
A PROACTIVE FAULT TOLERANCE FRAMEWORK FOR
HIGH-PERFORMANCE COMPUTING

Antonina Litvinova
Department of Computer Science

The University of Reading, Reading, UK
email: a.litvinova@student.reading.ac.uk

Christian Engelmann and Stephen L. Scott
Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, TN, USA
email: engelmannc@ornl.gov and scottsl@ornl.gov

ABSTRACT
As high-performance computing (HPC) systems continue
to increase in scale, their mean-time to interrupt decreases
respectively. The current state of practice for fault toler-
ance (FT) is checkpoint/restart. However, with increasing
error rates, increasing aggregate memory and not propor-
tionally increasing I/O capabilities, it is becoming less effi-
cient. Proactive FT avoids experiencing failures through
preventative measures, such as by migrating application
parts away from nodes that are “about to fail”. This paper
presents a proactive FT framework that performs environ-
mental monitoring, event logging, parallel job monitoring
and resource monitoring to analyze HPC system reliability
and to perform FT through such preventative actions.

KEY WORDS
high-performance computing, fault tolerance, system mon-
itoring, high availability, reliability

1 Introduction
As high-performance computing (HPC) systems continue
to increase in scale, their mean-time to interrupt (MTTI)
decreases respectively. There are currently 4 systems with
130,000-164,000 processor cores, 1 with 213,000 and 1
with 295,000 [18]. In each of these supercomputers, a
compute node consists of 2-8 cores, 1-4 memory modules
and 1 network interface. The total component count eas-
ily approaches 1,000,000. Next-generation systems are ex-
pected to have 10-100 times of that [11]. Meanwhile, the
reliability of current-generation systems has been lower in
comparison to their predecessors (Table 1). The current
state of practice for fault tolerance (FT) in HPC is check-
point/restart via a parallel file system [10]. However, with
increasing error rates, increasing aggregate memory and
not proportionally increasing I/O capabilities, it is becom-
ing less efficient. A recent investigation [8] revealed that
the efficiency, i.e., the ratio of useful vs. scheduled ma-
chine time, can be as high as 85% and as low as 55%.

Year System Cores MTTI Source
2000 LLNL ASCI White 8,192 40.0h [23]
2002 NERSC Seaborg 6,656 351.0h [21]
2007 LLNL ASC BG/L 212,992 6.9h pers. comm.

Table 1. Past and current HPC system reliability statistics

This paper describes our efforts in providing high-
level reliability, availability and serviceability (RAS) for
HPC environments using a standardized core of scalable
technologies. Since each system has distinct dependability
properties and architectural features, we target a framework
that supports different RAS technologies to be used indi-
vidually or in combination for providing a comprehensive
solution. A previously proposed framework [22] offered in-
novative proactive fault-handling techniques through fault
prediction, detection and avoidance [20, 29], while enhanc-
ing reactive fault recovery through adaptive and incremen-
tal checkpoint approaches [7, 14]. This paper presents an
implementation of the previously proposed framework. It
focuses on the proactive FT approach, which avoids experi-
encing failures through preventative measures. The frame-
work performs environmental monitoring, event logging,
parallel job monitoring and resource monitoring to analyze
HPC system reliability and to permit fault avoidance.

2 Related Work

Proactive Fault Tolerance Proactive FT keeps applica-
tions alive by avoiding failures through preventative mea-
sures [12]. In contrast, reactive FT performs recovery from
experienced failures. Both are complementary resilience
techniques. Proactive FT using migration prevents com-
pute node failures from impacting parallel applications by
migrating application parts (tasks, processes, or virtual ma-
chines) away from nodes that are “about to fail”. Indica-
tions of an imminent compute node failure, such as a fan
fault or an unusual sensor reading, are used to avoid fail-
ure through anticipation and reconfiguration. As applica-
tions continue to run, their application mean-time to failure
(AMTTF) is extended beyond system mean-time to fail-
ure (SMTTF). Since fault avoidance has significantly less
overhead than rollback recovery, proactive FT offers more
efficient resilience against predictable failures.

Resource Manager/
Runtime Environment

Monitor/Filter/Analysis

Application
Reallocation

Application
Allocation

Application
Health

Figure 1. Feedback-loop control of proactive FT [12]



Proactive FT relies on a feedback-loop control (Fig-
ure 1) [12] with continuous health monitoring, data anal-
ysis and application reallocation. There are four distinct
types based on the feedback-loop control capabilities. Type
1 [12], the most basic form, uses sensor threshold triggers
on compute nodes to notify the job and resource manage-
ment system that a failure is imminent and a node needs to
be evicted. It provides an alert-driven coverage for basic
failures only as there is no evaluation of application health
history or context. It is prone to false positives/negatives,
to miss the real-time window for avoiding failures and to
decrease application heath through migration to unhealthy
nodes. Type 2 [12], an enhanced form of Type 1, uses sen-
sor data filters on compute nodes to identify trends and to
notify the job and resource management system. Since it
offers a trend-driven coverage of basic failures, this type is
less prone to false positives/negatives. However, it is still
prone to miss the real-time window and to decrease appli-
cation heath through migration. Type 3 [12], an advanced
form, centers around a system-wide reliability analysis us-
ing monitoring trend data from all compute nodes. This
reliability-driven coverage of basic and correlated failures
is much less prone to false positives/negatives, is able to
maintain the realtime window, does not decrease applica-
tion heath through migration and correlates short-term ap-
plication health context and history. Finally, Type 4 (Fig-
ure 2) [12], the most advanced form, extends Type 3 by
adding a history database for monitoring and reliability
analysis data. In addition to the features of Type 3, it is
able to match system and application patterns by correlat-
ing long-term application health context and history. The
work presented in this paper focuses on Type 4.

Resource 
Manager

Runtime 
Environment

MonitorFilter

Reliability
Analysis

Evict
Node(s)

Migrate
Process

Trend
Data

Sensor
Data

Application
Allocation

Ap
pl

ic
at

io
n 

H
ea

lth

Administrator

Ad
d

N
od

e(
s)

MonitorFilterTrend
Data

Sensor
Data

Ag
gr

eg
at

ed
 T

re
nd

 D
at

a

Application Process
Health

Application Process
Health

N
ot

ify
 o

f
Ev

ic
tio

n

MonitorFilterTrend
Data

Sensor
Data

Application Process
Health

...

History
Database

Re
ad

W
ri

te

Figure 2. Type 4 feedback-loop control [12]

Environmental Monitoring and Analysis OpenIPMI
(http://openipmi.sourceforge.net) enables access to Intel-
ligent Platform Management Interface (IPMI) data, such
as processor temperatures and fan speeds. Ganglia [17]
is a scalable distributed monitoring system, where each
node monitors itself and disseminates monitoring data, e.g.,
IPMI data, to other nodes. Ganglia and OpenIPMI have al-
ready been used in Type 1 solutions [20, 29]. OVIS 2 [2]
collects system health information directly from nodes or

from other monitoring solutions, e.g., Ganglia, for statisti-
cal processing. OVIS 2 provides Type 3/4 online analysis
as well as Type 4 offline analysis using a history database.
It has not yet been used in proactive FT feedback control
loops. A few other solutions exist, such as the RAS sys-
tems deployed by HPC vendors. They are similar in design
and none of them have been used for proactive FT.

Event Logging and Analysis Analyzing failure patterns
using statistical methods has been a recent effort in HPC.
Most work relies on system logs from the USENIX Com-
puter Failure Data Repository at http://cfdr.usenix.org. Re-
cent work includes a failure prediction framework [13] that
explores log entry correlations. The results show a more
than 76% accuracy in offline prediction (needed for Type 4)
and more than 70% accuracy in online prediction (needed
for Type 3/4). Another effort [24] offered a classification
scheme for syslog messages, a Type 4 offline analysis. It
is able to localize 50% of faults with 75% precision, corre-
sponding to an excellent false positive rate of 0.05%. Other
work in event logging and prediction exist, focusing on
identification of root causes, failure modes, trends, corre-
lations, patterns, failure indications and future threads.

Job and Resource Monitoring Monitoring parallel ap-
plication and compute-node state is typically performed by
the job and resource manager of a HPC system, such as
Torque [5], which also often interacts with an accounting
service to log system usage and failure events.

Migration Mechanisms Two recent Type 1 prototypes
used (1) Xen’s virtual machine (VM) migration [20] and
(2) a newly developed process migration mechanism for
BLCR [29]. While VM migration takes 13-24s, process
migration is faster (1-6.5s) as less state is transferred. An-
other effort targeted transparent MPI task migration using
the Charm++ middleware and its Adaptive MPI [3]. This
work focused on the migration aspect only and did not pro-
vide the feedback-loop control. MPI-Mitten [9] provides a
library between MPI and applications for transparent mi-
gration support. Other migration mechanisms exist, how-
ever, none of them efficiently support parallel applications.

Proactive Fault Tolerance Frameworks Two Type 1
prototypes exist [20, 29] that perform migration at the (1)
VM or (2) process level. Both utilize Ganglia and a load
balancer for selecting the migration target. A third Type 1
prototype [28] is a framework that was developed to inves-
tigate coordination, protocols and interfaces between indi-
vidual system components.

Fault Tolerance Policies Recent work in HPC fault toler-
ance policies utilized simulation to evaluate trade-off mod-
els for combining migration with checkpoint/restart [26].
Using failure logs, the impact of prediction accuracy was
put in context with restart counts and checkpoint frequency.
The results show that this holistic approach offers the best
resilience as proactive FT is handling predictable failures,
while reactive FT continues to handle unpredictable ones.

http://openipmi.sourceforge.net
http://cfdr.usenix.org


3 Technical Approach
The previously proposed HPC RAS framework (Fig-
ure 3) [22] coordinates individual FT solutions and offers
a modular approach for adaptation. At its center, a highly
available RAS engine running on redundant service nodes
processes current and historical environmental monitoring
and event log data from compute nodes. While a node-local
pre-processing provides scalability, a central system-wide
analysis offers optimal filtering for coordinated triggering
of FT mechanisms according to FT policies. The data col-
lection and processing, the execution of FT mechanisms
and respective changes in application health form a con-
stantly optimized feedback-loop control.

Highly Available RAS Engine

Virtualization Scope:
Application, Run Time Environment, OS and/or Micro OS

Status Probes

Local Policy-
Based Analysis

Fault Tolerance 
Mechanisms

Coordinated Global Policy-Based 
Analysis and Decision Making

Local Policy-Based Analysis

Fault, Error and 
Trend Notification

Fault Tolerance 
Mechanism Invocation

Users, Administrator, 
System Services

Detection Recovery and 
Prevention

Customization 
and Guidance

Policy Configuration, 
Decision Guidance

Event 
Distribution

Remote Node Status Probes

Individual 
Compute Nodes

Communication 
System

Multiple, Fully 
Redundant 

Service Nodes

Figure 3. Previously proposed HPC RAS framework [22]

This framework poses a number of research chal-
lenges, such as optimal pre-processing of node-local data,
scalable data aggregation, combined environmental moni-
toring and event log data analysis for failure prediction, and
interaction of FT mechanisms with job and resource man-
agement. While prior prototypes focused on FT mecha-
nisms [20, 29] and coordination [28], the solution presented
in this paper targets a functioning modular framework that
can be deployed in existing HPC systems to incrementally
solve the remaining challenges.

Our approach centers around the Type 4 database and
its interaction with all other components. This database
represents the previously proposed highly available RAS
engine. In addition to monitoring and log data, it also col-
lects data from the HPC job and resource manager. The
data is processed by an analysis component that also im-
plements FT policies and triggers FT mechanisms. The in-
terface between the database and data provider components
is the Structured Query Language (SQL). The database
is designed to utilize separate tables unique for each data
provider to allow for individual features to be represented.
While this non-unified database scheme causes the analy-
sis component to be dependent on individual data provider
conventions, such as metric names, ranges and resolutions,
it also allows to compare and combine the data from in-
dividual provider components. For high availability, the
database can be easily replicated [15], while the provider
and FT mechanism components are either stateless or uti-
lize their own replication strategies [27].

4 Implementation
The proactive FT framework (Figure 4) was implemented
on Linux as most HPC systems are running it on all or
at least on service nodes. The database management sys-
tem is MySQL. In addition, several stateless daemon pro-
cesses and scripts were developed to facilitate the storing
of provider data into the database via SQL and to perform
data analysis.

Torque

LAM/MPI
with BLCR

Ganglia/Syslog-NG

Data
Analysis

MigrateProcess

Start/Stop

Application

Sensor/Log
Data

Application
Allocation

Ap
pl

ic
at

io
n 

H
ea

lth

Ganglia/Syslog-NGSensor/Log
Data

Se
ns

or
/L

og
 D

at
a

Application Process
Health

Application Process
Health

Ganglia/Syslog-NGSensor/Log
Data

Application Process
Health

...

RAS
Database

Re
ad

W
ri

te

Job/Resource
Data

Figure 4. The developed proactive FT framework

Environmental Monitoring The environmental moni-
toring component consists of Ganglia [17] and a stateless
daemon, gangliamysqld, that regularly queries Gan-
glia and stores its data in the RAS framework database.

Environmental data, such as processor temperature
and fan speeds, is gathered in intervals on all nodes and
disseminated to all nodes using Ganglia’s monitoring dae-
mon, gmond. It is queried on port 8649 in intervals
by gangliamysqld, typically on the database node.
The data is converted from Extensible Markup Language
(XML) format to respective SQL statements that add the
data to the ganglia table of the database. Using a generic
XML schema, any kind of metric that Ganglia provides can
be automatically stored. gangliamysqld does not need
to reside on the same node as the database as it is able to
connect to a remote database as well. However it needs
to reside on a node that runs gmond. Metrics are stored
with time stamps of the time of storage. If available, the
time of measurement is stored as well. A discussion on the
notion of time in the framework can be found in the data
analysis component description. Metrics are stored in raw
format without pre-processing as it is currently unknown
what type of pre-processing, such as classification and/or
trend analysis, makes sense for proactive FT. This has cer-
tain scalability implications that are discussed later.

Ganglia’s output is also used to maintain a
nodesstate table in the database that contains the list
of currently available nodes, and a nodeshistory table
that logs status changes of nodes.

Event Logging The event logging component consists of
Syslog-NG and a stateless daemon, syslogmysqld, that
regularly stores Syslog-NG messages in the database.



Event log messages, such as daemon/kernel warn-
ings/errors, are gathered on all nodes and send to a cen-
tral service node by the internal forwarding capability
of the Syslog-NG daemon, syslog-ng. The central
syslog-ng daemon writes all messages to a named pipe,
/var/syslogmysqld, which is read out in intervals
by syslogmysqld. The conversion from Syslog-NG
format to SQL statements that add the messages to the
syslog table of the database is performed while writing
them into the named pipe. Using a generic schema, any
kind of message that Syslog-NG provides can be automat-
ically stored. syslogmysqld does not need to reside on
the same node as the database as it is able to connect to a
remote database. However it needs to reside on the central
service node that collects all Syslog-NG messages. Mes-
sages are stored without pre-filtering in the database with
two time stamps, time reported and time stored.

Job and Resource Monitoring The job and resource
monitoring component consists of Torque [5] and two state-
less scripts, prologue and epilogue, that gather job
and resource data from Torque for the database.

Job and resource data, such as job/user id/name, re-
sources requested/used and start/stop times, is gathered
on the node Torque resides, which is typically the head
node. The prologue script stores data on job start into
the database using Torque’s prologue feature, while the
epilogue script stores data on job stop using Torque’s
epilogue feature. Data conversion from Torque’s shell vari-
able and job file format to SQL statements that add the data
to the torque table of the database is performed by the
prologue and epilogue scripts. These scripts do not
necessarily need to reside on the same node as the database
as they are able to connect to a remote database, however,
they need to reside on the central node that runs Torque as
well as on any compute node that runs Torque’s pbs-mom
server. Since the database does not track the schedule of
submitted jobs, the proactive FT framework does not sup-
port reliability-aware scheduling [25] at the moment.

Data Analysis The data analysis component consists of a
stateless daemon, migrationd, that regularly queries the
database, performs statistical analysis on gathered data and,
if needed, triggers migration of processes or VMs away
from unhealthy compute nodes.

In contrast to the OVIS 2 [2] approach of processing
data by triggering user-defined database functions on table
updates, we opted for querying in intervals for two reasons:
(1) the full or partial lock on the database that assures that
the analysis operates on consistent data should be managed
by the single consumer and not by multiple producers; and
(2) statistical analysis in regular intervals is a better fit to
the notion of time (global clock) in a massively parallel and
distributed computing system.

Today’s large-scale HPC systems have hundreds-of-
thousands of processor cores in tens-of-thousands of com-
pute nodes. Traditional mechanisms to maintain synchro-
nized clocks in distributed systems, such as the network

time protocol (NTP) [19], do not scale in these HPC sys-
tems as they add a significant amount of network traffic
and OS noise. Hardware mechanisms for a global clock,
such as in the Cray XD1 [6], are not available in many
systems. Data analysis needs to deal with the fact that
node clocks are only synchronized in a coarse grain fash-
ion, such as at boot time. It also needs to take into ac-
count that causality (root cause and effect) can only be in-
ferred outside a time window of uncertainty. That is why
our framework uses the data entry/change time stamp in
the database as a global clock for analysis and falls back
to node time stamps only if they represent a more accurate
global clock. The time window of uncertainty depends on
the data sampling intervals, the data dissemination delay
and the gangliamysqld/syslogmysqld intervals. In
contrast, the job and resource monitoring data provided by
Torque is relatively time accurate.

The data analysis component currently only supports
Type 1 threshold triggering and Type 2 trend analysis, both
for environmental monitoring data only. Type 3 correlation
of short-term application health context/history and Type 4
correlation of long-term application health context/history
require significant experimentation time and the usage of
more advanced statistical techniques, such as clustering
and machine learning [4]. Combined environmental mon-
itoring and event log data analysis for failure prediction is
also not implemented yet due to missing historical data and
respective experience. The data analysis component does
offer the option of caching intermediate analysis results in
database. The migrationd daemon does not necessar-
ily need to reside on the same node as the database as it is
able to connect to a remote database. However it needs to
reside on a node from where the migration mechanism can
be invoked.

Migration The migration component reuses prior work
in process-level migration based on the BLCR check-
point/restart layer for LAM/MPI [29]. The migration is
simply invoked from the command line by the stateless dae-
mon of the data analysis component, migrationd.

5 Results
The developed framework was deployed on a 64-node
Intel-based Linux cluster with Ganglia and Syslog-NG on
all nodes and Torque on the head node. The database and
the gangliamysqld and migrationd daemons were
deployed on the head node. The syslogmysqld daemon
was deployed on a separate service node. The prologue
and epilogue scripts were deployed on all nodes. The
framework was able to gather the data, to analyze it and
to trigger migration based on sensor thresholds, such as at
low fan speeds and high processor temperatures. As the
migrationd daemon reuses prior work that has been al-
ready demonstrated [29], our main focus was to investigate
the challenges ahead, such as optimal pre-processing, scal-
able data aggregation, combined data analysis and interac-
tion of FT mechanisms with job and resource management.



While this work is still ongoing due to the need for long-
term data, initial results point out certain issues.

In the first experiment, all Syslog-NG messages and
over 20 metrics, such as system/user processor/memory
utilization, temperatures and fan speeds, were gathered for
offline statistical analysis. The amount of data exceeded
20GB in 27 days of operation with a 30 second sam-
pling interval. This corresponds to an accumulation rate
of∼33MB/h or∼275kB/interval. This experiment showed
that storing raw data is a serious scalability challenge that
needs to be addressed in the future through pre-processing
and scalable data aggregation/reduction. Further investiga-
tions also need to target appropriate data archiving and ag-
ing policies. For example, Ganglia’s internal aging mecha-
nism reduces data by combining/increasing sampling inter-
vals. Future work needs to focus on when to archive or age
data and on how much information can be lost.

To avoid that an application uses resources it does not
own, migration was performed using spare nodes within
the set of allocated nodes. The initial set of used nodes
and changes due to migration are tracked in the database.
This is a temporary fix as modern job and resource man-
agers should support migration and spare nodes soon due
to similar use cases in cloud computing.

In a second experiment, all Syslog-NG messages and
over 40 metrics, including network and disk I/O statistics,
were collected with a 30 second interval. The NAS Parallel
Benchmark (NPB) [1] suite was run to measure any over-
head introduced by the data collection. We executed the
NPB CG, FT and LU benchmarks with class C problem
size, at half-scale (32 nodes) to gain run time length, and
averaged the execution time over 10 test runs. The results
(Table 2) suggest that the data collection did not had an ef-
fect at this scale. However, as the amount of data grows lin-
ear with system size, effects should be seen at larger scale.

Class C NPB on 32 nodes CG FT LU
Average time in seconds 264 235 261
Average time under load in seconds 264 236 260

Table 2. NPB test results (averages over 10 runs)

6 Summary and Future Work

We presented a proactive FT framework that performs en-
vironmental monitoring, event logging, parallel job moni-
toring and resource monitoring to analyze HPC system re-
liability and to permit fault avoidance through migration.
The framework was deployed on a 64-node Linux cluster
to gain hands-on experience and to perform an initial inves-
tigation of the challenges ahead. Further implementation
details, additional experimental results and a user guide are
available in a Master’s thesis [16].

Future work will focus on the identified challenges,
such as optimal pre-processing, scalable data aggregation
and combined data analysis. The framework continues to
be deployed on our small-scale system to gather long-term

data. We also plan to deploy it on an institutional mid-
scale production-type HPC system with hundreds of com-
pute nodes. Additional ongoing work toward a holistic FT
framework also focuses on integrating the adaptive reac-
tive FT approach, where checkpoint intervals are changed
based on system reliability [7].

7 Acknowledgements
This research is sponsored by the Office of Advanced Sci-
entific Computing Research; U.S. Department of Energy.
The work was performed at Oak Ridge National Labora-
tory, which is managed by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725.

References
[1] Advanced Supercomputing Division, National Aero-

nautics and Space Administration (NASA), Ames,
CA, USA. NAS Parallel Benchmarks (NPB) doc-
umentation, 2009. URL http://www.nas.nasa.gov/
Resources/Software/npb.html.

[2] J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. R.
Mayo, P. P. Pébay, D. Thompson, and M. H. Wong.
OVIS-2: A robust distributed architecture for scal-
able RAS. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS): Workshop
on System Management Techniques, Processes, and
Services (SMTPS), 2008. URL https://ovis.ca.sandia.
gov/mediawiki/images/6/60/Ovis-ipdps08.pdf.

[3] S. Chakravorty, C. L. Mendes, and L. V. Kalé.
Proactive fault tolerance in MPI applications via
task migration. In Lecture Notes in Computer Sci-
ence: International Conference on High Performance
Computing (HiPC), volume 4297, pages 485–496,
2006. URL http://www.springerlink.com/content/
9q840u6310467255/.

[4] K. Charoenpornwattana, C. B. Leangsuksun,
A. Tikotekar, G. R. Vallée, and S. L. Scott. A neural
networks approach for intelligent fault prediction
in HPC environments. In High Availability and
Performance Workshop (HAPCW), in conjunction
with the High-Performance Computer Science Week
(HPCSW), 2008. URL http://xcr.cenit.latech.edu/
hapcw2008/program/papers/101.pdf.

[5] Cluster Resources, Inc., Salt Lake City, UT, USA.
TORQUE Resource Manager documentation, 2009.
URL http://www.clusterresources.com/torque.

[6] Cray Inc., Seattle, WA, USA. Cray XD1 comput-
ing platform documentation, 2007. URL http://www.
cray.com/products/legacy.html.

[7] J. T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Gen-
eration Computing Systems (FGCS), 22(3):303–312,
2006.

[8] J. T. Daly. ADTSC nuclear weapons high-
lights: Facilitating high-throughput ASC cal-
culations. Technical Report LALP-07-041,

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
https://ovis.ca.sandia.gov/mediawiki/images/6/60/Ovis-ipdps08.pdf
https://ovis.ca.sandia.gov/mediawiki/images/6/60/Ovis-ipdps08.pdf
http://www.springerlink.com/content/9q840u6310467255/
http://www.springerlink.com/content/9q840u6310467255/
http://xcr.cenit.latech.edu/hapcw2008/program/papers/101.pdf
http://xcr.cenit.latech.edu/hapcw2008/program/papers/101.pdf
http://www.clusterresources.com/torque
http://www.cray.com/products/legacy.html
http://www.cray.com/products/legacy.html


Los Alamos National Laboratory, 2007. URL
http://www.lanl.gov/orgs/adtsc/publications/
nw highlights 2007/ch13/13 2daly facilitating.pdf.

[9] C. Du and X.-H. Sun. MPI-Mitten: Enabling mi-
gration technology in MPI. In IEEE International
Symposium on Cluster Computing and the Grid (CC-
Grid), pages 11–18, 2006. URL http://ieeexplore.
ieee.org/xpls/abs all.jsp?arnumber=1630790.

[10] E. N. M. Elnozahy and J. S. Plank. Checkpointing for
peta-scale systems: A look into the future of practical
rollback-recovery. IEEE Transactions on Dependable
and Secure Computing (TDSC), 1(2):97–108, 2004.

[11] E. N. M. Elnozahy, R. Bianchini, T. El-Ghazawi,
A. Fox, F. Godfrey, A. Hoisie, K. McKinley, R. Mel-
hem, J. S. Plank, P. Ranganathan, and J. Simons. Sys-
tem resilience at extreme scale. Technical report, De-
fense Advanced Research Project Agency (DARPA),
2008. URL http://institutes.lanl.gov/resilience/docs/
Toward%20Exascale%20Resilience.pdf.

[12] C. Engelmann, G. R. Vallée, T. Naughton, and S. L.
Scott. Proactive fault tolerance using preemptive mi-
gration. In Euromicro International Conference on
Parallel, Distributed, and network-based Processing
(PDP), pages 252–257, 2009.

[13] S. Fu and C.-Z. Xu. Exploring event correlation
for failure prediction in coalitions of clusters. In
IEEE/ACM International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis
(SC), pages 1–12, 2007.

[14] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini.
Transparent, incremental checkpointing at kernel
level: A foundation for fault tolerance for parallel
computers. In IEEE/ACM International Conference
on High Performance Computing and Networking
(SC), page 9, 2005. URL http://hpc.pnl.gov/people/
fabrizio/papers/sc05.pdf.

[15] Hewlett-Packard Development Company, L.P., Palo
Alto, CA, USA. Managing Serviceguard – Fif-
teenth edition, 2007. URL http://docs.hp.com/en/
B3936-90122/B3936-90122.pdf.

[16] A. Litvinova. Reliability availability and serviceabil-
ity framework engine prototype. Master’s thesis, De-
partment of Computer Science, University of Read-
ing, UK, 2009.

[17] M. L. Massie, B. N. Chun, and D. E. Culler. The
Ganglia distributed monitoring system: Design, im-
plementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[18] H. Meuer, E. Strohmaier, J. J. Dongarra, and H. Si-
mon. Top 500 list of supercomputer sites, 2009. URL
http://www.top500.org.

[19] D. L. Mills. The Network Time Protocol (NTP) distri-
bution, 2009. URL http://www.eecis.udel.edu/∼mills/
ntp/html/index.html.

[20] A. B. Nagarajan, F. Mueller, C. Engelmann, and
S. L. Scott. Proactive fault tolerance for HPC
with Xen virtualization. In ACM International

Conference on Supercomputing (ICS), pages 23–32,
2007. URL http://www.csm.ornl.gov/∼engelman/
publications/nagarajan07proactive.pdf.

[21] National Energy Research Scientific Computing Cen-
ter (NERSC), Lawrence Berkeley National Labora-
tory (LBNL), Berkeley, CA, USA. Current and past
HPC system availability statistics, 2009. URL http:
//www.nersc.gov/nusers/status/AvailStats.

[22] S. L. Scott, C. Engelmann, G. R. Vallée, T. Naughton,
A. Tikotekar, G. Ostrouchov, C. B. Leangsuksun,
N. Naksinehaboon, R. Nassar, M. Paun, F. Mueller,
C. Wang, A. B. Nagarajan, and J. Varma. A tunable
holistic resiliency approach for high-performance
computing systems. Poster at the 14th ACM SIG-
PLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP) 2009, Raleigh, NC, USA,
2009. URL http://www.csm.ornl.gov/∼engelman/
publications/scott09tunable.pdf.

[23] M. Seager. Operational machines: ASCI White. Talk
at the 7th Workshop on Distributed Supercomputing
(SOS) 2003, 2003. URL http://www.cs.sandia.gov/
SOS7/presentations/seager white.ppt.

[24] J. Stearley and A. J. Oliner. Bad words: Finding faults
in Spirit‘s syslogs. In IEEE International Symposium
on Cluster Computing and the Grid (CCGrid): Work-
shop on Resiliency in High Performance Computing
(Resilience), 2008. URL http://xcr.cenit.latech.edu/
resilience2008/program/resilience08-3.pdf.

[25] X.-H. Sun, Z. Lan, Y. Li, H. Jin, and Z. Zheng. To-
wards a fault-aware computing environment. In High
Availability and Performance Workshop (HAPCW),
in conjunction with the High-Performance Computer
Science Week (HPCSW), 2008. URL http://xcr.cenit.
latech.edu/hapcw2008/program/papers/104.pdf.

[26] A. Tikotekar, G. Vallée, T. Naughton, S. L. Scott, and
C. Leangsuksun. Evaluation of fault-tolerant policies
using simulation. In IEEE International Conference
on Cluster Computing (Cluster), 2007.

[27] K. Uhlemann, C. Engelmann, and S. L. Scott.
JOSHUA: Symmetric active/active replication for
highly available HPC job and resource management.
In IEEE International Conference on Cluster Com-
puting (Cluster), 2006. URL http://www.csm.ornl.
gov/∼engelman/publications/uhlemann06joshua.pdf.

[28] G. R. Vallée, K. Charoenpornwattana, C. Engelmann,
A. Tikotekar, C. B. Leangsuksun, T. Naughton, and
S. L. Scott. A framework for proactive fault tol-
erance. In International Conference on Availabil-
ity, Reliability and Security (ARES), pages 659–664,
2007. URL http://www.csm.ornl.gov/∼engelman/
publications/vallee08framework.pdf.

[29] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott.
Proactive process-level live migration in HPC envi-
ronments. In IEEE/ACM International Conference on
High Performance Computing, Networking, Storage
and Analysis (SC), 2008. URL http://www.csm.ornl.
gov/∼engelman/publications/wang08proactive.pdf.

http://www.lanl.gov/orgs/adtsc/publications/nw_highlights_2007/ch13/13_2daly_facilitating.pdf
http://www.lanl.gov/orgs/adtsc/publications/nw_highlights_2007/ch13/13_2daly_facilitating.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1630790
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1630790
http://institutes.lanl.gov/resilience/docs/Toward%20Exascale%20Resilience.pdf
http://institutes.lanl.gov/resilience/docs/Toward%20Exascale%20Resilience.pdf
http://hpc.pnl.gov/people/fabrizio/papers/sc05.pdf
http://hpc.pnl.gov/people/fabrizio/papers/sc05.pdf
http://docs.hp.com/en/B3936-90122/B3936-90122.pdf
http://docs.hp.com/en/B3936-90122/B3936-90122.pdf
http://www.top500.org
http://www.eecis.udel.edu/~mills/ntp/html/index.html
http://www.eecis.udel.edu/~mills/ntp/html/index.html
http://www.csm.ornl.gov/~engelman/publications/nagarajan07proactive.pdf
http://www.csm.ornl.gov/~engelman/publications/nagarajan07proactive.pdf
http://www.nersc.gov/nusers/status/AvailStats
http://www.nersc.gov/nusers/status/AvailStats
http://www.csm.ornl.gov/~engelman/publications/scott09tunable.pdf
http://www.csm.ornl.gov/~engelman/publications/scott09tunable.pdf
http://www.cs.sandia.gov/SOS7/presentations/seager_white.ppt
http://www.cs.sandia.gov/SOS7/presentations/seager_white.ppt
http://xcr.cenit.latech.edu/resilience2008/program/resilience08-3.pdf
http://xcr.cenit.latech.edu/resilience2008/program/resilience08-3.pdf
http://xcr.cenit.latech.edu/hapcw2008/program/papers/104.pdf
http://xcr.cenit.latech.edu/hapcw2008/program/papers/104.pdf
http://www.csm.ornl.gov/~engelman/publications/uhlemann06joshua.pdf
http://www.csm.ornl.gov/~engelman/publications/uhlemann06joshua.pdf
http://www.csm.ornl.gov/~engelman/publications/vallee08framework.pdf
http://www.csm.ornl.gov/~engelman/publications/vallee08framework.pdf
http://www.csm.ornl.gov/~engelman/publications/wang08proactive.pdf
http://www.csm.ornl.gov/~engelman/publications/wang08proactive.pdf

	Introduction
	Related Work
	Technical Approach
	Implementation
	Results
	Summary and Future Work
	Acknowledgements

