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Resilience in HPC

• Resilience allows continue operation of extreme scale HPC 
systems
– component counts increases resulting in decreased reliability
– hardware and software complexity increases 
– unexpected issues, such as bad solder, dirty power, and early wear-out 

• Resilience Design Patterns
– identifies and evaluates repeatedly occurring resilience problems 
– coordinates solutions throughout hardware and software 
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Resilience Design Patterns
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Background - Terminology

• Performance is the total execution time of an application (T)

• Reliability is the probability of a system not experiencing a fault, 
error, or failure during operation 

• Serial/Parallel reliability

𝑅 𝑡 = 1 − 𝐹 𝑡

𝑅(𝑡) = 𝑒!"# 𝑀𝑇𝑇𝐹 = 1/𝜆

𝑅(𝑡)$ = 𝑅(𝑡)% = 𝑒!"#% 𝑅(𝑡)& = 1 − (1 − 𝑅(𝑡))% = 1 − (1 − 𝑒!"#)%
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Background - Terminology

• Availability is the proportion of time a system provides a correct 
service, with planned uptime (PU) tpu, scheduled downtime 
(SD) tsd, and unscheduled downtime (UD) tud

• Serial/ Parallel availability

𝐴 =
𝑡&'

𝑡&' + 𝑡$( + 𝑡'(
𝐴 =

𝑀𝑇𝑇𝐹
𝑀𝑇𝑇𝑅 +𝑀𝑇𝑇𝐹

𝐴$ = 𝐴% 𝐴& = 1 − (1 − 𝐴)%
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Resilience Design Patterns Models

• Flowchart

• Performance

• Reliability

• Availability
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Monitoring

Monitoring pattern supports methods to 
recognize the presence of a defect or 
anomaly within a monitored system. 
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Prediction

Prediction supports methods to recognize 
the potential of a future defect or anomaly 
within a monitored system. 
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𝐴 =
𝑡&'

𝑡&' + 𝑡$( + 𝑡'(
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Restructure

Restructure alleviates the impact of a fault, 
error, or failure on system operation by 
changing the interconnection between 
the subsystems in the overall system. 
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Rejuvenation

Rejuvenation alleviates the impact of a 
fault, error, or failure on system operation 
by restoring the affected subsystem or 
system to a known correct state. 
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Reinitialization

Reinitialization alleviates the impact of a 
fault, error, or failure on system operation 
by restoring the affected subsystem or 
system to its initial state.
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Rollback

Rollback supports resilient operation by 
restoring the system to the time when the 
last checkpoint occurred in the event of 
an error or failure. 
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Rollforward

Rollforward supports resilient operation by 
restoring the system to the time when the 
error/failure event occurred in the event of 
an error or failure. 
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Forward Error Correction Code

Forward Error Correction Code (FECC) 
supports resilient operation by applying 
redundancy to system state and optionally 
to system resources in the form of encoded 
system state. 
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Active/Standby

Active/Standby supports resilient operation 
by applying redundancy in the form of N 
functionally identical replicas, using 
redundancy in space and potentially in 
time. 
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𝑇 = 𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡( + 𝑡1 +
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𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%
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N-modular Redundancy

N-modular Redundancy enables the 
continuous correct operation of a system 
by applying redundancy in the form of N 
functionally identical replicas. 
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N-Version Design

N-Version Design supports resilient 
operation by applying redundancy in the 
form of N functionally equivalent alternate 
system implementations. 
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Recovery Block

Recovery Block supports resilient operation 
by applying redundancy in the form of a 
functionally equivalent alternate system 
implementation encapsulated in a 
recovery block. 

Start

Validate Output

End

Execute Recovery

Block
Failed Validation?

Finished?
No

Yes

No

Yes

To

Activate 

Recovery Block
Ta

Tr

Execute (Sub-)

System
Te

Replicate Input Ti
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𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%
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Natural Tolerance

Natural Tolerance relies on the capability 
of reaching a correct system state from an 
illegal system state after a finite number of 
execution steps using implicit error/failure 
detection and self-masking. 
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𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%
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Self Healing

Self-Healing relies on the capability of 
reaching a correct system state from an 
illegal system state after a finite number of 
execution steps using explicit error/failure 
detection and self-correction. 
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Self Aware

Self-Aware relies on the capability of 
reaching a correct system state from an 
illegal system state after a finite number of 
execution steps using explicit error/failure 
detection and self-correction. 
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Resilience Design Pattern Modeling Tool1

• Implements performance, reliability, and availability models 

• Plots performance, reliability, and availability metrics 

• Patterns objects are created and configured using an XML file

• Python – based

1https://code.ornl.gov/6hk/rdpm
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Conclusion

• Described performance, reliability, and availability models for 
all 15 structural patterns 

• Provided flow charts and state diagrams

• Introduced the RDPM tool to study the characteristics of 
patterns and pattern combinations 

• Models for power consumption and energy 

• Validates the models and verify the RDPM tool 

Future Work


