
RDPM: An Extensible Tool for Resilience
Design Patterns Modeling ?

Mohit Kumar and Christian Engelmann

Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

{kumarm1,engelmannc}@ornl.gov

Abstract. Resilience to faults, errors, and failures in extreme-scale high-
performance computing (HPC) systems is a critical challenge. Resilience
design patterns offer a new, structured hardware and software design
approach for improving resilience. While prior work focused on develop-
ing performance, reliability, and availability models for resilience design
patterns, this paper extends it by providing a Resilience Design Pat-
terns Modeling (RDPM) tool which allows (1) exploring performance,
reliability, and availability of each resilience design pattern, (2) offering
customization of parameters to optimize performance, reliability, and
availability, and (3) allowing investigation of trade-off models for com-
bining multiple patterns for practical resilience solutions.

Keywords: high-performance computing, resilience, design patterns, tool

1 Introduction

Resilience ensures successful execution of application running on HPC systems
with thousands of nodes prone to several software and hardware failures. Next
generation of HPC systems, contending for exaflops speed, will see more of these
software and hardware failures, requiring more rigorous resiliency techniques.
Recent unexpected issues in HPC systems such as bad solder, dirty power, and
early wear-out [10, 17] calls for better resiliency measures.

Resilience design patterns [12, 13] present a structured hard- and software
design approach to tackle resilience problems in next generation HPC systems.
Prior work focus on (1) identifying and standardizing the resilience design pat-
terns in production high-performance computing (HPC) systems [12, 11, 13], (2)

? This work was sponsored by the U.S. Department of Energy’s Office of Advanced
Scientific Computing Research. This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of En-
ergy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).



developing a proof-of-concept prototype for demonstrating the resilience design
pattern concept using a fault-tolerant generalized minimal residual method (FT-
GMRES) linear solver with portable resilience [1, 2], (3) describing performance,
reliability, and availability models for all structural patterns with flowcharts and
state diagrams, and (4) introducing initial Resilience Design Pattern Modeling
(RDPM) tool to study the characteristics of patterns [15].

This paper extends the previous work by (1) exploring each resilience design
pattern models with parameter values customization, and (2) advancing RDPM
tool to study combination of resilience design patterns.

2 Background

This section describes the metrics and resilience design patterns necessary to
understand models implemented in RDPM.

2.1 Terminology and Metrics

The glossary in this work is mostly derived from our prior work in computing
systems [13, 19, 3, 14].

A fault is a flaw in a system that can result in an error. It may not cause
any error when hidden, but once activated it can result in an error that can put
a system in an illegal state. Once the error gets to the system service interface,
it becomes a failure and makes the system inconsistent.

Reliability of a system is the probability of it not running into a fault, error,
or failure 0 ≤ t (Eq. 1). The fault, error, or failure distribution is the system
reliability probability during 0 ≤ t (Eq. 2). Its relative possibility is probability
density function (PDF) f(t). The rate at which a system encounters fault, error,
or failure is λ. The mean-time to error (MTTE) is its anticipated time to error,
while the mean-time to failure (MTTF) is its anticipated time to failure (Eq. 3).

R(t) = 1− F (t) =

∫ ∞

t

f(t)dt (1)

F (t) = 1−R(t) =

∫ t

0

f(t)dt (2)

MTTF =

∫ ∞

0

R(t)dt (3)

A =
tpu

tpu + tsd + tud
(4)

MTBF = MTTF + MTTR (5)

A =
MTTF

MTTF + MTTR
(6)

=
MTTF

MTBF
Availability is the part of the time a system works correctly, with planned

uptime (PU) tpu, scheduled downtime (SD) tsd, and unscheduled downtime (UD)
tud (Eq. 4). Performance is the time in which a task is executed successfully,
including PU, SD, and UD. The mean-time to repair (MTTR) is the anticipated
time to repair. It can be used with the MTTF to determine the mean-time
between failures (MTBF) (Eq. 5). Availability can be determined using MTTR,
MTTF, and MTBF (Eq. 6), if there is no SD.

2.2 Resilience Design Patterns

Resilience design patterns [12] specifically tackle the problem of handling faults,
errors, and failures in extreme-scale HPC. They help in finding the problem

2



Fault Treatment Recovery Compensation

Fault
Diagnosis Reconfiguration Checkpoint

Recovery Redundancy Design
Diversity

M
on

ito
rin

g

Pr
ed

ic
tio

n

R
es

tru
ct

ur
e

R
ei

ni
tia

liz
at

io
n

R
ej

uv
en

at
io

n

R
ol

lb
ac

k

R
ol

lfo
rw

ar
d

Fo
rw

ar
d 

Er
ro

r
C

or
re

ct
io

n 
C

od
e

N
-M

od
ul

ar
R

ed
un

da
nc

y

N
-V

er
si

on
 D

es
ig

n

R
ec

ov
er

y 
Bl

oc
k

Stateful
St

ra
te

gy
Ar

ch
ite

ct
ur

al
St

ru
ct

ur
al

Behavioral State

En
vi

ro
nm

en
t S

ta
te

D
yn

am
ic

 S
ta

te

St
at

ic
 S

ta
te

St
at

el
es

s

Self-Stabilization

Self-
Masking

N
at

ur
al

 T
ol

er
an

ce

Se
lf-

H
ea

lin
g

Self-
Correction

Se
lf-

Aw
ar

e

Ac
tiv

e/
St

an
db

y

Fig. 1. Classification of resilience design patterns

induce by faults, errors, and failures and provide solutions to resolve them. Ar-
chitects and developers can use resilience design patterns catalog [13] to create
next generation resilient systems. Resilience design patterns allow investigation
of design options to study the cost-benefit trade-offs between performance, pro-
tection coverage, and power consumption of different resilience solutions.

The current resilience design patterns catalog has 21 behavioral patterns:
4 strategy, 7 architectural, and 15 structural (Fig. 1). It also contains 5 state
patterns. This paper extends the prior work [15], by introducing RDPM tool
to explore performance, reliability, and availability of each structural resilience
design pattern and investigate trade-off models for combining multiple patterns
for practical resilience solutions.

3 Related Work

Reliability modeling, analysis and optimization proposes three types of mod-
els [18]: structural, state-space, and hierarchical. Structural models use block di-
agrams, reliability graphs, and fault trees to show the relation between systems.
State-space models use Markov chains to show dependency between systems.
Hierarchical models combine abstract structural models with Markov models to
balance the speed of analysis and model accuracy. Additionally, Trivedi et.al. [21]
propose performability analysis to model the interaction between performance
and failure recovery behavior.

Rollback pattern represents Checkpoint/restart (C/R), which is one of the
main resiliency strategies in HPC. In C/R, most of the reliability and perfor-
mance models have been about optimum checkpoint interval [22, 4] and its ap-
plication to systems with a non-constant MTBF [20], different failure distribu-
tions [16], and multilevel C/R solutions [5].

In production HPC, modular redundancy is still not in use. Modular redun-
dancy research is mostly concentrated on solutions and models at the Message
Passing Interface (MPI) [9, 7]. For the first time, Elliott et. al. combine two
different resilience mechanisms, C/R and modular redundancy [6], to explore
performance and reliability trade-offs. This paper implements and further inves-
tigates the performance, reliability, and availability trade-off models.

4 RDPM

RDPM tool simplify the modeling of performance, reliability, and availability of
patterns and their combination. Each pattern has its own models and parame-
ters, which makes it hard to understand the performance, reliability, and avail-
ability for different parameters values under different implementations. Things

3



24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

168.00090
168.00162
168.00234
168.00306
168.00378
168.00450

Ho
ur

s

Monitoring Performance

(a) Performance

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.0009
0.0743
0.1477
0.2211
0.2945
0.3679

Re
lia

bi
lit

y

Monitoring Reliability

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.99997322
0.99997750
0.99998179
0.99998607
0.99999036
0.99999464

Av
ai

la
bi

lit
y

Monitoring Availability

(c) Availability
Fig. 2. Monitoring pattern performance, reliability, and availability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

168.00310
168.00346
168.00382
168.00418
168.00454
168.00490

Ho
ur

s

Prediction Performance

(a) Performance
24

.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.0009
0.0743
0.1477
0.2211
0.2945
0.3679

Re
lia

bi
lit

y

Prediction Reliability

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.99997083
0.99997298
0.99997512
0.99997726
0.99997941
0.99998155

Av
ai

la
bi

lit
y

Prediction Availability

(c) Availability
Fig. 3. Prediction pattern performance, reliability, and availability

get more complex when multiple patterns are combined horizontally or vertically
for resiliency. The RDPM tool allows calculation of performance, reliability, and
availability with ease for individual or combined patterns.

The Python-based RDPM1tool allows calculation, plotting, and storing of
performance, reliability, and availability values for patterns and patterns combi-
nation. It has five components - RDP, Extract, Plot, CSV, and Patterns. RDP
is the main class. It allows extraction of parameters from XML file and calcu-
lation, storing, and plotting of performance, reliability, and availability values.
Extract allows extraction of individual pattern parameters from XML2file. Pat-
terns calculate the performance, reliability, and availability values and pass to
Plot to draw line/3D scatter plot. The calculated values are also passed to CSV
for storing as CSV files.

4.1 Structural Patterns

Next, we will define the parameters, calculate performance, reliability, and avail-
ability values, and plot it for all the structural patterns. The performance, re-
liability, and availability models for all the structural patterns can be found in
[15].

Monitoring: The monitoring pattern uses a monitoring system to recognize
a defects or anomalies. Fig. 2 demonstrates performance, reliability and avail-
ability of the Monitoring pattern. The task’s execution time TE is 168 hours (7
days), MTTF M is 24-168 hours (1-7 days). tm,Ta, and Tn is 1 second. Reliability
remains low with wrong results as the pattern just monitor the system.

Prediction: The prediction pattern uses a monitoring system to recognize
the potential of future defect or anomaly. Fig. 3 demonstrates performance,
reliability and availability of the Prediction pattern. The task’s execution time
TE is 168 hours (7 days), MTTF M is 24-168 hours (1-7 days). tmon,tf , tr, and

1 https://code.ornl.gov/6hk/rdpm
2 https://code.ornl.gov/6hk/rdpm/-/blob/master/xml/patterns.xml

4



24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

168.00180
168.00324
168.00468
168.00612
168.00756
168.00900

Ho
ur

s

Restructure Performance

(a) Performance

24
.0

48
.0

72
.0

96
.0

12
0.

0
14

4.
0

16
8.

0

MTTF

0.791879668
0.791881252
0.791882835
0.791884419
0.791886003
0.791887587

Re
lia

bi
lit

y

Restructure Reliability

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.99994643
0.99995500
0.99996357
0.99997214
0.99998071
0.99998929

Av
ai

la
bi

lit
y

Restructure Availability

(c) Availability
Fig. 4. Restructure pattern performance, reliability, and availability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

170.58
174.16
177.73
181.30
184.87
188.44

Ho
ur

s

Rejuvenation Performance
 = 0.02
 = 0.08
 = 0.17

(a) Performance
24

.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.76972
0.77359
0.77745
0.78132
0.78519
0.78905

Re
lia

bi
lit

y

Rejuvenation Reliability

 = 0.02
 = 0.08
 = 0.17

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.89152
0.91019
0.92885
0.94752
0.96619
0.98485

Av
ai

la
bi

lit
y

Rejuvenation Availability

 = 0.02
 = 0.08
 = 0.17

(c) Availability
Fig. 5. Rejuvenation pattern performance, reliability, and availability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

252.0
352.8
453.6
554.4
655.2
756.0

Ho
ur

s

Reinitialization Performance

(a) Performance

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.3499
0.4209
0.4918
0.5628
0.6337
0.7047

Re
lia

bi
lit

y

Reinitialization Reliability

(b) Reliability
24

.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.2222
0.3111
0.4000
0.4889
0.5778
0.6667

Av
ai

la
bi

lit
y

Reinitialization Availability

(c) Availability
Fig. 6. Reinitialization pattern performance, reliability, and availability

tmod is 2 seconds. Tn is 1 second. Reliability remains low with wrong results as
the pattern just monitor the system to predict potential defect or anomaly.

Restructure: The restructure pattern changes the interconnection between
the systems to reduce the impact of a fault, error, or failure. Fig. 4 demonstrates
performance, reliability and availability of the Restructure pattern. The task’s
execution time TE is 168 hours (7 days), MTTF M is 24-168 hours (1-7 days). td,
Ti, and Tr is 2 second. The MTTF Mu of the unprotected part of the system is
720 hours (30 days). Reliability increases as the pattern resolve the fault, error,
or failure.

Rejuvenation: The rejuvenation pattern restores the affected system to
reduce the impact of a fault, error, or failure. Fig. 5 demonstrates performance,
reliability and availability of the Rejuvenation pattern. The task’s execution time
TE is 168 hours (7 days), MTTF M is 24-168 hours (1-7 days). td and Tl + Tr
is 2 second. Te,f is 0.5 hour. Ts is 1, 5 and 10 minutes. The MTTF Mu of the
unprotected part of the system is 720 hours (30 days). Restoring the affected
system results in higher execution time.

Reinitialization: The reinitialization pattern restores the affected system
to its initial state to reduce the impact of a fault, error, or failure. Fig. 6 demon-
strates performance, reliability and availability of the Reinitialization pattern.
The task’s execution time TE is 168 hours (7 days), MTTF M is 24-168 hours
(1-7 days). td,Ti, and Tr is 2 second. The MTTF Mu of the unprotected part of

5



24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

170.62
174.43
178.25
182.07
185.88
189.70

Ho
ur

s

Rollback Performance
 = 0.02
 = 0.08
 = 0.17

(a) Performance

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.76838
0.77251
0.77664
0.78076
0.78489
0.78901

Re
lia

bi
lit

y

Rollback Reliability

 = 0.02
 = 0.08
 = 0.17

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.88563
0.90543
0.92524
0.94504
0.96484
0.98465

Av
ai

la
bi

lit
y

Rollback Availability

 = 0.02
 = 0.08
 = 0.17

(c) Availability
Fig. 7. Rollback pattern performance, reliability, and availability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

169.283
171.075
172.866
174.658
176.449
178.241

Ho
ur

s

Rollforward Performance
 = 0.02
 = 0.08
 = 0.17

(a) Performance

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.780706
0.782660
0.784615
0.786570
0.788525
0.790479

Re
lia

bi
lit

y

Rollforward Reliability

 = 0.02
 = 0.08
 = 0.17

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.94254
0.95252
0.96249
0.97247
0.98244
0.99242

Av
ai

la
bi

lit
y

Rollforward Availability

 = 0.02
 = 0.08
 = 0.17

(c) Availability
Fig. 8. Rollforward pattern performance, reliability, and availability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

168.00180
168.00252
168.00324
168.00396
168.00468
168.00540

Ho
ur

s

FECC Performance

(a) Performance

24
.0

48
.0

72
.0

96
.0

12
0.

0
14

4.
0

16
8.

0
MTTF

0.791883627
0.791884419
0.791885211
0.791886003
0.791886795
0.791887587

Re
lia

bi
lit

y

FECC Reliability

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.99996786
0.99997214
0.99997643
0.99998071
0.99998500
0.99998929

Av
ai

la
bi

lit
y

FECC Availability

(c) Availability
Fig. 9. Forward Error Correction Code pattern performance, reliability, and availability

the system is 720 hours (30 days). Execution time increases significantly as the
application executes from the start whenever required.

Rollback: The rollback pattern restores the system to the last checkpoint
before a fault, error, or failure. Fig. 7 demonstrates the performance, reliability,
and availability of the Rollback pattern. The task’s execution time TE is 168
hours (7 days), MTTF M is 24-168 hours (1-7 days), the time to save system
state/progress to storage Ts is 1, 5 and 10 minutes, Tl +Tr is 1 seconds, and the
MTTF Mu of the unprotected part of the system is 720 hours (30 days). Faster
storage results in better performance, reliability, and availability.

Rollforward: The rollforward pattern restores the system to the time when
a fault, error, or failure. Fig. 8 demonstrates the performance, reliability, and
availability of the Rollforward pattern. The task’s execution time TE is 168
hours (7 days), MTTF M is 24-168 hours (1-7 days), the time to save system
state/progress to storage Ts is 1, 5 and 10 minutes, Tl +Tr is 1 seconds, and the
MTTF Mu of the unprotected part of the system is 720 hours (30 days). Roll-
forward results in better performance, reliability, and availability than rollback
as the system restores to the point when a fault, error, or failure occur.

Forward Error Correction Code: The Forward Error Correction Code
(FECC) pattern applies redundancy to system state or resources to reduce the
impact of a fault, error, or failure. Fig. 9 demonstrates performance, reliability
and availability of the Forward Error Correction Code pattern. The task’s ex-
ecution time TE is 168 hours (7 days), MTTF M is 24-168 hours (1-7 days).

6



0.00.10.20.30.40.50.60.70.80.91.0

MTTF24
48

72
96

120
144

168

Pe
rfo

rm
an

ce

168.0
224.0
280.0
336.1
392.1
448.1
504.1

Active Standby Performance

N =1
N = 2
N = 3

(a) Performance

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Re
lia

bi
lit

y

0.000
0.156
0.313
0.470
0.626
0.782
0.939

Active Standby Reliability

N =1
N = 2
N = 3

(b) Reliability

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Av
ai

la
bi

lit
y

0.9980.998

0.9990.9990.999

1.0001.000

Active Standby Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 10. Active/Standby pattern performance, reliability, and availability

0.00.10.20.30.40.50.60.70.80.91.0 Hours24
48

72
96

120
144

168
Pe

rfo
rm

an
ce

168.0
224.0
280.0
336.1
392.1
448.1
504.1

N-Modular Redundancy Performance

N =1
N = 2
N = 3

(a) Performance

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Re
lia

bi
lit

y

0.000
0.156
0.313
0.470
0.626
0.782
0.939

N-Modular Redundancy Reliability

N =1
N = 2
N = 3

(b) Reliability

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Av
ai

la
bi

lit
y

0.9980.998

0.9990.9990.999

1.0001.000

N-Modular Redundancy Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 11. N-modular Redundancy pattern performance, reliability, and availability

Ta,ten + td, and Tc is 2 second. The MTTF Mu of the unprotected part of the
system is 720 hours (30 days). Redundancy allows better performance, reliabil-
ity, and availability than other patterns discussed till now. However, reliability
is still low as the pattern doesn’t employ redundancy fully.

Active/Standby: The Active/Standby pattern applies redundancy in the
form of N functionally identical replicas to reduce the impact of a fault, error,
or failure. Fig. 10 demonstrates the performance, reliability and availability of
the Active/Standby pattern. The task’s execution time TE is 168 hours (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
α between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second,
ti + td + tr is 2 seconds, and Tf is 1 minute. To demonstrate reliability and
availability, redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is
48-336 hours (2-14 days in 1 day increments). Reliability increases significantly
but redundant systems overhead increases execution time significantly.

N-modular Redundancy: The N-modular redundacy pattern applies re-
dundancy in the form of N functionally identical replicas to maintain continuous
correct operation of a system. Fig. 11 demonstrates the performance, reliability
and availability of the N-modular Redundancy pattern. The task’s execution
time TE is 168 hours (7 days). To demonstrate performance, redundancy N is 1,
2 or 3 and in time and space, α between 0 and 1, and MTTF M is 24-168 hours
(1-7 days). Ta is 1 second, ti+ to is 1 second, and Tr is 1 minute. To demonstrate
reliability and availability, redundancy N is 1, 2 or 3 and in space with α = 1,
the MTTF M is 48-336 hours (2-14 days in 1 day increments). Performance,
reliability, and availability remain same as the active/standby pattern as the
parameters remain almost same.

N-Version Design: The N-version design applies redundancy as N func-
tionally equivalent alternate system implementations to handle a fault, error, or
failure. Fig. 12 demonstrates the performance, reliability and availability of the
N-Version Design pattern. The task’s execution time TE is 168 hours (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,

7



0.00.10.20.30.40.50.60.70.80.91.0 Hours24
48

72
96

120
144

168

Pe
rfo

rm
an

ce

168.0
224.0
280.0
336.1
392.1
448.1
504.1

N-Version Design Performance

N =1
N = 2
N = 3

(a) Performance

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Re
lia

bi
lit

y

0.000
0.156
0.313
0.470
0.626
0.782
0.939

N-Version Design Reliability

N =1
N = 2
N = 3

(b) Reliability

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Av
ai

la
bi

lit
y

0.9980.998

0.9990.9990.999

1.0001.000

N-Version Design Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 12. N-Version Design pattern performance, reliability, and availability

0.00.10.20.30.40.50.60.70.80.91.0 Hours24
48

72
96

120
144

168
Pe

rfo
rm

an
ce

168.0
224.0
280.0
336.1
392.1
448.1
504.1

Recovery Block Performance

N =1
N = 2
N = 3

(a) Performance

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Re
lia

bi
lit

y

0.000
0.156
0.313
0.470
0.626
0.782
0.939

Recovery Block Reliability

N =1
N = 2
N = 3

(b) Reliability

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Av
ai

la
bi

lit
y

0.9980.998

0.9990.9990.999

1.0001.000

Recovery Block Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 13. Recovery Block pattern performance, reliability, and availability

0.00.10.20.30.40.50.60.70.80.91.0 Hours24
48

72
96

120
144

168

Pe
rfo

rm
an

ce

168
224
280
336
392
448
504

Natural Tolerance Performance

N =1
N = 2
N = 3

(a) Performance

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336
Re

lia
bi

lit
y

0.000
0.156
0.313
0.470
0.626
0.782
0.939

Natural Tolerance Reliability

N =1
N = 2
N = 3

(b) Reliability

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Av
ai

la
bi

lit
y

0.9990.9990.999

1.0001.0001.0001.000

Natural Tolerance Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 14. Natural Tolerance pattern performance, reliability, and availability

α between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second,
ti+to is 1 second, and Tr is 1 minute. To demonstrate reliability and availability,
redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48-336
hours (2-14 days in 1 day increments). Performance, reliability, and availability
are same as the active/standby pattern as the parameters are almost same.

Recovery Block: The recovery block pattern applies redundancy as a func-
tionally equivalent alternate system implementation encapsulated in a recovery
block. Fig. 13 demonstrates the performance, reliability and availability of the
Recovery Block pattern. The task’s execution time TE is 168 hours (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
α between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second,
ti+to is 1 second, and Tr is 1 minute. To demonstrate reliability and availability,
redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48-336
hours (2-14 days in 1 day increments). Performance, reliability, and availability
are same as the active/standby pattern as the parameters are almost same.

Natural Tolerance: The natural tolerance pattern uses implicit error/failure
detection and self-masking to reach a correct system state from an illegal system
state. Fig. 14 demonstrates the performance, reliability and availability of the
Natural Tolerance pattern. The task’s execution time TE is 168 hours (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
α between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second, td

8



0.00.10.20.30.40.50.60.70.80.91.0 Hours24
48

72
96

120
144

168

Pe
rfo

rm
an

ce

168
224
280
336
392
448
504

Self Healing Performance

N =1
N = 2
N = 3

(a) Performance

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Re
lia

bi
lit

y

0.000
0.156
0.313
0.470
0.626
0.782
0.939

Self Healing Reliability

N =1
N = 2
N = 3

(b) Reliability

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Av
ai

la
bi

lit
y

0.9990.9990.999

1.0001.0001.0001.000

Self Healing Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 15. Self-Healing pattern performance, reliability, and availability

0.00.10.20.30.40.50.60.70.80.91.0 Hours24
48

72
96

120
144

168
Pe

rfo
rm

an
ce

168
224
280
336
392
448
504

Self Aware Performance

N =1
N = 2
N = 3

(a) Performance

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Re
lia

bi
lit

y

0.000
0.156
0.313
0.470
0.626
0.782
0.939

Self Aware Reliability

N =1
N = 2
N = 3

(b) Reliability

0.00.10.20.30.40.50.60.70.80.91.0

MTTF48
96

144
192

240
288

336

Av
ai

la
bi

lit
y

0.9990.9990.999

1.0001.0001.0001.000

Self Aware Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 16. Self-Aware pattern performance, reliability, and availability

is half second, and Tm is 30 seconds. To demonstrate reliability and availability,
redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48-336
hours (2-14 days in 1 day increments). Performance, reliability, and availability
improve a little from the active/standby pattern as the parameters Tm improve
by 30 seconds as compared to Tf .

Self-Healing: The self-healing pattern uses explicit error/failure detec-
tion and self-correction to reach a correct system state from an illegal system
state. Fig. 15 demonstrates the performance, reliability and availability of the
Self-Healing pattern. The task’s execution time TE is 168 hours (7 days). To
demonstrate performance, redundancy N is 1, 2 or 3 and in time and space, α
between 0 and 1, and MTTF M is 24-168 hours (1-7 days). Ta is 1 second, td
is half second, and Tc is 30 seconds. To demonstrate reliability and availability,
redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48-336
hours (2-14 days in 1 day increments). Performance, reliability, and availability
are same as the natural tolerance pattern as the parameters remain almost same.

Self-Aware: The self-aware pattern uses explicit error/failure detection and
self-correction to reach a correct system state from an illegal system state. Fig.
16 demonstrates the performance, reliability and availability of the Self-Aware
pattern. The task’s execution time TE is 168 hours (7 days). To demonstrate
performance, redundancy N is 1, 2 or 3 and in time and space, α between 0
and 1, and MTTF M is 24-168 hours (1-7 days). tm, Ta, and To is 1 second.
Tc is 30 seconds. To demonstrate reliability and availability, redundancy N is
1, 2 or 3 and in space with α = 1, the MTTF M is 48-336 hours (2-14 days in
1 day increments). Performance, reliability, and availability remain same as the
natural tolerance pattern as the parameters remain almost same.

4.2 Pattern Combinations

Multi-level Rollback: Recent work [8] detailed prior solutions and proposed a
new approach for offering a separate resilience strategy for computation offloaded
to a general-purpose computing graphics processing unit (GPGPU) accelerator.

9



24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

168.782
169.966
171.149
172.332
173.515
174.698

Ho
ur

s

Multilevel Rollback Performance
 = 0.02
 = 0.08
 = 0.17

(a) Performance

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.784557
0.785852
0.787146
0.788441
0.789735
0.791029

Re
lia

bi
lit

y

Multilevel Rollback Reliability

 = 0.02
 = 0.08
 = 0.17

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.96166
0.96840
0.97514
0.98188
0.98862
0.99536

Av
ai

la
bi

lit
y

Multilevel Rollback Availability

 = 0.02
 = 0.08
 = 0.17

(c) Availability
Fig. 17. Multi-level Rollback performance, reliability, and availability

While the application itself is employing the Rollback pattern (level l = 0),
an additional Rollback pattern is employed for the offloaded computation (level
l = 1) to contain and mitigate GPGPU errors and failures using a more efficient
strategy. The GPGPU computation is rolled back to a locally stored checkpoint
upon an error or failure. The performance, reliability, and availability are calcu-
lated based on the parameters for each pattern, making the GPGPU resilience
pattern a subsystem of the application resilience pattern.

While the application is waiting for the offloaded computation to finish, it
is assumed that no other computation takes place and there is no need to save
system state and progress to storage at level 0. Therefore, the application’s
failure free performance Tf=0 and performance under failure T are composed of
the corresponding performances at level 0 and 1 (Eqs. 7 and 8). The reliability
R(t) can be obtained using the performance under failure T and the failure
rate λu (or MTTF Mu) of the unprotected part of the system (Eq. 9). The
availability A can be calculated using the task’s execution time without any
resilience strategy TE and the performance under failure T (Eq. 10).

Tf=0 = Tf=0,l=0 + Tf=0,l=1 (7)

T = Tl=0 + Tl=1 (8)

R(t) = e−λuT = e−T/Mu (9)

A =
TE
T

=
TE

Tl=0 + Tl=1
(10)

Fig. 17 shows the performance, reliability and availability of 2-level Rollback
using the parameters from in Fig. 7 with 80% of the task’s execution time TE
offloaded to a GPGPU, the time to save GPGPU state/progress to node-local
storage Ts,l=1 of 1 second and the time to load it and to roll it back the same.
Multi-level rollback provides better performance, reliability, and availability than
normal rollback pattern.

Rollback and N-modular Redundancy: The recent work OpenMP tar-
get offload resilience [8] also considered employing the N-modular Redundancy
pattern. In this case, GPGPU errors and failures are detected and potentially
corrected using redundancy. The performance, reliability, and availability are
calculated similarly to the multi-level Rollback based on the parameters for each
pattern (Eqs. 7-10).

Fig. 18 shows the performance, reliability, and availability of this solution
using the parameters from Fig. 7, where 80% of TE offloaded to a GPGPU.
GPGPU redundancy N is 1, 2, or 3 and in time (α = 1), the times to replicate
the input Ti and to compare the outputs To are 0. The time to reboot a GPGPU
and use it again for redundancy Tr and the MTTR R are 1 minute. Inclusion
of redundancy further improves performance, reliability, and availability than
rollback pattern.

10



24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

168.540
169.356
170.172
170.988
171.804
172.620

Ho
ur

s

Rollback & N-modular redundancy
 Performance

N =1
N = 2
N = 3

(a) Performance

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.786825
0.787719
0.788613
0.789508
0.790402
0.791296

Re
lia

bi
lit

y

Rollback & N-modular redundancy
 Reliability

N =1
N = 2
N = 3

(b) Reliability

24
.0

48
.0

72
.0

96
.0

12
0.

0

14
4.

0

16
8.

0

MTTF

0.97324
0.97795
0.98266
0.98737
0.99209
0.99680

Av
ai

la
bi

lit
y

Rollback & N-modular redundancy
 Availability

N =1
N = 2
N = 3

(c) Availability
Fig. 18. Rollback and N-modular Redundancy performance, reliability, and availability

5 Conclusion

We introduced the RDPM tool, which allows exploring the design space for re-
silience solutions in HPC systems. It applies the resilience design pattern concept
and models the performance, reliability and availability of resilience solutions.
The parameterized resilience patterns can be employed horizontally, i.e., cov-
ering different parts of the system, or vertically, i.e., covering subsets of each
other. The tool is easily extensible to new patterns and provides results in plots
and CSV files. Future work involves extending the RDPM tool with power con-
sumption models. The ultimate goal of this longer-term effort is to enable hard-
ware/software codesign for performance, resilience and power consumption.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, program managers Robinson
Pino and Lucy Nowell. This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

References

1. Ashraf, R., Hukerikar, S., Engelmann, C.: Pattern-based modeling of mul-
tiresilience solutions for high-performance computing. In: ACM/SPEC In-
ternational Conference on Performance Engineering. pp. 80–87 (2018).
https://doi.org/10.1145/3184407.3184421

2. Ashraf, R., Hukerikar, S., Engelmann, C.: Shrink or substitute: Handling process
failures in HPC systems using in-situ recovery. In: Euromicro International Confer-
ence on Parallel, Distributed, and network-based Processing. pp. 178–185 (2018).
https://doi.org/10.1109/PDP2018.2018.00032

3. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11–33 (Jan 2004). https://doi.org/10.1109/TDSC.2004.2

4. Daly, J.T.: A higher order estimate of the optimum checkpoint interval for
restart dumps. Future Generation Computer Systems 22(3), 303–312 (2006).
https://doi.org/10.1016/j.future.2004.11.016

5. Di, S., Bautista-Gomez, L., Cappello, F.: Optimization of a multilevel checkpoint
model with uncertain execution scales. In: IEEE/ACM International Conference
for High Performance Computing, Networking, Storage and Analysis. pp. 907–918
(2014). https://doi.org/10.1109/SC.2014.79

6. Elliott, J., Kharbas, K., Fiala, D., Mueller, F., Ferreira, K., Engelmann,
C.: Combining partial redundancy and checkpointing for HPC. In: Interna-
tional Conference on Distributed Computing Systems. pp. 615–626 (2012).
https://doi.org/10.1109/ICDCS.2012.56

11



7. Engelmann, C., Ong, H.H., Scott, S.L.: The case for modular redundancy in large-
scale high performance computing systems. In: IASTED International Conference
on Parallel and Distributed Computing and Networks. pp. 189–194 (2009)

8. Engelmann, C., Vallée, G.R., Pophale, S.: Concepts for OpenMP target of-
fload resilience. In: International Workshop on OpenMP. pp. 78–93 (2019).
https://doi.org/10.1007/978-3-030-28596-8 6

9. Fiala, D., Mueller, F., Engelmann, C., Ferreira, K., Brightwell, R., Riesen,
R.: Detection and correction of silent data corruption for large-scale high-
performance computing. In: IEEE/ACM International Conference on High Per-
formance Computing, Networking, Storage and Analysis. pp. 78:1–78:12 (2012).
https://doi.org/10.1109/SC.2012.49

10. Geist, A.: How to kill a supercomputer: Dirty power, cosmic rays, and bad solder.
IEEE Spectrum 10, 2–3 (2016)

11. Hukerikar, S., Engelmann, C.: A pattern language for high-performance computing
resilience. In: European Conference on Pattern Languages of Programs. pp. 12:1–
12:16 (2017). https://doi.org/10.1145/3147704.3147718

12. Hukerikar, S., Engelmann, C.: Resilience design patterns: A structured approach to
resilience at extreme scale. Journal of Supercomputing Frontiers and Innovations
4(3), 4–42 (Oct 2017). https://doi.org/10.14529/jsfi170301

13. Hukerikar, S., Engelmann, C.: Resilience design patterns: A structured approach
to resilience at extreme scale (version 1.2). Tech. Rep. ORNL/TM-2017/745, Oak
Ridge National Laboratory (Aug 2017). https://doi.org/10.2172/1436045

14. Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Morgan Kaufmann (Jul 2007)
15. Kumar, M., Engelmann, C.: Models for resilience design patterns. In: 2020

IEEE/ACM 10th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS).
pp. 21–30. IEEE (2020)

16. Levy, S., Ferreira, K.B.: An examination of the impact of failure distribution on
coordinated checkpoint/restart. In: Workshop on Fault-Tolerance for HPC at Ex-
treme Scale. p. 35–42 (2016). https://doi.org/10.1145/2909428.2909430

17. Ostrouchov, G., Maxwell, D., Ashraf, R., Engelmann, C., Shankar, M., Rogers, J.:
GPU lifetimes on Titan supercomputer: Survival analysis and reliability. In: Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC) 2020 (Nov 15-20, 2020)

18. Pham, H.: Reliability Modeling, Analysis and Optimization. World Scientific (2006)
19. Snir, M., et al.: Addressing failures in exascale computing. International Jour-

nal of High Performance Computing Applications 28(2), 127–171 (May 2014).
https://doi.org/10.1177/1094342014522573

20. Tiwari, D., Gupta, S., Vazhkudai, S.S.: Lazy checkpointing: Exploiting temporal
locality in failures to mitigate checkpointing overheads on extreme-scale systems.
In: IEEE/IFIP International Conference on Dependable Systems and Networks.
pp. 25–36 (2014). https://doi.org/10.1109/DSN.2014.101

21. Trivedi, K.S., Malhotra, M.: Reliability and Performability Techniques and Tools:
A Survey, pp. 27–48. Springer (1993). https://doi.org/10.1007/978-3-642-78495-8 3

22. Young, J.W.: A first order approximation to the optimum checkpoint
interval. Communications of the ACM 17(9), 530–531 (Sep 1974).
https://doi.org/10.1145/361147.361115

12


