Td (td), Tl, Tr, and Ts, T can be defined by
Eq. 26. Reliability and availability are defined by Eq. 25 and
Eq. 15, respectively.

T = TE + P (td) +

(
TE
τ
− 1

)
Ts +

TE
M
Te,f (τ + Ts)

+
TE
M

(Tl + Tr) (26)

E. Reinitialization

Reinitialization alleviates the impact of a fault, error, or
failure on system operation by restoring the affected subsystem
or system to its initial state. It has a detection component that
is similar to the Monitoring or Prediction structural patterns
and an additional containment and mitigation component that
acts upon the notification from the detection component. The
flowchart of the pattern is shown in Fig. 5a, the state diagram
in Fig. 5b, and its parameters in Table V.

TABLE V
REINITIALIZATION PATTERN PARAMETERS

Parameter Definition
Te Time to execute system progress
Td Time to detect or predict a fault, error, or failure
Ti Time to isolate the affected subsystem(s)
Tr Time to reset the entire system or affected subsystem(s)

Reinitialization pattern failure-free performance Tf=0 is de-
fined by the task’s total execution time without any resilience
strategy TE and the time to detect or predict a fault, error, or
failure Td with the total number of input-execute-output cycles
P . The performance under failure T is defined by Tf=0, plus
the time Ti to isolate the affected subsystem(s), the time Tr
to remove the affected subsystem(s), and the time for work
lost (which is assumed to be half of TE), where the total time
to isolate the affected subsystem(s), to remove the affected
subsystem(s), and the time for work lost is number of faults,
errors, or failures time Ti, Tr, and half of TE . Assuming



Start

Detect

End

Isolate Affected
Sub-System(s)

Yes

No

Td

Execute

Detected?

Finished?

Yes

No

Te

Reset System/
Sub-System(s)

Ti

Tr

(a) Reinitialization
Flowchart

Detect Isolate Affected
Sub-System(s)

Td

Executed

Execute

Reinitialized

Te
Reset System/
Sub-System(s)

Isolated

Ti

Tr

Detected

Finished

Started

(b) Reinitialization State dia-
gram

Start

Save
Progress to

Storage

Detect

End

Load Last Consistent
Progress from Storage

Yes

No

Ts

Td

Execute

Detected?

Finished?

Yes

No

Te

Rollback to Last Known
Correct State

Tl

Tr

(c) Rollback Flowchart

Save
Progress to

Storage
Load Last Consistent

Progress from Storage

Execute

Rollback to Last Known
Correct State

Detected

Loaded

Rolled Back

Checkpointed

Checkpoint

Started

Finished Tl

Tr

Ts Te

(d) Rollback State diagram

Fig. 5. Reinitialization and Rollback pattern flowchart and state diagram

constant times Td (td), Ti, and, Tr, T can be defined by Eq.
27. Reliability and availability are defined by Eq. 25 and Eq.
15, respectively.

T = TE + P (td) +
TE
M

(Ti + Tr + TE ∗ 0.5) (27)

F. Rollback

Rollback supports resilient operation by restoring the system
to the time when the last checkpoint occurred in the event of
an error or failure. The flowchart of the pattern is shown in
Fig. 5c, the state diagram in Fig. 5d, and its parameters in
Table VI.

TABLE VI
ROLLBACK PATTERN PARAMETERS

Parameter Definition
Te Time to execute system progress
Td Time to detect an error/failure (not part of this pattern)

Tl
Time to load consistent system state and progress from
storage

Tr Time to rollback to the last known correct state
Ts Time to save system state and progress to storage

The failure-free performance Tf=0 of the Rollback pattern
is defined by the task’s total execution time without any re-
silience strategy TE and the time spent on saving system state
and progress to storage Ts during task execution with a total
number of checkpoints N . Assuming a constant checkpoint
interval τ , the total number of checkpoints N is defined by
the task’s total execution time without any resilience strategy
TE divided by τ . Td, time to detect an error/failure, is not part
of this pattern.

The performance under failure T is defined by the failure-
free performance Tf=0, plus the total lost time to execute
system progress TEL and the total time to load consistent
system state and progress from storage and to rollback to the
last known correct state TR (Eq. 28). Assuming constant times
Ts, Tl, and Tr, the performance under failure T can be further
simplified with a total number of failures (Eq. 29). T can be
calculated [19] using a first-order (Eq. 30) and a higher-order
(Eq. 31) approximation for an optimal checkpoint interval τ .
Reliability and availability are defined by Eq. 25 and Eq. 15,
respectively.

T = TE + TS + TEL + TR (28)

T = TE +NTs + TEL +
TE
M

(Tl + Tr) (29)

T = TE +

(
TE
τ
− 1

)
Ts +

TE
M
Te,f (τ + Ts) +

TE
M

(Tl + Tr),

τ =
√
2MTs (30)

T =Me(Tl+Tr)/M
(
e(τ+Ts)/M − 1

) TE
τ
,

τ =
√
2MTs

[
1 +

1

3

(
Ts
2M

)1/2

+
1

9

(
Ts
2M

)]
− Ts (31)

G. Rollforward

Rollforward supports resilient operation by restoring the
system to the time when the error/failure event occurred in
the event of an error or failure. The flowchart of the pattern
is shown in Fig. 6a, the state diagram in Fig. 6b and its
parameters in Table VII.

TABLE VII
ROLLFORWARD PATTERN PARAMETERS

Parameter Definition
Te Time to execute (sub-) system progress

Td
Time to detect an error/failure (not part of this pattern, but
shown for completeness)

Tl
Time to load consistent (sub-) system state and progress
from storage

Tr Time to rollforward to the correct state before the event
Ts Time to save (sub-) system state and progress to storage

The Rollforward pattern avoids losing any work as it
recovers the system to stable state immediately before the error
or failure event. Assuming constant times Ts, Tl, and Tr, the
performance T can be calculated by getting rid of lost work
TEL in Eq. 30 (Eq. 32). Reliability and availability are defined
by Eq. 25 and Eq. 15, respectively.

T = TE +

(
TE
τ
− 1

)
Ts +

TE
M

(Tl + Tr), τ =
√
2MTs (32)

H. Forward Error Correction Code

Forward Error Correction Code (FECC) supports resilient
operation by applying redundancy to system state and op-
tionally to system resources in the form of encoded system
state. Input is encoded, processed redundantly in an encoded
fashion by the system, and the output is then decoded. The
decoding corrects an error or failure. The flowchart of the
pattern is shown in Fig. 6c, the state diagram in Fig. 6d, and
its parameters in Table VIII.

The failure free performance Tf=0 of the FECC pattern is
defined by the task total execution time without any resilience
strategy TE , the total time to activate the redundant informa-
tion storage Ta, the time to encode Ten, and the time to decode



Start

Save
Progress to

Storage

Detect

End

Load Last Consistent
Progress from Storage

Yes

No

Ts

Td

Execute

Detected?

Finished?

Yes

No

Te

Rollforward to Correct
State Before the Event

Tl

Tr

(a) Rollforward Flowchart

Save
Progress to

Storage
Load Last Consistent

Progress from Storage

Execute

Rollforward to Correct
State Before the Event

Detected

Loaded

Rolled Forward

Checkpointed

Checkpoint

Started

Finished Tl

Tr

Ts Te

(b) Rollforward State diagram

Start

Decode and Detect

End

Correct using
Redundant
Information

Detected?

Finished?
No

Yes

No

Yes

Td

Activate Redundant
Information Storage Ta

Tc

Encode Ten

Execute Tex

(c) FECC Flowchart

Decode and DetectCorrect using
Redundant
Information

Td

Activate Redundant
Information Storage

Executed

Ta

Tc

Encode Ten

Execute Tex

Encoded

Activated

Started

Decoded

Detected

Corrected

Finished

Finished

(d) FECC State diagram
Fig. 6. Rollforward and Forward Error Correction Code pattern flowchart and state diagram

TABLE VIII
FECC PATTERN PARAMETERS

Parameter Definition
Ta Time to activate the redundant information storage
Ten Time to encode the input for the (sub-) system
Tex Time to execute (sub-) system progress

Td
Time to decode the output from the (sub-) system and
detect

Tc Time to correct using redundant information

and detect Td with the total number of input-execute-output
cycles P . The performance under failure T is defined by Tf=0

plus the time Tc to correct using redundant information, where
total time to correct using redundant information is number of
error or failure times Tc. Assuming constant times Ta, Ten
(ten), Td (td), and Tc, T can be defined by Eq. 33. All the
above equations define total execution time while redundancy
is in time. Reliability and availability are defined by Eq. 25
and Eq. 15, respectively.

T = TE + Ta + P (ten + td) +
TE
M

(Tc) (33)

I. Active/Standby

Active/Standby supports resilient operation by applying
redundancy in the form of N functionally identical replicas, us-
ing redundancy in space and potentially in time. The flowchart
of the pattern is shown in Fig. 7a, the state diagram in Fig.
7b, and its parameters in Table IX.

TABLE IX
ACTIVE/STANDBY PATTERN PARAMETERS

Parameter Definition
Ta Time to activate the active and standby (sub-) systems

Ti
Time to replicate the input to the active and standby (sub-)
systems

Te Time to execute progress on the active (sub-) system

Td
Time to detect an error in or failure of the active (sub-)
system

Tf
Time to isolate the active (sub-) system and fail-over to a
standby (sub-) system

Tr
Time to replicate system state from the active (sub-)
system to the standby (sub-) systems

The failure-free performance Tf=0 of the Active/Standby
pattern is defined by the task total execution time without any
resilience strategy TE , the total time to activate the active and

Start

Detect

End

Isolate the
Active and Fail-Over
to a Standby (Sub-)

System
Detected?

Finished?
No

Yes

No

Yes

Td

Activate
Active/Standby
(Sub-) Systems Ta

Tf

Execute Te

Replicate
System State Tr

Replicate Input Ti

(a) Flowchart

Detect
Isolate the

Active and Fail-Over
to a Standby (Sub-)

System

Detected

Not Detected
Td

Activate
Active/Standby
(Sub-) Systems

Executed

Ta

Tf

Execute Te

Activated

Replicate
System State

Replicated

Tr

Replicate Input Ti

Replicated

Started

Finished

Failed Over

Finished

(b) State diagram
Fig. 7. Active/Standby pattern flowchart and state diagram

(sub-) standby systems Ta, the time to replicate the input to
the active and standby (sub-) systems Ti, the time to detect
an error in or failure of the active (sub-) system Td, and the
time to replicate system state from the active (sub-) system
to the standby (sub-) systems Tr with the total number of
input-execute-output cycles P . The performance under failure
T is defined by Tf=0 plus the time Tf to isolate the active
(sub-) system and fail-over to a standby (sub-) system, where
total time to isolate is number of error or failure times Tf .
Assuming constant times Ta, Ti (ti), Td (td), Tr (tr), and Tf ,
T can be defined by Eq. 34. When the redundancy is in space,
using a ratio for replication in space vs. in time α, T (Eq. 35)
can be reformulated.

T = TE + Ta + P (ti + td + tr) +
TE
M

(Tf ) (34)

T = αTE + (1− α)NTE + Ta + P (ti + td + tr) +
TE
M

(Tf )

(35)

Reliability is defined by the parallel reliability of the N -
redundant execution and the performance under failure T
(Eq. 36). It can be simplified for redundancy of identical
systems (Eq. 37).

R(t) = 1−
N∏
n=1

(1− e−λnT )

(36)
Ri(t) = 1− (1− e−λT )N (37)



The availability A of the Active/Standby pattern is defined
by N -parallel availability and the performance under failure
T (Eq. 38). It can be simplified for redundancy of identical
systems (Eq. 39). If Ta, Ti, Td, Tr, and Tf are small enough,
non-identical and identical availability can be simplified fur-
ther (Eqs. 40 and 41), where Mn (or M ) is the MTTF and
Rn (or R) is the MTTR of each individual system (Tf ).

A = 1−
N∏
n=1

(1−An)

= 1−
N∏
n=1

(
1− TE,n

Tn

)
(38)

Ai = 1− (1−A)N

= 1−
(
1− TE

T

)N
(39)

A = 1−
N∏
n=1

(
1− Mn

Mn +Rn

)
(40)

Ai = 1−
(
1− M

M +R

)N
(41)

J. N-modular Redundancy

N-modular Redundancy enables the continuous correct op-
eration of a system by applying redundancy in the form of
N functionally identical replicas. Redundancy in time uses
the same resources to execute replicas. Redundancy in space
uses redundant resources. A mix between both is possible,
where there are more replicas than redundant resources. The
flowchart of the pattern is shown in Fig. 8a, the state diagram
in Fig. 8b, and its parameters in Table X.

Start

Compare Output

End

Remove, Replace, or
Discount Affected
Redundant (Sub-)

Systems
Mismatch?

Finished?
No

Yes

No

Yes

To

Activate N Redundant
(Sub-) Systems Ta

Tr

Execute N
Redundantly Te

Replicate Input Ti

(a) Flowchart

Started

Finished

Compare Output
Remove, Replace, or

Discount Affected
Redundant (Sub-)

Systems

Failed
To

Activate N Redundant
(Sub-) Systems

Replicated

Ta

Tr

Execute N
Redundantly Te

Executed

Replicate Input Ti

Activated

Compared

Compensated

Finished

(b) State diagram
Fig. 8. N-modular Redundancy pattern flowchart and state diagram

TABLE X
N-MODULAR REDUNDANCY PATTERN PARAMETERS

Parameter Definition
Ta Time to activate N replicas of the system
Ti Time to replicate the input to the N replicas
Te Time to execute system progress in the N replicas
To Time to compare the outputs from the N replicas
Tr Time to remove, replace, or discount the affected replica(s)

The failure-free performance Tf=0 of the N-modular Re-
dundancy pattern is defined by the task’s total execution time
without any resilience strategy TE , the total time to activate N
replicas of the system Ta, the time to replicate the input Ti and
the time to compare the outputs To with the total number of
input-execute-output cycles P . The performance under failure
T is defined by Tf=0, plus the total time Tr to remove, replace,

or discount the replica(s) where total time to remove, replace,
or discount is number of error or failure times Tf . Assuming
constant times Ta, Ti (ti), To (to), and Tr, T can be simplified
(Eq. 42). Using a ratio for replication in space vs. in time α,
T (Eq. 43) can be reformulated. Reliability is defined by Eq.
37. Availability can be calculated using R (Tr) by Eq. 41.

T = TE + Ta + P (ti + to) +
TE
M

(Tr) (42)

T = αTE + (1− α)NTE + Ta + P (ti + to) +
TE
M

(Tr) (43)

K. N-Version Design

N-Version Design supports resilient operation by applying
redundancy in the form of N functionally equivalent alternate
system implementations. The flowchart of the pattern is shown
in Fig. 9a, the state diagram in Fig. 9b, and its parameters in
Table XI.

Start

Compare Output

End

Remove, Replace, or
Discount Affected
Redundant (Sub)

Systems
Mismatch?

Finished?
No

Yes

No

Yes

To

Activate N Redundant
(Sub-) Systems Ta

Tr

Execute N
Redundantly Te

Replicate Input Ti

Start

Validate Output

End

Remove, Replace, or
Discount Affected
Alternate (Sub-)

Systems
Failed Validation?

Finished?
No

Yes

No

Yes

To

Activate N Versions
of the (Sub-) System Ta

Tr

Execute N Versions Te

Replicate Input Ti

(a) Flowchart

Started

Finished

Validate Output
Remove, Replace, or

Discount Affected
Alternate (Sub-)

Systems

Failed
To

Activate N Versions
of the (Sub-) System

Replicated

Ta

Tr

Execute N Versions Te

Executed

Replicate Input Ti

Activated

Validated

Compensated

Finished

(b) State diagram
Fig. 9. N-version Design pattern flowchart and state diagram

TABLE XI
N-VERSION DESIGN PATTERN PARAMETERS

Parameter Definition
Ta Time to activate N versions of the (sub-) system

Ti
Time to replicate the input to the N versions of the (sub-)
system

Te
Time to execute (sub-) system progress in the N versions
of the (sub-) system

To
Time to validate the output from the N versions of the
(sub-) system

Tr
Time to remove, replace, or discount the affected redun-
dant (sub-) system version(s)

The failure-free performance Tf=0 of the N Version is
defined by the task total execution time without any resilience
strategy TE (the worst case execution time of N versions of the
(sub-) system), the total time to activate N versions of the (sub-
) system Ta, the time to replicate the input to the N versions of
the (sub-) system Ti, and the time to validate the output from
the N versions of the (sub-) system To with the total number of
input-execute-output cycles P . The performance under failure
T is defined by Tf=0 plus the time Tr to remove, replace,
or discount the affected redundant (sub-) system version(s),
where total time to remove, replace, or discount is number
of error or failure times Tr. Assuming constant times Ta, Ti
(ti), To (to), and Tr, T can be defined by Eq. 44. When the



redundancy is in space, using a ratio for replication in space
vs. in time α, T (Eq. 45) can be reformulated. Reliability is
defined by Eq. 37. Availability can be calculated using R (Tr)
by Eq. 41.

T = TE + Ta + P (ti + to) +
TE
M

(Tr) (44)

T = αTE + (1− α)NTE + Ta + P (ti + to) +
TE
M

(Tr) (45)

L. Recovery Block

Recovery Block supports resilient operation by applying
redundancy in the form of a functionally equivalent alternate
system implementation encapsulated in a recovery block. The
flowchart of the pattern is shown in Fig. 10a, the state diagram
in Fig. 10b, and its parameters in Table XII.

Start

Validate Output

End

Execute Recovery
BlockFailed Validation?

Finished?
No

Yes

No

Yes

To

Activate 
Recovery Block Ta

Tr

Execute (Sub-)
System Te

Replicate Input Ti

(a) Flowchart

Validate OutputExecute Recovery
Block

To

Activate 
Recovery Block

Executed

Ta

Tr

Execute (Sub-)
System Te

Activated

Replicate Input Ti

Replicated

Started

Finished

Validated

Failed

Compensated

Finished

(b) State diagram
Fig. 10. Recovery Block pattern flowchart and state diagram

TABLE XII
RECOVERY BLOCK PATTERN PARAMETERS

Parameter Definition
Ta Time to activate the recovery block of the (sub-) system

Ti
Time to replicate the input to the (sub-) system and the
recovery block of the (sub-) system

Te Time to execute (sub-) system progress
To Time to validate the output from the (sub-) system
Tr Time to execute the recovery block of the (sub-) system

T = TE + Ta + P (ti + to) +
TE
M

(Tr) (46)

T = αTE + (1− α)NTE + Ta + P (ti + to) +
TE
M

(Tr) (47)

The failure-free performance Tf=0 of the Recovery Block
pattern is defined by the task total execution time without any
resilience strategy TE , the total time to activate the recovery
block of the (sub-) system Ta, the time to replicate the input to
the (sub-) system and the recovery block of the (sub-) system
Ti, and the time to validate the output from the (sub-) system
To with the total number of input-execute-output cycles P . The
performance under failure T is defined by Tf=0 plus the time
Tr to execute the recovery block of the (sub-) system, where
total time to execute the recovery block of the (sub-) system is
number of error or failure times Tr. Assuming constant times
Ta, Ti (ti), To (to), and Tr, T can be defined by Eq. 46. When
the redundancy is in space, using a ratio for replication in
space vs. in time α, T (Eq. 47) can be reformulated. Reliability

is defined by Eq. 37. Availability can be calculated using R
(Tr) by Eq. 41.

M. Natural Tolerance

Natural Tolerance relies on the capability of reaching a
correct system state from an illegal system state after a
finite number of execution steps using implicit error/failure
detection and self-masking. Self-masking may be as simple as
approximation of a correct state. The Redundancy pattern is
often employed to aid in the process of self-masking and to
extend the pattern’s protection domain. The flowchart of the
pattern is shown in Fig. 11a, the state diagram in Fig. 11b,
and its parameters in Table XIII.

Start

Detect

End

Self-Mask StateIllegal State?

Finished?
No

Yes

No

Yes

Td

Tm

Execute Te

Activate Redundancy
(if any) Ta

(a) Flowchart

DetectSelf-Mask State

Not Detected

TdTm

Execute

Executed

Te

Activate Redundancy
(if any) Ta

Activated

Detected

Finished

Self-Masked

Finished

Started

(b) State diagram
Fig. 11. Natural Tolerance pattern flowchart and state diagram

TABLE XIII
NATURAL TOLERANCE PATTERN PARAMETERS

Parameter Definition
Ta Time to activate redundancy (if any)
Te Time to execute system progress
Td Time to detect illegal system state
Tm Time to self-mask illegal system state

The failure-free performance Tf=0 of the Natural Tolerance
pattern is defined by the task total execution time without any
resilience strategy TE , the total time to activate redundancy Ta,
and the time to detect illegal system state Td with the total
number of input-execute-output cycles P . The performance
under failure T is defined by Tf=0 plus the time Tm to self-
mask illegal system state, where total time to self-mask illegal
system state is number of error or failure times Tm. Assuming
constant times Ta, Td (td) and Tm, T can be defined by Eq. 48.
When the redundancy is in space, using a ratio for replication
in space vs. in time α, T (Eq. 49) can be reformulated.
Reliability is defined by Eq. 37. Availability can be calculated
using R (Tm) by Eq. 41.

T = TE + Ta + P (td) +
TE
M

(Tm) (48)

T = αTE + (1− α)NTE + Ta + P (td) +
TE
M

(Tm) (49)

N. Self-Healing

Self-Healing relies on the capability of reaching a correct
system state from an illegal system state after a finite number
of execution steps using explicit error/failure detection and
self-correction. Self-correction may be as simple as discarding,



Start

Detect

End

Self-Correct StateIllegal State?

Finished?
No

Yes

No

Yes

Td

Tc

Execute Te

Activate Redundancy
(if any) Ta

(a) Flowchart

DetectSelf-Correct State

Not Detected

TdTc

Execute

Executed

Te

Activate Redundancy
(if any) Ta

Activated

Detected

Finished

Self-Corrected

Finished

Started

(b) State diagram
Fig. 12. Self-Healing pattern flowchart and state diagram

TABLE XIV
SELF-HEALING PATTERN PARAMETERS

Parameter Definition
Ta Time to activate redundancy (if any)
Te Time to execute system progress
Td Time to detect illegal system state
Tc Time to self-correct illegal system state

recomputing, or estimating a wrong value in the system or a
wrong or missing output from a subsystem. The flowchart of
the pattern is shown in Fig. 12a, the state diagram in Fig. 12b,
and its parameters in Table XIV.

The failure-free performance Tf=0 of the Self-Healing
pattern is defined by the task total execution time without any
resilience strategy TE , the total time to activate redundancy Ta,
and the total time to detect illegal system state Td with the total
number of input-execute-output cycles P . The performance
under failure T is defined by Tf=0 plus the time Tc to self-
correct illegal system state, where total time to self-correct
illegal system state is number of error or failure times Tc.
Assuming constant times Ta, Td (td) and Tc, T can be defined
by Eq. 50. When the redundancy is in space, using a ratio
for replication in space vs. in time α, T (Eq. 51) can be
reformulated. Reliability is defined by Eq. 37. Availability can
be calculated using R (Tc) by Eq. 41.

T = TE + Ta + P (td) +
TE
M

(Tc) (50)

T = αTE + (1− α)NTE + Ta + P (td) +
TE
M

(Tc) (51)

O. Self-Aware

Self-Aware relies on the capability of reaching a correct
system state from an illegal system state after a finite number
of execution steps using explicit error/failure detection and
self-correction. It additionally employs the Fault Diagnosis
architectural pattern and an observe, orient, decide, and act
(OODA) loop control for error/failure detection and self-
correction. The flowchart of the pattern is shown in Fig. 13a,
the state diagram in Fig. 13b, and its parameters in Table XV.

The failure-free performance Tf=0 of the Self-Aware pat-
tern is defined by the task total execution time without any
resilience strategy TE and the time to monitor (sub-) system
parameters, including wait and probe times Tm with the total
number of input-execute-output cycles P . The performance
under failure T is defined by Tf=0 plus the time to perform

Start

Monitor (Sub-)
System State

End

Cause/Effect or
Effect/Cause AnalysisDeviation?

Finished?
No

Yes

No

Yes

Tm

Ta

Execute Te

Option/Trade-off
Decision Making ToIllegal State?

Self-Correct State Tc

Yes

No

(a) Flowchart

Monitor (Sub-)
System State

Cause/Effect or
Effect/Cause Analysis

Normal

Tm

Ta

Execute

Executed

Te

Deviation

Finished

Self-Corrected

Finished

Started

Option/Trade-off
Decision MakingTo

Self-Correct StateTc

Illegal State

Act
Correct State

Finished

(b) State diagram
Fig. 13. Self-Aware pattern flowchart and state diagram

TABLE XV
SELF-AWARE PATTERN PARAMETERS

Parameter Definition
Te Time to execute system progress

Tm
Time to monitor (sub-) system parameters, including wait
and probe times

Ta Time to perform the cause/effect or effect/cause analysis
To Time to perform the option/trade-off decision making
Tc Time to self-correct illegal system state

the cause/effect or effect/cause analysis Ta, the time To to
perform the option/trade-off decision making and the time
Tc to self-correct illegal system state, where total time to
perform the cause/effect or effect/cause analysis, to perform
the option/trade-off decision making and to self-correct illegal
system state is number of error or failure times Ta, To, and
Tc. Assuming constant times Tm (tm), Ta, To, and Tc, T can
be defined by Eq. 52. When the redundancy is in space, using
a ratio for replication in space vs. in time α, T (Eq.53) can
be reformulated. Reliability is defined by Eq. 37. Availability
can be calculated using R (Ta + To + Tc) by Eq. 41.

T = TE + P (tm) +
TE
M

(Ta + To + Tc) (52)

T = αTE + (1− α)NTE + P (tm) +
TE
M

(Ta + To + Tc) (53)

V. RESILIENCE DESIGN PATTERN MODELING TOOL

The RDPM tool was developed to simplify studying the
characteristics of patterns and pattern combinations. Each
pattern has its own models and parameters, which can make it
a rather tedious task to understand the performance, reliability,
and availability trade-offs of different patterns and pattern
implementations. This is even more complicated by horizontal
and vertical combinations of patterns to complement each
other. The RDPM tool alleviates these difficulties by modeling
patterns and pattern combinations and providing performance,
reliability, and availability plots for each scenario. This permits
design space exploration that navigates the space of patterns
as well as individual pattern parameter spaces.

The Python-based RDPM1tool implements performance,
reliability, and availability models for each of the 15 structural
resilience design pattern as individual classes. Patterns objects

1https://code.ornl.gov/6hk/rdpm



can be created and configured using an XML file2, describing
a systems resilience design patterns. Each class offers a
method to calculate and plot its performance, reliability, and
availability metrics. A full description of the RDPM tool
and a demonstration of its capabilities is outside the scope
of this paper. However, the interested reader is encouraged to
to follow up on some of our early experiments3 that can not
be presented here due to space concerns.

In these experiments, we set TE to 168 hours. For the
Monitoring to FECC patterns, we set MTTF M to 24-168
hours (1-7 days). The MTTF Mu of the unprotected part
of the system is 720 hours (30 days). For patterns from
Active/Standby to Self-Aware, for performance we set MTTF
M to 192 hours (8), for reliability and availability we set
MTTF M (MRA in the XML file) to 48-336 hours (2-14 days).
The ratio for replication in space vs. in time, α, is in between
0 and 1. All other parameters are measured in hours and range
from 1 second to 2 minutes.

VI. CONCLUSION

This paper extends previous work in initial performance and
reliability models for resilience design patterns by (1) describ-
ing performance, reliability, and availability models for all 15
structural patterns, (2) providing more detailed models with
flowcharts and state diagrams that illustrate pattern behavior,
and (3) introducing the RDPM tool to study the characteristics
of patterns and pattern combinations, including performance,
reliability, and availability models between different patterns
and pattern implementations.

Future efforts will focus on models for power consumption
and energy for each structural pattern to allow for perfor-
mance, resilience power/energy HPC system design space
exploration using modeling and simulation tools and for
runtime performance, resilience power/energy trade-offs by
autonomous runtime systems. Future work will also focus on
validating the models and verifying the RDPM tool. This paper
intends to provide the theoretical foundations for resilience
design pattern models and an initial design space exploration
tool. It will take real performance, reliability, and availability
data to validate the models and to verify the RDPM tool. This
was outside the scope of this paper.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, Early Career Program, with program managers
Robinson Pino and Lucy Nowell.

REFERENCES

[1] J. T. Daly et al., “Inter-agency workshop on HPC resilience at extreme
scale,” 2012. [Online]. Available: http://institute.lanl.gov/resilience/
docs/Inter-AgencyResilienceReport.pdf

[2] A. Geist et al., “U.S. Department of Energy fault
management workshop,” Workshop report, 2012. [Online].
Available: https://science.osti.gov/-/media/ascr/pdf/program-documents/
docs/FaultManagement-wrkshpRpt-v4-final.pdf

2https://code.ornl.gov/6hk/rdpm/-/blob/master/xml/patterns.xml
3https://code.ornl.gov/6hk/rdpm/-/tree/master/images

[3] M. Snir et al., “Addressing failures in exascale computing,” International
Journal of High Performance Computing Applications, vol. 28, no. 2,
pp. 127–171, May 2014.

[4] P. Radojkovic et al., “Towards resilient EU HPC systems: A
blueprint,” European HPC resilience initiative, 2020. [Online]. Available:
https://resilienthpc.eu/results

[5] A. Geist, “How to kill a supercomputer: Dirty power, cosmic rays, and
bad solder,” IEEE Spectrum, vol. 10, pp. 2–3, 2016.

[6] G. Ostrouchov, D. Maxwell, R. Ashraf, C. Engelmann, M. Shankar, and
J. Rogers, “GPU lifetimes on Titan supercomputer: Survival analysis
and reliability,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC) 2020,
Nov. 15-20, 2020.

[7] S. Hukerikar and C. Engelmann, “Resilience design patterns: A struc-
tured approach to resilience at extreme scale,” Journal of Supercomput-
ing Frontiers and Innovations, vol. 4, no. 3, pp. 4–42, Oct. 2017.

[8] ——, “Resilience design patterns: A structured approach to resilience
at extreme scale (version 1.2),” Oak Ridge National Laboratory, Tech.
Rep. ORNL/TM-2017/745, Aug. 2017.

[9] ——, “A pattern language for high-performance computing resilience,”
in European Conference on Pattern Languages of Programs, 2017, pp.
12:1–12:16.

[10] R. Ashraf, S. Hukerikar, and C. Engelmann, “Pattern-based mod-
eling of multiresilience solutions for high-performance computing,”
in ACM/SPEC International Conference on Performance Engineering,
2018, pp. 80–87.

[11] ——, “Shrink or substitute: Handling process failures in HPC systems
using in-situ recovery,” in Euromicro International Conference on Par-
allel, Distributed, and network-based Processing, 2018, pp. 178–185.

[12] S. Hukerikar, R. Ashraf, and C. Engelmann, “Towards new metrics
for high-performance computing resilience,” in Workshop on Fault
Tolerance for HPC at eXtreme Scale, 2017, pp. 23–30.

[13] S. Hukerikar and C. Engelmann, “Pattern-based modeling of high-
performance computing resilience,” in Lecture Notes in Computer
Science: Workshop on Resiliency in High Performance Computing in
Clusters, Clouds, and Grids, vol. 10659, 2017, pp. 557–568.

[14] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan.
2004.

[15] I. Koren and C. M. Krishna, Fault-Tolerant Systems. Morgan Kaufmann,
Jul. 2007.

[16] H. Pham, Reliability Modeling, Analysis and Optimization. World
Scientific, 2006.

[17] K. S. Trivedi and M. Malhotra, Reliability and Performability Techniques
and Tools: A Survey. Springer, 1993, pp. 27–48.

[18] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACM, vol. 17, no. 9, pp. 530–531, Sep.
1974.

[19] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Generation Computer Systems, vol. 22, no. 3,
pp. 303–312, 2006.

[20] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Ex-
ploiting temporal locality in failures to mitigate checkpointing overheads
on extreme-scale systems,” in IEEE/IFIP International Conference on
Dependable Systems and Networks, 2014, pp. 25–36.

[21] S. Levy and K. B. Ferreira, “An examination of the impact of failure
distribution on coordinated checkpoint/restart,” in Workshop on Fault-
Tolerance for HPC at Extreme Scale, 2016, p. 35–42.

[22] S. Di, L. Bautista-Gomez, and F. Cappello, “Optimization of a multi-
level checkpoint model with uncertain execution scales,” in IEEE/ACM
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2014, pp. 907–918.

[23] D. Fiala, F. Mueller, C. Engelmann, K. Ferreira, R. Brightwell, and
R. Riesen, “Detection and correction of silent data corruption for
large-scale high-performance computing,” in IEEE/ACM International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 78:1–78:12.

[24] C. Engelmann, H. H. Ong, and S. L. Scott, “The case for modular redun-
dancy in large-scale high performance computing systems,” in IASTED
International Conference on Parallel and Distributed Computing and
Networks, 2009, pp. 189–194.

http://institute.lanl.gov/resilience/docs/Inter-AgencyResilienceReport.pdf
http://institute.lanl.gov/resilience/docs/Inter-AgencyResilienceReport.pdf
https://science.osti.gov/-/media/ascr/pdf/program-documents/docs/FaultManagement-wrkshpRpt-v4-final.pdf
https://science.osti.gov/-/media/ascr/pdf/program-documents/docs/FaultManagement-wrkshpRpt-v4-final.pdf
https://resilienthpc.eu/results

	Introduction
	Background
	Terminology and Metrics
	Resilience Design Patterns

	Related Work
	Resilience Design Pattern Models
	Monitoring
	Prediction
	Restructure
	Rejuvenation
	Reinitialization
	Rollback
	Rollforward
	Forward Error Correction Code
	Active/Standby
	N-modular Redundancy
	N-Version Design
	Recovery Block
	Natural Tolerance
	Self-Healing
	Self-Aware

	Resilience Design Pattern Modeling Tool
	Conclusion
	References

