
Functional Partitioning to Optimize End-to-End
Performance on Many-core Architectures

Min Li1, Sudharshan S. Vazhkudai2, Ali R. Butt1, Fei Meng3, Xiaosong Ma2,3, Youngjae Kim2,

Christian Engelmann2, and Galen Shipman2

1Virginia Tech, 2Oak Ridge National Laboratory, 3North Carolina State University

{limin, butta}@cs.vt.edu, {vazhkudaiss, kimy1, engelmannc, gshipman}@ornl.gov, {fmeng, ma}@cs.ncsu.edu

Abstract—
Scaling computations on emerging massive-core super-

computers is a daunting task, which coupled with the
significantly lagging system I/O capabilities exacerbates
applications’ end-to-end performance. The I/O bottleneck
often negates potential performance benefits of assigning
additional compute cores to an application. In this paper,
we address this issue via a novel functional partitioning
(FP) runtime environment that allocates cores to specific
application tasks — checkpointing, de-duplication, and
scientific data format transformation — so that the deluge
of cores can be brought to bear on the entire gamut of
application activities. The focus is on utilizing the extra
cores to support HPC application I/O activities and also
leverage solid-state disks in this context. For example, our
evaluation shows that dedicating 1 core on an oct-core
machine for checkpointing and its assist tasks using FP can
improve overall execution time of a FLASH benchmark on
80 and 160 cores by 43.95% and 41.34%, respectively.

I. INTRODUCTION

As growth in processor frequency has stagnated, chip

designers have turned to increasing the number of pro-

cessing cores per socket to meet Moore’s law scaling

of processor capability. In the near future, each socket

may contain 8, 16, or even 80 or more cores, e.g., Intel’s

80-core chip prototype [1]. This push towards increasing

peak CPU throughput in High Performance Computing

(HPC) systems is not matched by a similar push towards

improving the access bandwidth to other components:

sustained I/O bandwidth significantly lags behind pro-

cessor improvements [2]. With many-core processors

driving up the per-socket memory and I/O bandwidth

requirements, the “storage wall” problem that has long

perplexed designers of parallel computing clusters is now

moving to within each compute node.

Consider the current No. 1 machine on the Top500

list [3], the 224,256-core Jaguar petaflop supercomputer.

c© 2010 IEEE Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-
7558-2/10/$26.00

A balanced petaflop system should sustain a bit of

I/O operation per instruction, requiring the parallel file

system (PFS) to provide 100 TB/s of I/O bandwidth. In

reality, the currently used state-of-the-art PFS, Lustre [4],

supports a peak I/O bandwidth of 254 GB/s [5] (based on

an IOR benchmark), which is two orders of magnitude

less than the ideal bandwidth. Furthermore, applications

typically only realize a fraction of this peak performance

due to software overhead or resource contention.

Simply assigning cores to an application does not

scale: End-to-end application performance is not ex-

pected to grow linearly with the number of cores [6],

mainly due to the bottleneck-prone HPC storage hier-

archy and the contention for on-chip resources in the

“sea of cores” of modern multicore systems. Adding to

this is the overhead from using the needed sophisticated

but complex programming techniques both in symmet-

ric [7]–[11] and asymmetric [12], [13] multicores.

To underscore these challenges, we tested two com-

mon parallel programs, namely mpiBLAST [14], an I/O-

intensive biological sequence alignment application, and

FLASH [15], [16], a computation-intensive astrophysics

simulation. We executed the applications on a clus-

ter comprising four oct-core machines, using standard

scheduling to map processes to cores on the four nodes.

We used a 24 GB workload and Sod 3D for mpiBLAST

and FLASH, respectively, and studied them with a fixed

total problem size, i.e., under strong scaling.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5 10 15 20 25 30

S
p

e
e

d
u

p

Number of Cores

mpiBLAST
FLASH

Fig. 1. Speedup obtained for mpi-
BLAST and FLASH.

Figure 1 shows

the speedup achieved

with increasing

number of cores

compared to the

case of one core.

It is observed that

for the selected

workloads, using

increasing number

of cores does not provide corresponding improvement

in execution time. This behavior can be attributed to:

(i) the storage wall as more cores contend for the data

from PFS, and (ii) the memory wall as more cores in a

node compete for the shared memory.

Functional partitioning of cores: The solution to the

compute-I/O imbalance problem must scale with core

count. In the post-petascale environment, everything off

socket is too far away in terms of “clocks.” Many system

resources and tools will need to be present on a compute

node and integrated and composed into system-level

services at scale. Rather than continuing to assign more

of the available cores to computation and intensifying

the pressure on the memory and secondary storage

systems, some of the cores may serve applications’

overall performance better if they can intercept and

absorb part of its data-intensive tasks. Such asymmetric

division of labor among cores is not new. There exists

I/O libraries that dedicate processors [17], [18] or use

separate threads [18], [19] for handling parallel I/O op-

erations. Similarly, BlueGene/L [20] uses distinct cores

for compute and networking tasks. However, we propose

a functional partitioning (FP) runtime environment as

a generalized way to dedicate a subset of cores within

a compute node to data processing services to help

alleviate the I/O bottleneck. This way, our approach

can improve the overall system resource utilization and

speed up eventual application turnaround. As a proof-

of-concept study, we explore several sample data ser-

vices, such as peer checkpointing, data analytics, and

file format conversion. The partitioning techniques we

develop can also provide the basis for other activities,

such as monitoring, result verification and validation,

shadow computation, compression, and encryption.

A suitable platform for demonstrating the usefulness

of FP is driven by the observation that future HPC

systems are likely to be equipped with non-volatile

devices such as solid-state disks (SSDs). SSDs offer

excellent read/write throughput (e.g., up to GB/s with

PCIe cards) when compared to secondary storage and

larger capacity when compared to DRAM (hundreds of

GBs). SSDs can be used either as slow memory or a

faster cache and posses very desirable properties such as

low power consumption and persistence. HPC systems

are beginning to explore the use of SSDs in the storage

hierarchy (e.g., SDSC’s Gordon [21]) as a means to

mitigate the pressure on storage systems. However, there

is a lack of a coherent architecture in HPC to use SSDs in

a unified fashion and in concert with secondary storage.

Further, there is no clear set of guidelines as to where

to place SSDs in the supercomputer (e.g., node-local or

system nodes). Thus, in this paper, we also investigate

the use of SSDs towards addressing the I/O bandwidth

bottleneck and illustrate how FP can be used to dedicate

cores that are geared towards performing different I/O

services on the SSDs. However, the benefits of FP hold

irrespective of whether a system employs SSDs or not.

A. Contributions

This paper makes the following contributions.

Functional Partitioning (FP) Design Paradigm:We

propose a FP runtime environment as a novel generalized

approach to partitioning many-core systems. Rather than

focusing on raw performance scaling, FP enables the

concerted use of the plethora of cores towards an applica-

tion’s own diverse set of activities. The runtime lays out

an architecture that enables: (a) applications to specify

the assist tasks in a job script, (b) an auxiliary application

(aux-app) model for the assist tasks so they can co-

execute with the applications, and (c) a foundation on

which dynamic adaptation of the provisioning of cores

to aux-apps can be performed in the future.

Building-blocks for FP: We show, via implemen-

tation and experimentation, that dedicating checkpoint

and de-duplication cores is in fact a concrete first step

towards functionally distinguishing cores.

Aggregate, Intermediate SSD Device: We built an

architecture to harness SSD storage, in user space, from

individual nodes to create a scalable, aggregate interme-

diate SSD device that can sustain high-speed writes. The

device also facilitates diverse data operations potentially

offered by our proposed service cores. Our approach is

by far the first to propose a concerted use of distributed

SSDs in a supercomputer environment.

Evaluation: We undertake a thorough evaluation of

the FP approach using a large 160-core testbed, studying

the resulting I/O throughput, impact of varying different

parameters such as number of dedicated cores, and the

overall impact on a real-world application’s performance.

II. RELATED WORK

Resource management in heterogeneous and special-

ized multi-processor systems has gained much research

attention recently [22]–[26] with focus on scientific

applications. There have also been studies on utiliz-

ing available cores for online execution monitoring or

security checking [27], [28]. However, to the best of our

knowledge, FP on general-purpose, homogeneous cores

has not been studied for mainstream HPC applications.

Although there exists I/O libraries that dedicate proces-

sors [17], [18] or use separate threads [18], [19] for

handling parallel I/O operations, our FP approach for

multicores directly targets the on-chip parallel compu-

tation efficiency problem, and presents a more general

and versatile service model for balanced utilization of

the increasing number of cores.

Several research efforts have also advocated a

pipelined model — that assigns various computational

tasks of an application to different cores — for homo-

geneous [29]–[32] and heterogeneous [33]–[36] systems

for parallelizing applications. In contrast, FP is a novel

runtime environment for core allocation and, in this

paper, we highlight its use in servicing I/O and the

compute-intensive tasks related to it in order to achieve

high overall system throughput.

This paper develops checkpointing and the compute-

intensive operations surrounding it as sample services to

be provided by dedicated core(s). Our implementation

focuses on utilizing aggregated memory/SSD spaces,

however, FP is general enough for incorporating other

peer-checkpointing schemes, such as [37], [38].

Recently, supercomputers are being equipped with

SSDs (e.g., Gordon [21]). Besides illustrating one po-

tential mechanism of utilizing node attached SSDs, FP

aggressively overlaps SSD accesses with computation,

which may help in hiding from the user the SSD per-

formance variance problem revealed by a recent study

characterizing scientific I/O workloads on SSDs [39].

III. FP: RATIONALE AND ENVIRONMENT

The advent of multicores implies that data production

rates of computer systems are fast surpassing the con-

sumption rates of the associated storage systems, thus

creating a fundamental imbalance between the two. As

applications try to scale to tens of cores within a single

node, the storage-compute performance gap leads to I/O

bottleneck. In essence, even though cores are available,

they may not yield expected performance benefits.

There are numerous application activities, e.g., check-

pointing, file reformatting, etc., in a typical application

workflow that can benefit if just a few cores were exclu-

sively allocated for the activities. Prior work in this area

has often been relegated to application-specific solutions

of running a few support threads on cores. Instead, we

create a generic runtime environment for dedicating a

portion of the cores allotted to an application towards

application activities besides computation.

Partitioning Cores: To handle the aforementioned

application activities, we specialize cores by assigning

to them specific sets of functionality. The analogy being:

just as a large supercomputer has compute, I/O and ser-

vice nodes for different functions, we enable a “system

on chip”-like design by partitioning the cores (within a

node) based on their functionality, e.g., compute cores,

checkpoint cores, shadow-computation cores, verifica-

tion cores, etc. To achieve such a holistic solution, how-

ever, we need a sophisticated runtime environment for

many-core systems. We argue that such an outlook brings

a novel perspective to current multicore research, the vast

majority of which is focused only on raw computational

scaling of applications. Instead, we aim to achieve a

concerted use of the thousands of cores available to an

application on a whole gamut of application activities.

Functionally partitioning cores to conduct assist tasks

in-situ, with the application, can be compared against

partitioning in time approaches that schedule operations

in a performance-optimal manner. FP offers several

advantages in terms of programmability, transparency

and simplicity. In contrast, partitioning in time does

reduce resource contention, which might be an issue

with functionally partitioned cores (e.g., contention for

memory resources). However, the storage wall is still a

looming issue with the time-partitioning model, which

is a critical problem that we strive to alleviate with FP.

A. Runtime Environment for FP

FP is supported through a dynamic runtime component

comprising a suite of application support services. We

adopt a bottom-up approach and construct several sample

data-oriented services, which illustrate the concrete steps

in building and enabling application support services.

They also serve as proof-of-concept case studies to

evaluate the effectiveness of FP.

Realizing the Runtime: The support services are run

as “auxiliary applications” (aux-apps) on the dedicated

cores (co-located with the main applications). An aux-

app monitors its associated main application and trans-

parently performs the support tasks, e.g., an aux-app can

be used to create an aggregate distributed storage device

(using SSDs) for checkpointing. Moreover, the aux-apps

do not have to run on each node; multiple aux-apps can

be aggregated on specialized nodes from where they can

monitor applications on other nodes.

The first step towards realizing the FP runtime is

to provide an interface to the application writers for

specifying what aux-apps should run along with the main

application. The job submission script is the logical place

where such information can be specified. Note that the

scripts are used to specify the location of aux-apps as

well as to invoke implemented aux-apps, and are not

means for implementing the aux-apps.

The runtime utilizes a FUSE [40] enabled driver com-

ponent that exports a mountpoint to allow interactions

between the main application and the aux-apps. The

driver supports an interface, the aux-app API, through

which the aux-apps can be invoked on the data accessed

by the application through the mountpoint. The aux-

apps are thus implemented as pluggable modules be-

hind the FUSE-based driver component. A number of

standard aux-apps, e.g., checkpoint management, etc.,

are provided by the runtime, and customized aux-apps

can be developed by the application programmer using

the aux-app API. Consequently, the aux-app operation

is transparent to the main application during execution,

as it simply accesses data through the mountpoint. This

ensures that the design and development of aux-apps is

decoupled from that of the main application.

For each aux-app the driver creates a separate thread

(or a set of threads), which is then scheduled on the

dedicated core(s). The aux-app approach also supports

i n t aux app wr i t e (vo id ∗ o u t p u t b u f f e r , i n t s i z e){
i n t r e s u l t =SUCCESS ;
/ / p r o c e s s o u t p u t i n chunks

whi le ((chunk=ge t chunk (& ou t b u f f e r , s i z e)) ! = n u l l){
/ / compute hash on o u t p u t b u f f e r chunks

char∗ hash=sha1 (chunk) ;

/ / w r i t e t h e new chunk

i f (! h a s h t a b l e g e t (ha sh))
r e s u l t = d a t a w r i t e (chunk) ;

/ / upda te de−dup hash−t a b l e

h a s h t a b l e u p d a t e (& r e s u l t , chunk , hash) ;
}
re turn r e s u l t ;

}

Fig. 2. Example write extension for a checkpointing aux-app.

advanced usage scenarios, e.g., aux-apps from different

nodes can work together to provide I/O aggregation

across nodes for reducing load on secondary storage.

Consider an aux-app for de-duplicating checkpoint

data. The user specifies the aux-app in the job submis-

sion script, which is then executed as a thread by the

FUSE-based driver component on application execution.

When the application writes to our mountpoint, the de-

duplication function (Figure 2) is invoked on the data.

Note that although only the write function is shown, all

I/O functions supported by the FUSE API are supported

by the aux-app API.

Discussion: Our current implementation of the run-

time supports a static partitioning of cores, which means

that core allocation to aux-apps cannot change during

an application run. Such dynamic re-allocation can be

useful, as we illustrate later in our evaluation, if an aux-

app can benefit from more cores or if an application

can make sufficient progress without an additional core.

The need for such flexibility is also warranted from

the usability aspect of the runtime. For example, how

will a user know what is an optimal partitioning? The

ideal solution would be to start with a conservative

partition and then to let the runtime provision the al-

location based on an agreed upon progress metric. The

advantage of the aux-app approach is that it provides the

basis upon which such a dynamic provisioning of cores

can be built. While the number of cores used by the

compute component of an application is typically fixed,

the functionally partitioned cores can be used to support

multiple services as required to improve the application

performance. For example, if two cores are available

for running the aux-apps, dynamic provisioning may

use one core for de-duplication and data compression

and another for checkpointing, instead of using both for

checkpointing. Or it may even run an additional format

transformation service that shares the available cores

with other services. The goal being to improve overall

application performance. Such a dynamic approach will

allow the aux-apps to adjust to the application demands

while keeping the performance impact to a minimum. In

this paper we present and evaluate static FP, and identify

the need for future work on dynamic provisioning.

Another aspect that impacts the utility of FP is

whether an application is designed to utilize all cores

available to it, i.e., no dedicated cores are available

for aux-apps. We argue that application writers should

examine end-to-end performance, i.e., all tasks and not

just compute, and decide what is best for their applica-

tions. Nonetheless, based on our experience with user

allocation requests, such a scenario is highly unlikely

as users, without exception, over-provision cores, which

can then be used by aux-apps.

In summary, the runtime provides for flexibly synthe-

sizing application support services and dynamically us-

ing the allocated cores to improve end-to-end application

performance, and not just raw compute performance.

IV. SAMPLE CORE SERVICES

In this section, we present several sample services that

can be performed by dedicated cores. Note that a single

service may be carried out by multiple cores if necessary,

conversely, multiple services can be assigned to a single

core. We illustrate dedicating cores to application tasks

using a checkpointing service. Checkpointing and its

associated tasks such as data draining, de-duplication,

and format transformation provide an insightful case

study for the application I/O activities that can be

expedited using the functional partitioning runtime. We

demonstrate the benefits of performing each of these

operations in-situ by the aux-apps. This is in contrast

to the extant approach of conducting such operations in

an offline manner, which exacerbates the storage wall

issue due to the constant writing and re-reading of TBs

of data from secondary storage.

A. SSD-based Checkpointing

Why Checkpointing? Checkpointing is an important

data operation routinely performed by parallel appli-

cations, both for fault tolerance and for user-initiated

execution restart. Checkpointing is becoming increas-

ingly expensive relative to computation, especially for

large-scale jobs, and is a key consideration in design-

ing supercomputers. For example, the Argonne Intrepid

BG/P supercomputer was designed not to meet balanced

machine criteria (a bit of I/O per second per instruction

per second), but rather to be able to dump the contents

of the entire system memory to secondary storage in 30

minutes [41]. This makes checkpointing an appealing

candidate for being “outsourced” to spare cores that

cannot further help towards improving the end-to-end

application execution time.

Rather than simply handing the periodic checkpoint-

ing I/O to dedicated cores to store in their associated

memory (an approach exploited previously on dedicated

processors within an SMP box [18]), in this paper

we explore checkpointing using non-volatile memories.

One can argue that checkpointing is I/O intensive and,

therefore, does not benefit from a dedicated checkpoint

core. We counter this hypothesis with the observation

that checkpointing can benefit from a host of other

operations, such as de-duplication and compression (both

of which are compute-intensive), draining and format

transformation, which when performed in-situ through

FP can alleviate the storage wall problem mentioned

earlier. Consequently, the checkpointing service core, in

this work, can perform more sophisticated tasks beyond

just performing background I/O from the main memory

to PFS, which is what most applications are currently

faced with and stymied by. Another question that arises

in this context is whether the task that would have been

performed on the dedicated core can be run on the same

core as the application. This is not possible even when

the application is performing I/O, unless the application

is modified to run a helper thread that is pinned to

another spare core. However, Leadership machines, such

as Jaguar, are not designed to be time-sharing systems

and an application’s allocation of cores is its own for the

entirety of the run. For these reasons, the checkpointing

service can benefit from the FP runtime.

Why SSDs? Among the several types of non-volatile

memories, flash memory-based SSDs are gaining popu-

larity for persistent data storage. SSDs offer a number

of benefits over the conventional mechanical disks, such

as fast data access time, low power consumption, light

weight, higher resilience to external shocks and high

temperatures. SSDs become especially helpful as the

system memory bandwidth, as a function of computation

throughput (byte/FLOP), has been consistently dropping

in the Top500 supercomputers over the past decade. In

fact, the ratio for a 2018 exascale machine is projected to

be 0.01, which has been explicitly identified by DOE as

one of the chief exascale problems to be addressed [42].

Furthermore, the non-volatile nature of SSDs can help

provide intermediate storage for checkpointing data and

reduce disk I/O (and communication) load.

Sustainability of SSD-based checkpointing: To justify

the use of SSDs for HPC checkpointing — a write-

intensive and write-once workload — one must address

two inter-dependent concerns of cost and durability. This

is because there is a significant $/GB difference between

current SSDs and hard disks, and the number of erase

cycles supported on the SSDs is fixed (limited compared

to the hard disks). To check whether it is feasible to use

SSDs for HPC checkpointing, we examine production

run checkpointing characteristics of seven leadership-

class DOE applications on the ORNL Jaguar machine

(Table I). At the time of the runs, Jaguar had four quad-

TABLE I
CHECKPOINT SIZES AND ESTIMATED NODES/SSD1.

Appl.
Data size Data size # Nodes/SSD
(MB/Core) (MB/Node) C1 C2

GTC 180 2880 21 11
XGC1 120 920 31 16
GTS 220 3520 17 9
Chimera 10 160 380 200
S3D 14 224 271 142
GEM 20 320 190 100
M3D-k 14 224 271 142

core processors (16 cores/node). Based on this data, and

the specification of the SSD we have used in our study,

Intel-X25 SLC SSD (Table III), we estimate how many

compute nodes can share a single 32 GB SSD, under the

following constraints:

• C1 – lifetime: SSD’s lifetime should be at least 5

years. This is based on the replacement cycle of

hard disks in HPC setups and data centers (typically

3-5 years) [43]. Each SLC memory cell typically

has a lifetime of 100 K–1 M erase operations [44].

Assuming each block can sustain the conservative

100 K erase cycles and that an update of 1 block

(256 KB) results in one block erase under perfect

wear-leveling scheme [45], the lifetime of an SSD

(F) for a given workload is calculated based on the

following Equation (1) [45]:

Lifetime(F) =
Size of NAND flash × Erase cycles(#)

Bytes written per day
(1)

• C2 – capacity: To allow lazy draining of data to

secondary storage, each SSD should be large enough

to hold one complete checkpoint from the nodes

sharing the device.

Table I shows the checkpoint characteristics for the

applications considered, as well as the estimated number

of nodes that can share a single SSD under C1 and C2.

There are two key observations that can be made from

the table. First, the lifetime is not the limiting constraint

for sharing an SSD, rather the limit is determined by the

SSD capacity. Second, even with both the constraints, a

large number of nodes can share a single SSD. This is

promising, as it indicates that an SSD-based checkpoint-

ing solution can be economically feasible.

Checkpointing Architecture: In our design, compute

nodes contribute one or more cores and their associated

SSDs as checkpoint cores to construct an aggregate,

distributed checkpoint device. Each checkpoint core runs

a benefactor process that contributes available, node-

local SSD space (or a partition of it) to a manager

process (running on one of the participating nodes) that

aggregates such distributed SSD spaces and presents a

1We thank Scott Klasky for providing us with application data sizes.

collective intermediate storage device to checkpointing

clients. Management tasks (such as benefactor status

monitoring, space mapping, and data striping) can be

done in a similar way as in existing storage aggregation

systems [46]–[48]. For each checkpoint, the manager

also maintains a striping map that contains information

about where all the different parts (chunks) of the

checkpoint are stored.

The aggregate SSD storage is made available to clients

via a transparent file system mount point, /AggregateSS-

Dstore, using FUSE [40] as discussed in Section III.

Here, we leverage our prior work on mounting an

aggregate storage of node-local disks [48]. An appli-

cation core that checkpoints data to the mount point

will be redirected to the aggregate SSD storage, without

requiring any other code modification.

While a single compute node’s local memory is likely

to be much smaller than its local SSD, checkpointing to

aggregated SSD space from multiple nodes has several

advantages. First, it provides fault tolerance in the event

of compute node failure, which may render the persistent

SSD-resident checkpoint data inaccessible. The globally

accessible aggregate storage space also facilitates easy

replication, e.g., using a simple copy in the aggregate

space, of the individual node’s checkpoint (or chunks of

striped checkpoints) across multiple nodes, which would

otherwise be complex, visible to the application, and

cumbersome if nodes managed their associated SSDs in-

dividually. Second, when the SSDs are distributed across

a set of system nodes, aggregation and access through a

file system mount point offers an elegant abstraction to

transparently access them from the numerous compute

nodes, thus decoupling the placement of SSDs from the

compute nodes and allowing for sharing of SSDs across

multiple nodes. Finally, although we expect the growth

in memory sizes to be matched with proportional growth

in SSD space on all nodes, even if that is not the case

and there is an imbalance, this abstraction allows for

data to be striped over to other node-local SSDs. For

example, the 512-core DASH system [49] at SDSC (the

precursor to 8192-core Gordon system) is equipped with

4 TB of flash storage, compared to its 3 TB of DRAM.

Currently, a high-end Fusion I/O PCIe MLC SSD card

(io Drive Duo) at 640 GB is priced around $15K. Much

like disk storage, SSD storage is increasing in capacity

and decreasing in cost. Thus, growth in SSD space is

currently outpacing memory increases.

B. De-duplication

Another sample data service function is de-

duplication, which is used to identify and store unique

data copies. For HPC applications, this service is useful

when used in conjunction with checkpointing, to de-

tect the similarity between two successive checkpoint

images and only store their dissimilar parts. Such in-

cremental checkpointing techniques have been explored

earlier [48], [50]. The challenge in doing de-duplication

on dedicated cores simultaneously with the main com-

putation is to avoid significant memory contention.

To this end, we have built a service that computes

hashes of the checkpoint data and identifies and removes

duplicates. A dedicated de-duplication core (a check-

point core can also double as a de-duplication core) is

assigned the task of computing the chunk hashes that

are then stored as metadata for that particular dataset at

the manager (in checkpoint architecture above). When

the checkpoint image for the next timestep, t, is to be

written, the chunk hashes from (t − 1) are compared

against the new, incoming image. A matching chunk

hash indicates a duplicate and the chunk is not written,

only the checkpoint’s striping map is updated to point to

the previously stored chunk. Consequently, depending

on the degree of similarity between two successive

checkpoints, the size of the checkpoint data written and

the time to write it can be significantly reduced.

C. Format Transformation

Another potential data service for using dedicated

cores is file format transformation. Large-scale parallel

scientific simulations (and subsequent analysis/visualiza-

tion tools processing their computation results) do not

read/write data in plain binary formats. Instead, they

often use high-level I/O libraries to create and access

data in special scientific data formats. Intermediate

checkpoint snapshot data is also saved in a specific data

format so that it can be used by applications as a restart

file in case of failure. Well-adopted formats, such as

HDF5 [51] and netCDF [52], produce self-explanatory

and self-contained files, with support for binary porta-

bility. However, accessing these files, especially through

their parallel interfaces, has been substantially slower

than reading/writing binary files [18], [53]. Checkpoint-

ing, while already cumbersome due to the storage wall,

is often further stymied due to the need of being in

proper scientific data formats. Recently, researchers have

exploited dedicated data service nodes to form staging

areas, where output data can be dumped in internal, faster

formats, then asynchronously converted to HDF5 files

on hard disks, producing a significant I/O performance

improvement [54]. With dedicated cores, similar format

transformation can be performed, especially with the

SSD-based storage layer. As existing intermediate file

formats (such as BP [53]) dump data in quite manageable

units, the format transformation core can easily perform

the conversion in a streaming manner. This reduces the

memory requirement and performance perturbation to

the computation and other concurrent data tasks running

on the other cores. It helps to perform such format

conversions while the data is in transit (either in memory

or SSD) and has not yet reached secondary storage.

Further, performing conversion operations on each core

within the compute node makes the data deluge more

manageable. If the entire checkpoint or result snapshot

is written as binary data to disk and format conversion is

performed offline, the entire workflow suffers from con-

stant re-reading of data. Offline format conversion also

means that if a failure occurred right after a checkpoint,

a valid restart file may not be ready yet, which wastes

significant resources and delays job turnaround.

D. Adaptive Checkpoint Data Draining

Although an SSD can store data persistently, and its

capacity will typically be manifold compared to node-

local memory, large-scale, long-running jobs can gener-

ate overwhelming volumes of data that results in space

on the SSD running out. This is especially true when

not every node has an SSD attached to it, instead only

a select set of system nodes has SSDs (due to budget

concerns for example). Fortunately, checkpointing for

fault tolerance does not require keeping all checkpoints:

typically files are overwritten and saving up to two

most recent checkpoints is enough. However, writing

checkpoints to secondary storage supported via a parallel

file system may still be needed: for some applications,

checkpoint data doubles as result data for future analy-

sis/visualization, or needs to be saved for elective restart.

Even though draining is I/O bound, it cannot be done

offline as the aggregate SSD space needs to be vacated

for future checkpoint data. Growing memory size and

the resulting increasing checkpoint size further stresses

the need for in-situ data draining. With a checkpointing

core, issues arising from growing memory sizes can be

mitigated, and draining from SSDs to the secondary

storage can be done in flexible and intelligent ways. As

draining is I/O bound, it can be overlapped with other

CPU bound checkpoint assist tasks.

The checkpointing core may decide to drain once

every k checkpoints, in addition to maintaining the two

most recent ones. The parameter k may even be con-

figured and coordinated at runtime, through additional

monitoring functions performed by the checkpointing

core (such as watching the client checkpoint frequency).

When the compute cores are back in the next compu-

tation phase, the checkpoint cores can collectively and

lazily drain selected checkpoints to secondary storage.

To enable this, the runtime supplies the aux-apps on

different nodes with the location of the manager process.

The system uses a soft-state protocol, where the aux-

apps periodically announce their availability and sharing

preferences, e.g., available SSD space, to the manager

using keep alive updates. This not only allows the aux-

apps to locate and communicate with each other, but also

Disk

Disk

Shared File Systems

Checkpointing

- Chunk Manager

- Benefactor Info.

- Draining data

De-duplication

Format

Transformation

Compute Nodes / Benefactors

....

Application

FUSE:/

AggSSDstore

Scalable, Intermediate
Aggregate SSD Store

Disk

Disk

Aggregate SSD Store
Manager Node

Disk

Disk

M

Application

FUSE:/

AggSSDstore

M

Application

FUSE:/

AggSSDstore

M

Manager

FUSE:/

AggSSDstore

M

....

Main

MemoryCore

.... SSD SSDSSD

Fig. 3. High level FP system architecture.

provides them with flexibility to change their preferences

over time. The manager uses this information to instruct

the aux-apps about the secondary storage location to

where the checkpoints from the SSDs can be drained.

V. IMPLEMENTATION

As a proof-of-concept, we have used the FP runtime

to implement SSD-based checkpointing and various sup-

port services discussed in the previous section, using

about 22.1 K lines of C code.

Figure 3 shows the components of our software that

is run at the manager, benefactors, and clients. Note that

every client node can also be a benefactor if it decides to

provide its associated SSD to the aggregate SSD store.

An example distribution of cores is also shown, where

the white cores are used for computation and the shaded

cores run aux-apps for services such as data draining

and de-duplication. The manager (running on a separate

node) works with the compute nodes to create a virtual

aggregated SSD store, which serves as a transparent

interface to the distributed SSDs. It also supports lazy

draining to the very large but slower secondary disk-

based storage. The aux-apps coordinate with each other

across nodes using socket communication, and remain

transparent to the main application.

The sequence of events when an application check-

points is as follows. Upon receiving a request to write

the checkpoint data, the FUSE module invokes the client

component, which interacts with the manager to deter-

mine the benefactor that will handle the checkpoint for

the client. If the client is on a node that has an associated

SSD it is given preference and is utilized. The exception

to this is if the local SSD is out of storage space, when a

remote benefactor is chosen. Regardless of whether the

client and benefactor are on the same node, the client

directly contacts the benefactor to determine its current

availability, divides the checkpoint data into fixed-size

chunks, and transfers the chunks to the benefactor. The

TABLE II
TESTBED CONFIGURATION.

of processing nodes 20
Capacity of storage server 2 TB
Network Interconnect Infiniband QD 40 Gbit/s

HDD model WD3200AAJS SATAII
Bandwidth 85 MB/s
Capacity 320 GB

Cores per node 8
Memory per node 8 GB

Max. cores available 160

TABLE III
SSD SPECIFICATIONS OF INTEL X25-E [56].

Model Intel X25-E Extreme
Features SATA-II SLC Flash Technology
Capacity 32GB

Bandwidth
Sequential read: 250 MB/s
Sequential write: 175 MB/s

I/O Per Second
Random 4KB reads: >35K IOPS
Random 4KB writes: >3.3K IOPS

benefactor stores the data on its associated SSD. Asyn-

chronously, as discussed in Section IV the benefactor

may drain data from the SSD to the secondary storage

system. Once the checkpoint is complete, the benefactors

inform the manager. The manager can then also invoke

a merge component on the benefactors, which reads the

checkpoint chunks from the secondary storage system

and rearranges them into a merged checkpoint file, ready

to be used by standard restart mechanisms if needed.

Finally, we have also built the checkpoint data ma-

nipulation services as discussed in Section IV, such as

basic data draining, replication, and de-duplication.

VI. EVALUATION

In this section, we evaluate our implementation of FP

and study its impact on application performance.

A. Methodology

Testbed Setup: Table II shows the configuration of

our testbed, which uses 20 nodes from the systemG

machine at Virginia Tech. All of the participating nodes

are identical and run Linux Kernel 2.6.27.10. Each node

is also equipped with an emulated SSD that has been

validated against a real product (Table III) for sequential

I/O throughputs within an error margin of 0.57%. The

device uses DRAM for storage and emulates a real SSD

by introducing artificial delays [55].

Our setup is not equipped with a PFS, so we used

node-local disks for checkpoint data. While typical HPC

setups do not employ node-local disks, we use them as

a high-throughput alternative to an NFS server.

Workloads: We employ a real-world astrophysics

simulation code, FLASH [15], [16], which generates

checkpoint files in HDF5. We modified the Sod 3D

version of FLASH for our evaluation: all the compute

processes carry out parallel I/O, including checkpointing,

using MPI-IO. The problem size remains fixed as the

number of compute processes is increased. For more de-

tailed testing, we also use a synthetic benchmark, which

is a simple checkpoint application that generates same

sized checkpoint data every barrier step. Specifically,

we created an MPI program with 160 processes, each

writing 0.25 GB of data per checkpoint, thus creating a

total checkpoint of 40 GB per barrier step. Finally, we

use static functional partitioning for the experiments.

B. Impact of FP

In our first set of experiments, we determine the

impact of FP on overall application performance. We

use the notation, FP (X, Y), to denote a setup with

a total of Y cores per node of which X have been

functionally partitioned for support services. For this test,

we use FLASH with a checkpoint size of 6.8 GB. No

format transformation is performed on the checkpoint

data. We consider four cases. (i) Local disk non-FP(0,8):

The baseline performance where all 8 cores per node

are used for application computation. Checkpoint data

from all the 8 cores in every node is written to the local

disk on that compute node. (ii) Local disk non-FP(0,7):

Repeat (i), but with only 7 cores per node for application

computation and the remaining core is left idle. All the

7 cores per node write to the local disk on that compute

node. (iii) Aggregate disk FP(1,8): FP where 1 core out

of 8 on each node is used as a dedicated checkpoint

core. An aux-app is run on these dedicated cores, which

assists with checkpointing and its associated tasks. In

this case, FP allows us to build sophisticated structures,

such as an aggregate distributed store of node-local disks

by pooling the aux-app services on each checkpoint

core as explained in Sections IV and V. The 7 cores

per node checkpoint to this aggregated storage, which

stripes the data in parallel to distributed aux-app services.

(iv) Aggregate SSD FP(1,8): Similar to (iii), but with

checkpointing to aggregate SSD storage.

Figure 4 shows the result for 80 and 160 cores, under

strong scaling. First, we observe that removing a core

from the computation, local disk non-FP(0,7), does not

affect the overall performance significantly; in fact the

2.23% average difference between that and local disk

non-FP(0,8) is within the error margin. Note that the

small increase in execution time from 80 to 160 cores

is due to contention in our testbed. Moreover, it can be

observed that dedicating one core to handle the check-

point, aggregate disk FP(1,8), can improve the execution

time by 15.42% and 27.05% for 80 and 160 cores,

respectively. The benefit is also in part due to the ability

to write to an aggregate store of node-local disks, pooled

from the aux-apps on the dedicated checkpoint cores.

Thus, FP is a viable approach and it also lets us build rich

 0

 50

 100

 150

 200

 250

80 160

T
im

e
(s

)

Number of Total Cores

Local Disk non-FP(0,8)
Local Disk non-FP(0,7)
Aggregate Disk FP(1,8)
Aggregate SSD FP(1,8)

Fig. 4. Impact of FP on execution time.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of Compute Cores

Triple Buffer(35)
SSD(20)

Fig. 5. Memory vs. SSD I/O rate.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of Benefactors

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of Benefactors

Fig. 6. Impact of varying benefactors.

composite services that are much beneficial. Moreover,

the use of aggregate SSD FP(1,8) provides an additional

gain of 43.95% and 41.34% compared to checkpointing

on disks for 80 and 160 cores, respectively. This is

promising as SSDs can enable efficient checkpointing

in HPC setups that do not have node-local disks.

C. Checkpointing to Memory versus SSD Storage

In the next set of experiments, we compare SSD-

based checkpointing with our previous work on in-

memory checkpointing that aggregates memory buffers

across nodes and employs triple-buffering to provide

improved throughput. The workload comprises of a

synthetic benchmark with up to 125 clients, each writing

a checkpoint of 0.25 GB. For SSD-based checkpointing,

each node has an SSD, thus the number of aux-apps

(run as benefactors) for this case is 20, “SSD(20)”. The
number of benefactors for in-memory triple buffer is

set to 35, “Triple Buffer(35)”, which is large enough to

avoid draining the data to secondary storage, and gives

the best case performance of in-memory checkpointing.

Figure 5 shows the results. As the number of clients

increases, the benefactor utilization increases and so does

the sustained throughput. We also observe that I/O

throughput for checkpointing to an aggregate SSD device

is 14.7% lower compared to the in-memory technique,

which is obvious. Nonetheless, our SSD-based check-

pointing does not require the dedicated cores to give

up their memory, which may reduce application perfor-

mance, as can happen for in-memory checkpointing.

Next, we determine the effect of the number of bene-

factors on sustained checkpoint I/O throughput. We fix

the client cores to 120 and vary the benefactors from 5
to 40. We perform in-memory checkpointing. Figure 6

shows that the I/O throughput does not increase beyond

25 benefactors and there is even a slight decrease,

implying the futility of simply adding more benefactors

as it takes cores away from computation.

1) Varying number of application processes: The next

experiment limits the number of in-memory benefactors

and compares its throughput against checkpointing to

SSD. We repeat the experiment of SSD(20) and compare

against in-memory triple buffering, but with only 20

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of Compute Cores

Triple Buffer(20)
SSD(20)

Fig. 7. Impact of insufficient benefactors.

benefactors, “Triple Buffer(20)”. We use a maximum

of 140 compute cores. Figure 7 shows that the initial

performance of Triple Buffer(20) is similar to Triple

Buffer(35). However, as the client cores are increased

beyond 80, the benefactor buffers fill up faster than

they can be drained, causing a significant throughput

reduction. As the compute cores are further increased,

the bandwidth eventually reduces to almost that of a

direct checkpoint to disk, as the draining agent has now

become I/O bound. Note that the steps pattern on the tail

of the graph is an artifact of how clients and benefactors

are distributed in our test. In contrast, SSD-based

checkpointing achieves better throughput with increasing

number of clients simply due to larger available space

(32 GB SSD versus 1 GB memory aggregated).
2) Varying number of SSD benefactors: In this experi-

ment, we study the impact of varying the number of SSD

benefactors. Figure 8 shows the results. As expected,

more SSD benefactors result in better I/O throughput.

However, once a sufficient number of benefactors were

available, i.e., >= 5, the overall throughput did not

change much. A remarkable coincidence is that I/O

throughput is limited by the available bandwidth of

SSDs, and not the number of SSD benefactors (beyond

a certain number, i.e. 5 in this case). Conversely, unless

the proper number of SSD benefactors is available, the

checkpoint nodes can be a bottleneck for the entire

system performance in the worst case.

D. De-duplication of Checkpointing Data

We have seen the benefit of FP on reducing overall

execution time. In the following, we observe how of-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20 40 60 80 100 120 140

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of Compute Cores

N = 20
N = 10
N = 5
N = 2
N = 1

Fig. 8. I/O rates with ’N’ benefactors.

 0

 1000

 2000

 3000

 4000

 5000

 20 40 60 80 100 120 140

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of Compute Cores

Non-dedup
Dedup(0.90)
Dedup(0.75)
Dedup(0.50)
Dedup(0.25)
Dedup(0.10)

Fig. 9. Checkpoint I/O rates with FP(1,8).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 20 40 60 80 100 120 140

S
iz

e
 o

f
C

h
e

c
k
p

o
in

ti
n

g
 D

a
ta

 (
M

B
)

Number of Compute Cores

Non-dedup
Dedup(0.25)

Fig. 10. De-dup data size with FP(1,8).

 0

 0.5

 1

 1.5

 2

 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 I

/O
 T

h
ro

u
g

h
p

u
t

Number of Compute Cores

Dedup(0.25)
Dedup(0.50)
Dedup(0.75)
Dedup(0.90)

Non-dedup

Fig. 11. Impact of increasing FP cores normalized to FP(1,8).

floading different application activities to dedicated cores

can further improve overall application performance.

For this experiment, in particular, we consider the

benefits of de-duplicating across consecutive checkpoints

in reducing the amount of data that needs to be written.

We use our synthetic benchmark program with one core

on each node dedicated to de-duplication and check-

pointing, and vary the number of compute cores from 20

to 140. We also observe the impact of varying the amount

of de-duplication. Figure 9 shows the effective I/O rates

for the checkpoint for different de-dup ratios (shown

in parenthesis). Observe that although de-duplication

reduces the amount of data that needs to be transferred,

the I/O rates achieved for writing the checkpoint on

average across the considered de-dup ratios are 30%

lower than that without de-duplication. This is because of

the compute-intensive nature of the de-duplication pro-

cess and indicates that the service is under-provisioned

(sharing one core with checkpointing). Figure 10 shows

the amount of data transferred for a de-dup ratio of 0.25.
As expected, de-duplication reduces the amount of data

that needs to be written to the disk by 25% or as much as

8208 MB for 140 cores. Such decrease in the amount of

checkpoint data to be written (which is all write I/Os) can

help improve the lifetime of SSDs used for intermediate

aggregated storage.

In the next experiment, we allocated two service

cores, one bound for de-duplication and the other for

checkpointing. The core services can be overlapped.

Figure 11 shows the benefits of allocating more cores

to support services by sacrificing computation resources.

Overall, we see that with functional partitioning, FP(2,8)

can provide higher throughput than FP(1,8). For instance,

the I/O throughput is improved by about 60% with a

de-duplication ratio of 0.25, when we use 120 cores

for application computation. We speculate that these

benefits are mainly obtained from pipelined effect of

two cores executing in parallel. Finally, this experiment

illustrates the need for dynamic and autonomic service

core allocation and resource provisioning, as discussed

earlier. We plan to pursue this as part of our future work.

VII. CONCLUSION

We have discussed FP of cores in large multicore

systems to support different application activities, in

contrast to the extant approach to allocating all cores to

computation. We have applied FP to the critical problem

of handling checkpoint I/O in supercomputers, where the

large number of cores can result in a significant amount

of application execution time spent in checkpointing.

We have developed a flexible SSD-based checkpointing

system that allows for transparent sharing of SSDs across

different nodes, thus providing an economically viable

solution. Our evaluation using a real implementation

shows that our core allocation model is viable, and can

provide significant benefits with minimal impact and

even increase overall performance (dedicating 1 core

on an oct-core machine for checkpointing can improve

overall execution time of a FLASH benchmark on 80

and 160 cores by 43.95% and 41.34%, respectively).

In summary, our work demonstrates FP’s usability and

in our future work, we will apply such partitioning to

support other mission-critical application activities.

ACKNOWLEDGMENT

We are thankful to the anonymous reviewers and our

shepherd, Dr. Toni Cortes, for their valuable feedback.

We also thank Dr. John Cobb for several useful discus-

sions. This work was sponsored in part by the LDRD

program of ORNL, managed by UT-Battelle, LLC for

the U.S. DOE (Contract No. DE-AC05-00OR22725),

and by NSF grants CCF-0937827, CCF-0746832, CCF-

0621470, and CCF-0937690, as well as Xiaosong Ma’s

joint appointment between ORNL and NCSU.

REFERENCES

[1] Intel. Advancing Multi-Core Technology into the Tera-scale Era,
2009. http://techresearch.intel.com/articles/Tera-Scale/1449.htm.

[2] Henry Monti, Ali R. Butt, and Sudharshan S. Vazhkudai. Timely
offloading of result-data in hpc centers. In Proc. ACM ICS, 2008.

[3] Top500 supercomputer sites. http://www.top500.org/.
[4] Philip Schwan. Lustre: Building a File System for 1,000-node

Clusters. In Proc. Ottawa Linux Symposium, 2003.
[5] Galen Shipman, Dave Dillow, Sarp Oral, and Feiyi Wang. The

spider center wide file system: From concept to reality. In Proc.

Cray User Group, 2009.
[6] Ami Marowka. Parallel computing on any desktop. Commun.

ACM, 50(9):74–78, 2007.
[7] Herb Sutter. The free lunch is over: A fundamental turn toward

concurrency in software. Dr. Dobb’s Journal, 30(3):202–210,
2005.

[8] Nalini Vasudevan and Stephen A. Edwards. Celling shim: com-
piling deterministic concurrency to a heterogeneous multicore. In
Proc. ACM SAC, 2009.

[9] Jack Dongarra. The impact of multicore on math software and
exploiting single precision computing to obtain double precision
results. In Proc. ICPP, 2006.

[10] Silas B. Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu,
Yuehua Dai, Yang Zhang, and Zheng Zhang. Corey: An operating
system for many cores. In Proc.Usenix OSDI, 2008.

[11] Herb Sutter and James Larus. Software and the concurrency
revolution. ACM Queue, 3(7):54–62, 2005.

[12] Duc Vianney, Gad Haber, Andre Heilper, and Marcel Zal-
manovici. Performance analysis and visualization tools for
cell/b.e. multicore environment. In Proc. ACM IFMT, 2008.

[13] Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-
Mei W. Hwu. Cuda-lite: Reducing gpu programming complexity.
In Proc. LCPC, 2008.

[14] Aaron E. Darling, Lucas Carey, and Wu-chun Feng. The
design, implementation, and evaluation of mpiblast. In Proc.

ClusterWorld, 2003.
[15] Anshu Dubey, Katie Antypas, Murali K. Ganapathy, Lynn B.

Reid, Katherine Riley, Daniel J. Sheeler, Andrew Siegel, and
Klaus Weide. Extensible component-based architecture for Flash,
a massively parallel, multiphysics simulation code. Parallel

Computing, 35(10-11):512–522, 2009.
[16] Robert Rosner, Alan Calder, Jonathan Dursi, Bruce Fryxell,

Donald Q. Lamb, Jens C. Niemeyer, Kevin Olson, Paul Ricker,
Frank X. Timmes, James W. Truran, Henry Tufo, Yuan-Nan
Young, Michael Zingale, Ewing Lusk, and Rick Stevens. Flash
code: Studying astrophysical thermonuclear flashes. Computing

in Science and Engineering (CSE), 2(2):33–41, 2000.
[17] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett.

Server-directed collective I/O in Panda. In Proc. SC, 1995.
[18] X. Ma, J. Lee, and M. Winslett. High-level buffering for hiding

periodic output cost in scientific simulations. IEEE Transactions

on Parallel and Distributed Systems, 17(3):193–204, 2006.
[19] S. More, A. Choudhary, I. Foster, and M. Q. Xu. MTIO: a multi-

threaded parallel I/O system. In Proc. International Parallel

Processing Symposium, 1997.
[20] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,

M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-
Burow, T. Takken, and P. Vranas. Overview of the blue gene/l
system architecture. IBM Journal of Research and Development,
49(2/3):195–212, 2005.

[21] Supercomputer uses flash to solve data-intensive problems 10
times faster. http://www.sdsc.edu/News%20Items/PR110409
gordon.html, 2009.

[22] Christos D. Antonopoulos, Filip Blagojevic, Andrey N.
Chernikov, Nikos P. Chrisochoides, and Dimitrios S. Nikolopou-
los. A multigrain delaunay mesh generation method for multicore
smt-based architectures. J. Parallel Distrib. Comput., 69(7):589–
600, 2009.

[23] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, and Graham R.
Nudd. Dynamic scheduling of parallel real-time jobs by mod-
elling spare capabilities in heterogeneous clusters. In Proc. IEEE

ICCC, 2003.
[24] Jorge Manuel Gomes Barbosa and Belmiro Daniel Rodrigues

Moreira. Dynamic job scheduling on heterogeneous clusters. In
Proc. IEEE ISPDC, 2009.

[25] M. Mustafa Rafique, Ali R. Butt, and Dimitrios S. Nikolopoulos.
Designing accelerator-based distributed systems for high perfor-
mance. In Proc. IEEE/ACM CCGrid, 2010.

[26] M. Mustafa Rafique, Benjamin Rose, Ali R. Butt, and Dim-
itrios S. Nikolopoulos. Supporting mapreduce on large-scale
asymmetric multi-core clusters. SIGOPS Oper. Syst. Rev.,
43(2):25–34, 2009.

[27] Shimin Chen, Babak Falsafi, Phillip B. Gibbons, Michael
Kozuch, Todd C. Mowry, Radu Teodorescu, Anastassia Ailamaki,
Limor Fix, Gregory R. Ganger, Bin Lin, and Steven W. Schlosser.
Log-based architectures for general-purpose monitoring of de-
ployed code. In Proc. Architectural and System Support for

Improving Software Dependability Workshop, 2006.
[28] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason

Flinn. Parallelizing security checks on commodity hardware. In
Proc. ACM ASPLOS, 2008.

[29] Kue-Hwan Sihn, Baik Hyunki, Kim Jong-Tae, Bae Sehyun, and
Song Hyo Jung. Novel approaches to parallel h.264 decoder on
symmetric multicore systems. In Proc. IEEE ICASSP, 2009.

[30] S. Arash Ostadzadeh, Roel J. Meeuws, Kamana Sigdel, and Koen
Bertels. A multipurpose clustering algorithm for task partitioning
in multicore reconfigurable systems. In Proc. IEEE CISIS, 2009.

[31] Turgay Altilar and Yakup Paker. Minimum overhead data
partitioning algorithms for parallel video processing. In Proc.

International Conference on Domain Decomposition Methods,
2001.

[32] Robert Ennals, Sharp, and Mycroft. Task partitioning for multi-
core network processors. In Proc. Cluster Computing, 2005.

[33] Marc de Kruijf and Karthikeyan Sankaralingam. MapReduce
for the Cell B.E. Architecture. IBM Journal of Research and

Development, 53(5):10:1–10:12, 2009.
[34] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju,

and Tuyong Wang. Mars: a mapreduce framework on graphics
processors. In Proc. ACM PACT, 2008.

[35] F.T. Hady, T. Bock, M. Cabot, J. Chu, J. Meinecke, K. Oliver,
and W. Talarek. Platform level support for high throughput edge
applications: the twin cities prototype. IEEE Network, 17(4):22–
27, 2003.

[36] Sanjay Kumar, Gavrilovska, Karsten Schwan, and Srikanth Sun-
daragopalan. C-core: Using communication cores for high
performance network services. In Proc. IEEE NCA, 2005.

[37] J. S. Plank, K. Li, and M. A. Puening. Diskless Checkpoint-
ing. IEEE Transactions on Parallel and Distributed Systems,
9(10):972–986, 1998.

[38] G. Bronevetsky and A. Moody. Scalable I/O Systems via Node-
Local Storage: Approaching 1 TB/sec File I/O. LLNL Technical
Report LLNL-TR-415791, Lawrence Livermore National Labo-
ratory, 2009.

[39] S. Park and K. Shen. A Performance Evaluation of Scientific
I/O Workloads on Flash-Based SSDs. In Proc. Workshop IASDS,
2009.

[40] FUSE. File System in Userspace, 2007. http://fuse.sourceforge.
net/.

[41] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Peter H.
Beckman. Zoid: I/o-forwarding infrastructure for petascale ar-
chitectures. In Proc. ACM SIGPLAN PPoPP, 2008.

[42] International exascale software project roadmap. In Proc. Cross-

cutting Technologies for Computing at the Exascale Workshop,
2010.

[43] B. Schroeder and G. A. Gibson. Disk failures in the real world:
What does an mttf of 1,000,000 hours mean to you? In Proc.

USENIX FAST, 2007.
[44] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Under-

standing intrinsic characteristics and system implications of flash
memory based solid state drives. In Proc. SIGMETRICS/Perfor-

mance, 2009.

[45] Numonyx. Wear leveling in nand flash memories. http://www.
numonyx.com/Documents/Application%20Notes/AN1822.pdf.

[46] Ali R. Butt, Troy A. Johnson, Yili Zheng, and Y. Charlie Hu.
Kosha: A peer-to-peer enhancement for the network file system.
Journal of Grid Computing: Special issue on Global and Peer-

to-Peer Computing, 4(3):323–341, 2006.
[47] S. Vazhkudai, X. Ma, V. Freeh, J. Strickland, N. Tammineedi,

and S. Scott. Freeloader: Scavenging desktop storage resources
for bulk, transient data. In Proc. SC, 2005.

[48] Samer Al-Kiswany, Matei Ripeanu, Sudharshan S. Vazhkudai,
and Abdullah Gharaibeh. stdchk: A checkpoint storage system
for desktop grid computing. In Proc. ICDCS, 2008.

[49] Dash User Guide: Technical Summary, June 2010. http://www.
sdsc.edu/us/resources/dash/index.html.

[50] Eliezer Levy, Avi Silberschatz, and Avi Silberschatz. Incremental
recovery in main memory database systems. IEEE Transactions

on Knowledge and Data Engineering, 4(6):529–540, 1992.
[51] http://hdf.ncsa.uiuc.edu/HDF5/doc/. HDF5 - A New Generation

of HDF.
[52] http://www.unidata.ucar.edu/packages/netcdf/docs.html. NetCDF

Documentation.
[53] Jay Lofstead, Fang Zheng, Scott Klasky, and Karsten Schwan.

Adaptable, metadata rich io methods for portable high perfor-
mance io. In Proc. IPDPS, 2009.

[54] Hasan Abbasi, Jay Lofstead, Fang Zheng, Scott Klasky, Karsten
Schwan, and Matthew Wolf. Extending i/o through high perfor-
mance data services. In Proc. Cluster Computing, 2009.

[55] Pavan Konanki and Ali R. Butt. An exploration of hybrid hard
disk designs using an extensible simulator, 2008. Masters Thesis,
Virginia Tech.

[56] Intel. Intel x25-e extreme sata solid-state drive. http://www.intel.
com/design/flash/nand/extreme/index.htm.

