Proactive Fault Tolerance for HPC
using Xen Virtualization

Arun Babu Nagarajan, Frank Mueller

NC STATE UNIVERSITY

Christian Engelmann, Stephen L. Scott
Oak Ridge National Laboratory OAK

National Laboratory

Problem Statement

e Trend in HPC: high end systems with thousands of processors
— Increased probability of a node failure: MTBF becomes shorter

— CPU/memory/IO failures System # CPUs |MTBFII, see [20]
ASCIQ 8192 6.5hrs
ASCIWHITE 8192 5/40 hrs
PSC Lemieux | 3016 9.7hrs
e MPI widely used for scientific apps Google 15000 | 20 reboots/day

— Problem with MPI: no recovery from faults in the standard

e Currently FT exist but...
— mostly reactive: process checkpoint/restart [3 DOE labs use this approach]
— must restart entire job > inefficient if only one/few node(s) fail
— overhead: re-execute some of prior work
— issues: checkpoint at what frequency?

— 100 hr job requires add'l 150 hrs for checkpointing
on a petaflop machine (w/o failure) [Philp, 2005]

Our Solution

e Proactive FT
— anticipates node failure
— takes preventive action (instead of 'reacting’ to a failure)
-migrate entire OS (to a healthy node)

..........

iApph :

| -catio !

i : |] Migrate

‘ 0S ‘ ‘
A H/w

Failing Node Spare/Healthy Node
» avoids high overhead compared to reactive scheme

-overhead of our scheme: much smaller

> Complements reactive FT - less frequent checkpoints!

Design space

e 1. Mechanism to predict/anticipate node failures
— OpenIPMI
— Im_sensors (specific to x86 Linux)

e 2. Mechanism to identify best target node
— Centralized approaches > don't scale / unreliable
— Scalable distributed approach - based on Ganglia

e 3. Mechanism for preventive action: relocation of running app
— Preserve apps state
— Small overhead on app
— Xen Virtualization w/ live migration [Clark et al., NSDI'05]
- Open source

Mechanisms (1): Health Monitoring

Health Monitoring w/ OpenIPMI.

e Baseboard Mgmt Controller (BMC)
— w/ sensors to monitor temperature, fan speed, voltage, etc.

o IPMI (Intelligent Platform Management Interface)
— increasingly common in HPC
— std. message-based interface to monitor H/W
— raw messaging harder to use and debug
e OpenIPMI: open source, higher level abstraction from raw IPMI
message-response system o communicate w/ BMC
— read sensors portably/simple APT

> OpenIPMI used to gather health information of nodes

Mechanisms (2): Distributed Monitoring

Distributed Monitoring with Ganglia:
e widely used, scalable distributed load monitoring tool

e All nodes in cluster run ganglia daemon
— each node has a approximate view of entire cluster

e UDP to transfer messages

e Measures
— CPU / memory / network utilization (by default)
> identify least loaded node = migration target

e Ganglia protocol also extended to distribute IPMI sensor data

Mechanisms (3): Virtualization

Fault Tolerance w/ Xen: . MPI |
. . . : Task) !

e para-virtualized environment ; ;
— OS modified a
Privileged VM| Guest VM | ;

— app unchanged i

e Privileged VM & guest VM
run on Xen hypervisor/VMM

e Guest VMs can live migrate to other hosts = little overhead
— State of VM preserved

— VM halted for insignificant period of fime
— Migration phases:
- phase 1: send guest image - dst node, app running
- phase 2: repeated diffs > dst node, app still running

- phase 3: commit final diffs > dst node, OS/app frozen
- phase 4: activate guest on dst, app running again

H/w

Overall set-up

PFT

Daemon
BMC| Baseboard Management Contoller

é Ganglia
e Stand-by Xen host, no guest
' Privileged VM (spare node)

PFT
Daemon

Ganglia)

Privileged VM| !

e Deteriorating health >
BuC migrate guest (w/ MPT app)
....... to spare node

. MPI
Ganglia)| i Task)

Brviloged VM|§ G LA B

] H/w BMC] H/w BMC

Overall set-up

PFT
Daemon

Ganglia)

Privileged VM

H/w

BMC

E Guest VM '

PFT

Daemon

; MPI i
; Task> Ganglia)

i Privileged VM

BMC

BMC

Baseboard Management Contoller

Stand-by Xen host, no guest
(spare node)

Deteriorating health >
migrate guest (w/ MPI app)
to spare node

Destination host generates
unsolicited ARP reply

indicates Guest VM IP
has moved to new location

ARP tells peers to resend
packets to new host

PFTd: Proactive Fault-Tolerance Daemon

. PFT Daemon

e Runs on privileged VM (host) IPMI g
U Baseboard Mgﬁ !
e Initialize Controller g -

e Read safe threshold from config file
e <Sensor name> <Low Thr> <Hi Thr>
e CPU temperature, fan speeds

e extensible (corrupt sectors,
network, voltage fluctuations, ...)

e Init connection w/ IPMI BMC using
authentication parameters & hostname

e Obtains set of available sensors in T
system, validates it against out list

Raise Alarm /
Maintenance of

the system
10

PFTd: Proactive Fault-Tolerance Daemon

e Health Monitoring
e interacts w/ IPMI BMC (via OpenIPMTI) to read sensors
e Periodic sampling of data
e threshold exceeded - control handed over to load balancing

IPMI

— Load-based selection (lowest load) Ao
— Load obtained by /proc file system
— Invokes Xen live migration for guest VM

e Xen user-land tools (at VM/host)
— command Ime m’rer'face for live migration

"1

11

Experimental Framework

Cluster of 16 nodes (dual core, dual Opteron 265, 1 Gbps Ether)
Xen-3.0.2-3 VMM
Privileged and guest VM run Linux kernel version 2.6.16

Guest VM:
— Same configuration as privileged VM
— 16B RAM
— Booted on VMM w/ PXE netboot via NFS
— Has access to NFS (same as privileged VM)

Ganglia on Privileged VM (and also Guest VM) on all nodes

12

Experimental Framework

e NAS Parallel Benchmarks run on Guest VMs
e MPICH-2 w/ MPD ring on nGuestVMs (no job-pause required!)

e Experiment-aid process on privileged&guest domain:
— monitors MPI task runs (on guest)
— issues migration command (NFS used for synchronization)

e Measured:
— wall clock time with and w/o migration
— actual downtime + migration overhead (modified Xen migration)
- with (a) live and (b) stop© migration
e benchmarks run 10 times, results report avg. (= small std dev.)
e NPB V3.2.1: BT, CG, EP, LU and SP benchmarks

— IS runis too short
— FT, MG requires > 1G6B for class C (guest VM RAM limit)

13

Results: Node Failures

Seconds

1. Single node failure 2. Double node failure
500 300
450 1| mW/o Migration m 1 Migration
250
400
350 m W/o Migration
200 ~ —1 m1 Migration
399 ” 12 Migration
250 + 2 150 -
200 - ®
150 - 100 +
100
50 |
50
0 ‘ ‘ 0
BT CG EP LU SP BT cG Ep LU
NPB Class € / 16 nodes NPB Class B / 4 nodes

e Single node failure: 0.5-5% add'l cost over total wall clock time
e Double node failure: 2-8% add'l cost over total wall clock time

Seconds

Results: Problem Scaling

16

14

12

10

Class

— | mActual Downtime
__ 1 Overhead

BT

CG

EP LU

NPB 16 nodes

Only overhead depicted
Downtime: VM halted

Overhead: migration delay
(diff operation, etc.)

Increasing problem size (B - C):
overhead increases (expected)

SP outlier: migration may have
coincided w/ global sync. point
- network contention (fixable)

15

Results: Task Scaling

No. of Nodes e expect decreased
4 816 4 916 4 916 4 916 4 8 16 overhead fOf‘ incr'easing#
of nodes
[. see BT, EP, LU, SP
m Actual Downtime

Overhead e CG: add'| msg overhead &
y smaller data sets/node

w
o

N
()]

N
o

Seconds
= o

> atypical

()]

= = | - e Overall, indicates
o ce = - °F potential of our approach

o

16

Seconds

30 4

25

Results: Total Migration Duration

m Class B Inputs (Live)
m Class C Inputs (Live)

Class B Inputs (Stop&Copy)
m Class C Inputs (Stop&Copy)

EP LU SP

4 Nodes m8/9 Nodes m 16 Nodes

BT BT CG CG
(Live) (SC) (Live) (SC)

EP
(Live)

EP LU LU SP SP
(SC) (Live) (SC) (Live) (SC)

Live vs. Stop&Copy

min. 13secs: Xfer 16B VM
(w/0 any active processes)

Vary problem size: class B & C
> Live: 14-24 secs (class B & C)
> Stop&Copy: 13-14 secs

Vary # nodes: 4, 8/9, 16

> Live: Duration decreases /
remains const. for > # nodes:
40-14 secs

> Stopdcopy: 13-14 secs

17

Seconds

500 -

400

300 -

200 -

100 -

Results: Overall Execution Time

mClass B Inputs (Live) Class B Inputs (Stop&Copy)
mClass C Inputs (Live) mClass C Inputs (Stop&Copy)

BT CG EP LU SP

NPB 16 nodes

Live migrations: takes longer
but application is not stopped!

Stopé©: faster but app.
stopped

compare runtime for both
modes

Overall: T(Live) < T(Stopdcopy)

e Migration duration important metric: should be minimized
e How much advance warning? health degrades > actual failure
> little to no prior work in this area
e Our solution could benefit from learning techniques
eidentifying false warnings, feedback-based learning

18

Results: Task Scaling vs. Total Exec. Time

Speedup

3.5

w

N
3

0.5

4816 4916 080 4016 4816) Speedup Of benchmarks not

affected (up to 16 nodes)

mLoss in speedup B

e Wanted: large-scale cluster

to run customized Xen

BT CG EP LU SP
NPB Class C

19

Related Work
o F1 - Reactive approaches more common

e Automatic

e Checkpoint/restart (e.g., BLCR)
[Sankaran et al., LACSI 03], [6.Stellner, IPPS ' 96]

e Log based (Log msg + temporal ordering) [&. Bosilica, SCO2]

e Non-automatic

e Explicit invocation of checkpoint routines
[Aulwes et al., IPDPS04), [Fagg/Dongarra,Ero PVM/MPIO0]

e Virtualization in HPC: little/no overhead [Huang et al., ICS '06]

e VMM-bypass for I/0 - MPI w/ virtualization competitive
[Liv et al., USENIX06]

e Optimize network virtualization [Menon et al., USENIX06]
e Job pause under LAM/MPI+BLCR [C.Wang, IPDPS ‘06, our Group]

20

Conclusion

e Novel, proactive FT scheme w/ virtualization
e Provides transparent & automatic FT for arbitrary MPI apps
e Less overhead than reactive

e still, complements reactive > lower checkpoint frequency

e Need studies on potential o detect health deterioration

e Currently pursuing further opportunities to reduce overhead...

21

Backup Slides

e How much time before failure?

e The upper threshold is the memory limit (1GB for a vm). Soa 1
minute warning suffices, which is possible in case of disk and
fan failures..

22

