
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Models for Resilience Design Patterns

Mohit Kumar and Christian Engelmann

Oak Ridge National Laboratory

22 Open slide master to edit

Resilience in HPC

• Resilience allows continue operation of extreme scale HPC
systems
– component counts increases resulting in decreased reliability
– hardware and software complexity increases
– unexpected issues, such as bad solder, dirty power, and early wear-out

• Resilience Design Patterns
– identifies and evaluates repeatedly occurring resilience problems
– coordinates solutions throughout hardware and software

33 Open slide master to edit

Resilience Design Patterns

Fault Treatment Recovery Compensation

Fault

Diagnosis
Reconfiguration

Checkpoint

Recovery
Redundancy

Design

Diversity

M
o

n
it
o

ri
n

g

P
re

d
ic

ti
o

n

R
e

s
tr

u
c
tu

re

R
e

in
it
ia

li
z
a

ti
o

n

R
e

ju
v
e

n
a

ti
o

n

R
o

ll
b

a
c
k

R
o

ll
fo

rw
a

rd

F
o

rw
a

rd
 E

rr
o

r

C
o

rr
e

c
ti
o

n
 C

o
d

e

N
-M

o
d

u
la

r

R
e

d
u

n
d

a
n

c
y

N
-V

e
rs

io
n

 D
e

s
ig

n

R
e

c
o

v
e

ry
 B

lo
c
k

Stateful

S
tr

a
te

g
y

A
rc

h
it
e

c
tu

ra
l

S
tr

u
c
tu

ra
l

Behavioral State

E
n

v
ir
o

n
m

e
n

t
S

ta
te

D
y
n

a
m

ic
 S

ta
te

S
ta

ti
c
 S

ta
te

S
ta

te
le

s
s

Self-Stabilization

Self-

Masking

N
a

tu
ra

l
T
o

le
ra

n
c
e

S
e

lf
-H

e
a

li
n

g

Self-

Correction

S
e

lf
-A

w
a

re

A
c
ti
v
e

/S
ta

n
d

b
y

44 Open slide master to edit

Previous Work

S. Hukerikar and C. Engelmann, “Resilience design patterns: A structured
approach to resilience at extreme scale,” Journal of Supercomputing
Frontiers and Innovations, vol. 4, no. 3, pp. 4–42, Oct. 2017.

R. Ashraf, S. Hukerikar, and C. Engelmann, “Pattern-based modeling of multi
resilience solutions for high-performance computing,” in ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 80–87.

S. Hukerikar and C. Engelmann, “Pattern-based modeling of high-
performance computing resilience,” in Lecture Notes in Computer Science:
Workshop on Resiliency in High Performance Computing in Clusters, Clouds,
and Grids, vol. 10659, 2017, pp. 557–568.

55 Open slide master to edit

Background - Terminology

• Performance is the total execution time of an application (T)

• Reliability is the probability of a system not experiencing a fault,
error, or failure during operation

• Serial/Parallel reliability

𝑅 𝑡 = 1 − 𝐹 𝑡

𝑅(𝑡) = 𝑒!"# 𝑀𝑇𝑇𝐹 = 1/𝜆

𝑅(𝑡)$ = 𝑅(𝑡)% = 𝑒!"#% 𝑅(𝑡)& = 1 − (1 − 𝑅(𝑡))% = 1 − (1 − 𝑒!"#)%

66 Open slide master to edit

Background - Terminology

• Availability is the proportion of time a system provides a correct
service, with planned uptime (PU) tpu, scheduled downtime
(SD) tsd, and unscheduled downtime (UD) tud

• Serial/ Parallel availability

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(
𝐴 =

𝑀𝑇𝑇𝐹
𝑀𝑇𝑇𝑅 +𝑀𝑇𝑇𝐹

𝐴$ = 𝐴% 𝐴& = 1 − (1 − 𝐴)%

77 Open slide master to edit

Resilience Design Patterns Models

• Flowchart

• Performance

• Reliability

• Availability

88 Open slide master to edit

Monitoring

Monitoring pattern supports methods to
recognize the presence of a defect or
anomaly within a monitored system.

Start

Monitor (Sub-)
System Parameters

End

Cause/Effect or
Effect/Cause AnalysisDeviation?

Finished?
No

Yes

No

Yes

Tm

Ta

Raise Notification
with Type and

Location
TnFault Condition?

Yes

No

𝑇)*+ = 𝑇, +𝑃 𝑡-

𝑇 = 𝑇, + 𝑃 𝑡- +
𝑇,
𝑀 𝑇. + 𝑇/

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(

99 Open slide master to edit

Prediction

Prediction supports methods to recognize
the potential of a future defect or anomaly
within a monitored system.

Start

Monitor (Sub-)
System Parameters

End

Raise NotificationFault Condition?

Finished?
No

Yes

No

Yes

Tmon

Tn

Filtering

Regression

Statistical/Rule-
based Modeling

Tf

Tr

Tmod

𝑇)*+ = 𝑇, +𝑃 𝑡-0/ + 𝑡) + 𝑡1 + 𝑡-0(
𝑇 = 𝑇, + 𝑃 𝑡-0/ + 𝑡) + 𝑡1 + 𝑡-0(+

𝑇,
𝑀 𝑇/

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(

1010 Open slide master to edit

Restructure

Restructure alleviates the impact of a fault,
error, or failure on system operation by
changing the interconnection between
the subsystems in the overall system.

Start

Detect

End

Isolate Affected
Sub-Systems

Yes

No

Td

Execute

Detected?

Finished?

Yes

No

Te

Remove Affected
Sub-Systems

Ti

Tr

𝑇)*+ = 𝑇, +𝑃 𝑡(

𝑇 = 𝑇, + 𝑃 𝑡(+
𝑇,
𝑀 𝑇2 + 𝑇1

𝑅(𝑡) = 𝑒!"#

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(

1111 Open slide master to edit

Rejuvenation

Rejuvenation alleviates the impact of a
fault, error, or failure on system operation
by restoring the affected subsystem or
system to a known correct state.

Start

Detect

End

Isolate Affected
Sub-System(s)

Yes

No

Td

Execute

Detected?

Finished?

Yes

No

Te
Restore or

Recreate the
State of Affected
(Sub-) System(s)

Ti

Tr

𝑇)*+ = 𝑇, +𝑃 𝑡(

𝑇 = 𝑇, + 𝑃 𝑡(+
𝑇,
𝜏 − 1 𝑇$ +

𝑇,
𝑀 𝑇3,) 𝜏 + 𝑇$ +

𝑇,
𝑀 𝑇5 + 𝑇1

𝜏 = 2𝑀𝑇$

𝑅(𝑡) = 𝑒!"#

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(

1212 Open slide master to edit

Reinitialization

Reinitialization alleviates the impact of a
fault, error, or failure on system operation
by restoring the affected subsystem or
system to its initial state.

Start

Detect

End

Isolate Affected
Sub-System(s)

Yes

No

Td

Execute

Detected?

Finished?

Yes

No

Te

Reset System/
Sub-System(s)

Ti

Tr

𝑇)*+ = 𝑇, +𝑃 𝑡(

𝑇 = 𝑇, + 𝑃 𝑡(+
𝑇,
𝑀 𝑇2 + 𝑇1 + 𝑇, ∗ 0.5

𝑅(𝑡) = 𝑒!"#

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(

1313 Open slide master to edit

Rollback

Rollback supports resilient operation by
restoring the system to the time when the
last checkpoint occurred in the event of
an error or failure.

Start

Save
Progress to

Storage

Detect

End

Load Last Consistent
Progress from Storage

Yes

No

Ts

Td

Execute

Detected?

Finished?

Yes

No

Te

Rollback to Last Known
Correct State

Tl

Tr

𝑇)*+ = 𝑇, +
6!
7
− 1 𝑇$

𝑇 = 𝑇, +
𝑇,
𝜏 − 1 𝑇$ +

𝑇,
𝑀 𝑇3,) 𝜏 + 𝑇$ +

𝑇,
𝑀 𝑇5 + 𝑇1

𝜏 = 2𝑀𝑇$

𝑅(𝑡) = 𝑒!"#

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(

1414 Open slide master to edit

Rollforward

Rollforward supports resilient operation by
restoring the system to the time when the
error/failure event occurred in the event of
an error or failure.

Start

Save
Progress to

Storage

Detect

End

Load Last Consistent
Progress from Storage

Yes

No

Ts

Td

Execute

Detected?

Finished?

Yes

No

Te

Rollforward to Correct
State Before the Event

Tl

Tr

𝑇)*+ = 𝑇, +
6!
7
− 1 𝑇$

𝑇 = 𝑇, +
𝑇,
𝜏 − 1 𝑇$ +

𝑇,
𝑀 𝑇5 + 𝑇1

𝜏 = 2𝑀𝑇$

𝑅(𝑡) = 𝑒!"#

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(

1515 Open slide master to edit

Forward Error Correction Code

Forward Error Correction Code (FECC)
supports resilient operation by applying
redundancy to system state and optionally
to system resources in the form of encoded
system state.

Start

Decode and Detect

End

Correct using
Redundant
Information

Detected?

Finished?
No

Yes

No

Yes

Td

Activate Redundant
Information Storage Ta

Tc

Encode Ten

Execute Tex

𝑇)*+ = 𝑇, +𝑇. + 𝑃 𝑡3/ + 𝑡(

𝑇 = 𝑇, + 𝑇. + 𝑃 𝑡3/ + 𝑡(+
𝑇,
𝑀 𝑇8

𝑅(𝑡) = 𝑒!"#

𝐴 =
𝑡&'

𝑡&' + 𝑡$(+ 𝑡'(

1616 Open slide master to edit

Active/Standby

Active/Standby supports resilient operation
by applying redundancy in the form of N
functionally identical replicas, using
redundancy in space and potentially in
time.

Start

Detect

End

Isolate the

Active and Fail-Over

to a Standby (Sub-)

System

Detected?

Finished?
No

Yes

No

Yes

Td

Activate

Active/Standby

(Sub-) Systems
Ta

Tf

Execute Te

Replicate

System State
Tr

Replicate Input Ti

𝑇)*+ = 𝑇, +𝑇. + 𝑃 𝑡2 + 𝑡(+ 𝑡1

𝑇 = 𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡(+ 𝑡1 +
𝑇,
𝑀 𝑇)

𝑇 = 𝛼𝑇, + 1 − 𝛼 𝑁𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡(+ 𝑡1 +
𝑇,
𝑀 𝑇)

𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%

1717 Open slide master to edit

N-modular Redundancy

N-modular Redundancy enables the
continuous correct operation of a system
by applying redundancy in the form of N
functionally identical replicas.

Start

Compare Output

End

Remove, Replace, or

Discount Affected

Redundant (Sub-)

Systems

Mismatch?

Finished?
No

Yes

No

Yes

To

Activate N Redundant

(Sub-) Systems
Ta

Tr

Execute N

Redundantly
Te

Replicate Input Ti

𝑇)*+ = 𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0

𝑇 = 𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0 +
𝑇,
𝑀 𝑇1

𝑇 = 𝛼𝑇, + 1 − 𝛼 𝑁𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0 +
𝑇,
𝑀

𝑇1

𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%

1818 Open slide master to edit

N-Version Design

N-Version Design supports resilient
operation by applying redundancy in the
form of N functionally equivalent alternate
system implementations.

Start

Compare Output

End

Remove, Replace, or

Discount Affected

Redundant (Sub)

Systems

Mismatch?

Finished?
No

Yes

No

Yes

To

Activate N Redundant

(Sub-) Systems
Ta

Tr

Execute N

Redundantly
Te

Replicate Input Ti

Start

Validate Output

End

Remove, Replace, or

Discount Affected

Alternate (Sub-)

Systems

Failed Validation?

Finished?
No

Yes

No

Yes

To

Activate N Versions

of the (Sub-) System
Ta

Tr

Execute N Versions Te

Replicate Input Ti

𝑇)*+ = 𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0

𝑇 = 𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0 +
𝑇,
𝑀 𝑇1

𝑇 = 𝛼𝑇, + 1 − 𝛼 𝑁𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0 +
𝑇,
𝑀

𝑇1

𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%

1919 Open slide master to edit

Recovery Block

Recovery Block supports resilient operation
by applying redundancy in the form of a
functionally equivalent alternate system
implementation encapsulated in a
recovery block.

Start

Validate Output

End

Execute Recovery

Block
Failed Validation?

Finished?
No

Yes

No

Yes

To

Activate

Recovery Block
Ta

Tr

Execute (Sub-)

System
Te

Replicate Input Ti

𝑇)*+ = 𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0

𝑇 = 𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0 +
𝑇,
𝑀 𝑇1

𝑇 = 𝛼𝑇, + 1 − 𝛼 𝑁𝑇, + 𝑇. + 𝑃 𝑡2 + 𝑡0 +
𝑇,
𝑀 𝑇1

𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%

2020 Open slide master to edit

Natural Tolerance

Natural Tolerance relies on the capability
of reaching a correct system state from an
illegal system state after a finite number of
execution steps using implicit error/failure
detection and self-masking.

Start

Detect

End

Self-Mask StateIllegal State?

Finished?
No

Yes

No

Yes

Td

Tm

Execute Te

Activate Redundancy
(if any) Ta

𝑇)*+ = 𝑇, +𝑇. + 𝑃 𝑡(

𝑇 = 𝑇, + 𝑇. + 𝑃 𝑡(+
𝑇,
𝑀 𝑇-

𝑇 = 𝛼𝑇, + 1 − 𝛼 𝑁𝑇, + 𝑇. + 𝑃 𝑡(+
𝑇,
𝑀 𝑇-

𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%

2121 Open slide master to edit

Self Healing

Self-Healing relies on the capability of
reaching a correct system state from an
illegal system state after a finite number of
execution steps using explicit error/failure
detection and self-correction.

Start

Detect

End

Self-Correct StateIllegal State?

Finished?
No

Yes

No

Yes

Td

Tc

Execute Te

Activate Redundancy
(if any) Ta

𝑇)*+ = 𝑇, + 𝑇. + 𝑃 𝑡(

𝑇 = 𝑇, + 𝑇. + 𝑃 𝑡(+
𝑇,
𝑀 𝑇8

𝑇 = 𝛼𝑇, + 1 − 𝛼 𝑁𝑇, + 𝑇. + 𝑃 𝑡(+
𝑇,
𝑀 𝑇8

𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%

2222 Open slide master to edit

Self Aware

Self-Aware relies on the capability of
reaching a correct system state from an
illegal system state after a finite number of
execution steps using explicit error/failure
detection and self-correction.

Start

Monitor (Sub-)

System State

End

Cause/Effect or

Effect/Cause Analysis
Deviation?

Finished?
No

Yes

No

Yes

Tm

Ta

Execute Te

Option/Trade-off

Decision Making
ToIllegal State?

Self-Correct State Tc

Yes

No

𝑇)*+ = 𝑇, +𝑃 𝑡-

𝑇 = 𝑇, + 𝑃 𝑡- +
𝑇,
𝑀 𝑇. + 𝑇0 + 𝑇8

𝑇 = 𝛼𝑇, + 1 − 𝛼 𝑁𝑇, + 𝑃 𝑡- +
𝑇,
𝑀 𝑇. + 𝑇0 + 𝑇8

𝑅(𝑡) = 1 − (1 − 𝑒!"#)%

𝐴 = 1 − (1 − 𝐴)%

2323 Open slide master to edit

Resilience Design Pattern Modeling Tool1

• Implements performance, reliability, and availability models

• Plots performance, reliability, and availability metrics

• Patterns objects are created and configured using an XML file

• Python – based

1https://code.ornl.gov/6hk/rdpm

2424 Open slide master to edit

Conclusion

• Described performance, reliability, and availability models for
all 15 structural patterns

• Provided flow charts and state diagrams

• Introduced the RDPM tool to study the characteristics of
patterns and pattern combinations

• Models for power consumption and energy

• Validates the models and verify the RDPM tool

Future Work

