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Abstract. Resilience to faults, errors, and failures in extreme-scale high-
performance computing (HPC) systems is a critical challenge. Resilience
design patterns offer a new, structured hardware and software design
approach for improving resilience. While prior work focused on develop-
ing performance, reliability, and availability models for resilience design
patterns, this paper extends it by providing a Resilience Design Pat-
terns Modeling (RDPM) tool which allows (1) exploring performance,
reliability, and availability of each resilience design pattern, (2) offering
customization of parameters to optimize performance, reliability, and
availability, and (3) allowing investigation of trade-off models for com-
bining multiple patterns for practical resilience solutions.
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1 Introduction

Resilience ensures successful execution of application running on HPC systems
with thousands of nodes prone to several software and hardware failures. Next
generation of HPC systems, contending for exaflops speed, will see more of these
software and hardware failures, requiring more rigorous resiliency techniques.
Recent unexpected issues in HPC systems such as bad solder, dirty power, and
early wear-out [10, 17] calls for better resiliency measures.

Resilience design patterns [12, 13] present a structured hard- and software
design approach to tackle resilience problems in next generation HPC systems.
Prior work focus on (1) identifying and standardizing the resilience design pat-
terns in production high-performance computing (HPC) systems [12, 11, 13], (2)
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developing a proof-of-concept prototype for demonstrating the resilience design
pattern concept using a fault-tolerant generalized minimal residual method (FT-
GMRES) linear solver with portable resilience [1, 2], (3) describing performance,
reliability, and availability models for all structural patterns with flowcharts and
state diagrams, and (4) introducing initial Resilience Design Pattern Modeling
(RDPM) tool to study the characteristics of patterns [15].

This paper extends the previous work by (1) exploring each resilience design
pattern models with parameter values customization, and (2) advancing RDPM
tool to study combination of resilience design patterns.

2 Background

This section describes the metrics and resilience design patterns necessary to
understand models implemented in RDPM.

2.1 Terminology and Metrics

The glossary in this work is mostly derived from our prior work in computing
systems [13, 19, 3, 14].

A fault is a flaw in a system that can result in an error. It may not cause
any error when hidden, but once activated it can result in an error that can put
a system in an illegal state. Once the error gets to the system service interface,
it becomes a failure and makes the system inconsistent.

Reliability of a system is the probability of it not running into a fault, error,
or failure 0 ≤ t (Eq. 1). The fault, error, or failure distribution is the system
reliability probability during 0 ≤ t (Eq. 2). Its relative possibility is probability
density function (PDF) f(t). The rate at which a system encounters fault, error,
or failure is λ. The mean-time to error (MTTE) is its anticipated time to error,
while the mean-time to failure (MTTF) is its anticipated time to failure (Eq. 3).

R(t) = 1− F (t) =

∫ ∞

t

f(t)dt (1)

F (t) = 1−R(t) =

∫ t

0

f(t)dt (2)

MTTF =

∫ ∞

0

R(t)dt (3)

A =
tpu

tpu + tsd + tud
(4)

MTBF = MTTF + MTTR (5)

A =
MTTF

MTTF + MTTR
(6)

=
MTTF

MTBF
Availability is the part of the time a system works correctly, with planned

uptime (PU) tpu, scheduled downtime (SD) tsd, and unscheduled downtime (UD)
tud (Eq. 4). Performance is the time in which a task is executed successfully,
including PU, SD, and UD. The mean-time to repair (MTTR) is the anticipated
time to repair. It can be used with the MTTF to determine the mean-time
between failures (MTBF) (Eq. 5). Availability can be determined using MTTR,
MTTF, and MTBF (Eq. 6), if there is no SD.

2.2 Resilience Design Patterns

Resilience design patterns [12] specifically tackle the problem of handling faults,
errors, and failures in extreme-scale HPC. They help in finding the problem
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Fig. 1. Classification of resilience design patterns

induce by faults, errors, and failures and provide solutions to resolve them. Ar-
chitects and developers can use resilience design patterns catalog [13] to create
next generation resilient systems. Resilience design patterns allow investigation
of design options to study the cost-benefit trade-offs between performance, pro-
tection coverage, and power consumption of different resilience solutions.

The current resilience design patterns catalog has 21 behavioral patterns:
4 strategy, 7 architectural, and 15 structural (Fig. 1). It also contains 5 state
patterns. This paper extends the prior work [15], by introducing RDPM tool
to explore performance, reliability, and availability of each structural resilience
design pattern and investigate trade-off models for combining multiple patterns
for practical resilience solutions.

3 Related Work

Reliability modeling, analysis and optimization proposes three types of mod-
els [18]: structural, state-space, and hierarchical. Structural models use block di-
agrams, reliability graphs, and fault trees to show the relation between systems.
State-space models use Markov chains to show dependency between systems.
Hierarchical models combine abstract structural models with Markov models to
balance the speed of analysis and model accuracy. Additionally, Trivedi et.al. [21]
propose performability analysis to model the interaction between performance
and failure recovery behavior.

Rollback pattern represents Checkpoint/restart (C/R), which is one of the
main resiliency strategies in HPC. In C/R, most of the reliability and perfor-
mance models have been about optimum checkpoint interval [22, 4] and its ap-
plication to systems with a non-constant MTBF [20], different failure distribu-
tions [16], and multilevel C/R solutions [5].

In production HPC, modular redundancy is still not in use. Modular redun-
dancy research is mostly concentrated on solutions and models at the Message
Passing Interface (MPI) [9, 7]. For the first time, Elliott et. al. combine two
different resilience mechanisms, C/R and modular redundancy [6], to explore
performance and reliability trade-offs. This paper implements and further inves-
tigates the performance, reliability, and availability trade-off models.

4 RDPM

RDPM tool simplify the modeling of performance, reliability, and availability of
patterns and their combination. Each pattern has its own models and parame-
ters, which makes it hard to understand the performance, reliability, and avail-
ability for different parameters values under different implementations. Things
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(c) Availability
Fig. 2. Monitoring pattern performance, reliability, and availability
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(c) Availability
Fig. 3. Prediction pattern performance, reliability, and availability

get more complex when multiple patterns are combined horizontally or vertically
for resiliency. The RDPM tool allows calculation of performance, reliability, and
availability with ease for individual or combined patterns.

The Python-based RDPM1tool allows calculation, plotting, and storing of
performance, reliability, and availability values for patterns and patterns combi-
nation. It has five components - RDP, Extract, Plot, CSV, and Patterns. RDP
is the main class. It allows extraction of parameters from XML file and calcu-
lation, storing, and plotting of performance, reliability, and availability values.
Extract allows extraction of individual pattern parameters from XML2file. Pat-
terns calculate the performance, reliability, and availability values and pass to
Plot to draw line/3D scatter plot. The calculated values are also passed to CSV
for storing as CSV files.

4.1 Structural Patterns

Next, we will define the parameters, calculate performance, reliability, and avail-
ability values, and plot it for all the structural patterns. The performance, re-
liability, and availability models for all the structural patterns can be found in
[15].

Monitoring: The monitoring pattern uses a monitoring system to recognize
a defects or anomalies. Fig. 2 demonstrates performance, reliability and avail-
ability of the Monitoring pattern. The task’s execution time TE is 168 hours (7
days), MTTF M is 24-168 hours (1-7 days). tm,Ta, and Tn is 1 second. Reliability
remains low with wrong results as the pattern just monitor the system.

Prediction: The prediction pattern uses a monitoring system to recognize
the potential of future defect or anomaly. Fig. 3 demonstrates performance,
reliability and availability of the Prediction pattern. The task’s execution time
TE is 168 hours (7 days), MTTF M is 24-168 hours (1-7 days). tmon,tf , tr, and

1 https://code.ornl.gov/6hk/rdpm
2 https://code.ornl.gov/6hk/rdpm/-/blob/master/xml/patterns.xml
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Fig. 4. Restructure pattern performance, reliability, and availability
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(c) Availability
Fig. 5. Rejuvenation pattern performance, reliability, and availability
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Fig. 6. Reinitialization pattern performance, reliability, and availability

tmod is 2 seconds. Tn is 1 second. Reliability remains low with wrong results as
the pattern just monitor the system to predict potential defect or anomaly.

Restructure: The restructure pattern changes the interconnection between
the systems to reduce the impact of a fault, error, or failure. Fig. 4 demonstrates
performance, reliability and availability of the Restructure pattern. The task’s
execution time TE is 168 hours (7 days), MTTF M is 24-168 hours (1-7 days). td,
Ti, and Tr is 2 second. The MTTF Mu of the unprotected part of the system is
720 hours (30 days). Reliability increases as the pattern resolve the fault, error,
or failure.

Rejuvenation: The rejuvenation pattern restores the affected system to
reduce the impact of a fault, error, or failure. Fig. 5 demonstrates performance,
reliability and availability of the Rejuvenation pattern. The task’s execution time
TE is 168 hours (7 days), MTTF M is 24-168 hours (1-7 days). td and Tl + Tr
is 2 second. Te,f is 0.5 hour. Ts is 1, 5 and 10 minutes. The MTTF Mu of the
unprotected part of the system is 720 hours (30 days). Restoring the affected
system results in higher execution time.

Reinitialization: The reinitialization pattern restores the affected system
to its initial state to reduce the impact of a fault, error, or failure. Fig. 6 demon-
strates performance, reliability and availability of the Reinitialization pattern.
The task’s execution time TE is 168 hours (7 days), MTTF M is 24-168 hours
(1-7 days). td,Ti, and Tr is 2 second. The MTTF Mu of the unprotected part of
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(c) Availability
Fig. 7. Rollback pattern performance, reliability, and availability
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Fig. 8. Rollforward pattern performance, reliability, and availability
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Fig. 9. Forward Error Correction Code pattern performance, reliability, and availability

the system is 720 hours (30 days). Execution time increases significantly as the
application executes from the start whenever required.

Rollback: The rollback pattern restores the system to the last checkpoint
before a fault, error, or failure. Fig. 7 demonstrates the performance, reliability,
and availability of the Rollback pattern. The task’s execution time TE is 168
hours (7 days), MTTF M is 24-168 hours (1-7 days), the time to save system
state/progress to storage Ts is 1, 5 and 10 minutes, Tl +Tr is 1 seconds, and the
MTTF Mu of the unprotected part of the system is 720 hours (30 days). Faster
storage results in better performance, reliability, and availability.

Rollforward: The rollforward pattern restores the system to the time when
a fault, error, or failure. Fig. 8 demonstrates the performance, reliability, and
availability of the Rollforward pattern. The task’s execution time TE is 168
hours (7 days), MTTF M is 24-168 hours (1-7 days), the time to save system
state/progress to storage Ts is 1, 5 and 10 minutes, Tl +Tr is 1 seconds, and the
MTTF Mu of the unprotected part of the system is 720 hours (30 days). Roll-
forward results in better performance, reliability, and availability than rollback
as the system restores to the point when a fault, error, or failure occur.

Forward Error Correction Code: The Forward Error Correction Code
(FECC) pattern applies redundancy to system state or resources to reduce the
impact of a fault, error, or failure. Fig. 9 demonstrates performance, reliability
and availability of the Forward Error Correction Code pattern. The task’s ex-
ecution time TE is 168 hours (7 days), MTTF M is 24-168 hours (1-7 days).
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Fig. 10. Active/Standby pattern performance, reliability, and availability
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Fig. 11. N-modular Redundancy pattern performance, reliability, and availability

Ta,ten + td, and Tc is 2 second. The MTTF Mu of the unprotected part of the
system is 720 hours (30 days). Redundancy allows better performance, reliabil-
ity, and availability than other patterns discussed till now. However, reliability
is still low as the pattern doesn’t employ redundancy fully.

Active/Standby: The Active/Standby pattern applies redundancy in the
form of N functionally identical replicas to reduce the impact of a fault, error,
or failure. Fig. 10 demonstrates the performance, reliability and availability of
the Active/Standby pattern. The task’s execution time TE is 168 hours (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
α between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second,
ti + td + tr is 2 seconds, and Tf is 1 minute. To demonstrate reliability and
availability, redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is
48-336 hours (2-14 days in 1 day increments). Reliability increases significantly
but redundant systems overhead increases execution time significantly.

N-modular Redundancy: The N-modular redundacy pattern applies re-
dundancy in the form of N functionally identical replicas to maintain continuous
correct operation of a system. Fig. 11 demonstrates the performance, reliability
and availability of the N-modular Redundancy pattern. The task’s execution
time TE is 168 hours (7 days). To demonstrate performance, redundancy N is 1,
2 or 3 and in time and space, α between 0 and 1, and MTTF M is 24-168 hours
(1-7 days). Ta is 1 second, ti+ to is 1 second, and Tr is 1 minute. To demonstrate
reliability and availability, redundancy N is 1, 2 or 3 and in space with α = 1,
the MTTF M is 48-336 hours (2-14 days in 1 day increments). Performance,
reliability, and availability remain same as the active/standby pattern as the
parameters remain almost same.

N-Version Design: The N-version design applies redundancy as N func-
tionally equivalent alternate system implementations to handle a fault, error, or
failure. Fig. 12 demonstrates the performance, reliability and availability of the
N-Version Design pattern. The task’s execution time TE is 168 hours (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
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Fig. 12. N-Version Design pattern performance, reliability, and availability
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Fig. 13. Recovery Block pattern performance, reliability, and availability
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Fig. 14. Natural Tolerance pattern performance, reliability, and availability

α between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second,
ti+to is 1 second, and Tr is 1 minute. To demonstrate reliability and availability,
redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48-336
hours (2-14 days in 1 day increments). Performance, reliability, and availability
are same as the active/standby pattern as the parameters are almost same.

Recovery Block: The recovery block pattern applies redundancy as a func-
tionally equivalent alternate system implementation encapsulated in a recovery
block. Fig. 13 demonstrates the performance, reliability and availability of the
Recovery Block pattern. The task’s execution time TE is 168 hours (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
α between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second,
ti+to is 1 second, and Tr is 1 minute. To demonstrate reliability and availability,
redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48-336
hours (2-14 days in 1 day increments). Performance, reliability, and availability
are same as the active/standby pattern as the parameters are almost same.

Natural Tolerance: The natural tolerance pattern uses implicit error/failure
detection and self-masking to reach a correct system state from an illegal system
state. Fig. 14 demonstrates the performance, reliability and availability of the
Natural Tolerance pattern. The task’s execution time TE is 168 hours (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
α between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second, td

8



0.00.10.20.30.40.50.60.70.80.91.0 Hours24
48

72
96

120
144

168

Pe
rfo

rm
an

ce

168
224
280
336
392
448
504

Self Healing Performance

N =1
N = 2
N = 3

(a) Performance

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Re
lia

bi
lit

y

0.000
0.156
0.313
0.470
0.626
0.782
0.939

Self Healing Reliability

N =1
N = 2
N = 3

(b) Reliability

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Av
ai

la
bi

lit
y

0.9990.9990.999

1.0001.0001.0001.000

Self Healing Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 15. Self-Healing pattern performance, reliability, and availability
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Fig. 16. Self-Aware pattern performance, reliability, and availability

is half second, and Tm is 30 seconds. To demonstrate reliability and availability,
redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48-336
hours (2-14 days in 1 day increments). Performance, reliability, and availability
improve a little from the active/standby pattern as the parameters Tm improve
by 30 seconds as compared to Tf .

Self-Healing: The self-healing pattern uses explicit error/failure detec-
tion and self-correction to reach a correct system state from an illegal system
state. Fig. 15 demonstrates the performance, reliability and availability of the
Self-Healing pattern. The task’s execution time TE is 168 hours (7 days). To
demonstrate performance, redundancy N is 1, 2 or 3 and in time and space, α
between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second, td
is half second, and Tc is 30 seconds. To demonstrate reliability and availability,
redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48-336
hours (2-14 days in 1 day increments). Performance, reliability, and availability
are same as the natural tolerance pattern as the parameters remain almost same.

Self-Aware: The self-aware pattern uses explicit error/failure detection and
self-correction to reach a correct system state from an illegal system state. Fig.
16 demonstrates the performance, reliability and availability of the Self-Aware
pattern. The task’s execution time TE is 168 hours (7 days). To demonstrate
performance, redundancy N is 1, 2 or 3 and in time and space, α between 0
and 1, and MTTF M is 24-168 hours (1-7 days). tm, Ta, and To is 1 second.
Tc is 30 seconds. To demonstrate reliability and availability, redundancy N is
1, 2 or 3 and in space with α = 1, the MTTF M is 48-336 hours (2-14 days in
1 day increments). Performance, reliability, and availability remain same as the
natural tolerance pattern as the parameters remain almost same.

4.2 Pattern Combinations

Multi-level Rollback: Recent work [8] detailed prior solutions and proposed a
new approach for offering a separate resilience strategy for computation offloaded
to a general-purpose computing graphics processing unit (GPGPU) accelerator.
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Fig. 17. Multi-level Rollback performance, reliability, and availability

While the application itself is employing the Rollback pattern (level l = 0),
an additional Rollback pattern is employed for the offloaded computation (level
l = 1) to contain and mitigate GPGPU errors and failures using a more efficient
strategy. The GPGPU computation is rolled back to a locally stored checkpoint
upon an error or failure. The performance, reliability, and availability are calcu-
lated based on the parameters for each pattern, making the GPGPU resilience
pattern a subsystem of the application resilience pattern.

While the application is waiting for the offloaded computation to finish, it
is assumed that no other computation takes place and there is no need to save
system state and progress to storage at level 0. Therefore, the application’s
failure free performance Tf=0 and performance under failure T are composed of
the corresponding performances at level 0 and 1 (Eqs. 7 and 8). The reliability
R(t) can be obtained using the performance under failure T and the failure
rate λu (or MTTF Mu) of the unprotected part of the system (Eq. 9). The
availability A can be calculated using the task’s execution time without any
resilience strategy TE and the performance under failure T (Eq. 10).

Tf=0 = Tf=0,l=0 + Tf=0,l=1 (7)

T = Tl=0 + Tl=1 (8)

R(t) = e−λuT = e−T/Mu (9)

A =
TE
T

=
TE

Tl=0 + Tl=1
(10)

Fig. 17 shows the performance, reliability and availability of 2-level Rollback
using the parameters from in Fig. 7 with 80% of the task’s execution time TE
offloaded to a GPGPU, the time to save GPGPU state/progress to node-local
storage Ts,l=1 of 1 second and the time to load it and to roll it back the same.
Multi-level rollback provides better performance, reliability, and availability than
normal rollback pattern.

Rollback and N-modular Redundancy: The recent work OpenMP tar-
get offload resilience [8] also considered employing the N-modular Redundancy
pattern. In this case, GPGPU errors and failures are detected and potentially
corrected using redundancy. The performance, reliability, and availability are
calculated similarly to the multi-level Rollback based on the parameters for each
pattern (Eqs. 7-10).

Fig. 18 shows the performance, reliability, and availability of this solution
using the parameters from Fig. 7, where 80% of TE offloaded to a GPGPU.
GPGPU redundancy N is 1, 2, or 3 and in time (α = 1), the times to replicate
the input Ti and to compare the outputs To are 0. The time to reboot a GPGPU
and use it again for redundancy Tr and the MTTR R are 1 minute. Inclusion
of redundancy further improves performance, reliability, and availability than
rollback pattern.
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Fig. 18. Rollback and N-modular Redundancy performance, reliability, and availability

5 Conclusion

We introduced the RDPM tool, which allows exploring the design space for re-
silience solutions in HPC systems. It applies the resilience design pattern concept
and models the performance, reliability and availability of resilience solutions.
The parameterized resilience patterns can be employed horizontally, i.e., cov-
ering different parts of the system, or vertically, i.e., covering subsets of each
other. The tool is easily extensible to new patterns and provides results in plots
and CSV files. Future work involves extending the RDPM tool with power con-
sumption models. The ultimate goal of this longer-term effort is to enable hard-
ware/software codesign for performance, resilience and power consumption.
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