Fault Injection Framework for System Resilience
Evaluation

Fake Faults for Finding Future Failures

*
Thomas Naughton, Wesley Bland , Geoffroy Vallée, Christian Engelmann, and Stephen L. ScottT
Oak Ridge National Laboratory
Computer Science and Mathematics Division
Oak Ridge, TN 37831, USA
{naughtont,blandwb,valleegr,engelmannc,scottsl}@ornl.gov

ABSTRACT

As high-performance computing (HPC) systems increase in
size and complexity they become more difficult to manage.
The enormous component counts associated with these large
systems lead to significant challenges in system reliability
and availability. This in turn is driving research into the re-
silience of large scale systems, which seeks to curb the effects
of increased failures at large scales by masking the inevitable
faults in these systems. The basic premise being that fail-
ure must be accepted as a reality of large scale system and
coped with accordingly through system resilience.

A key component in the development and evaluation of
system resilience techniques is having a means to conduct
controlled experiments. A common method for performing
such experiments is to generate synthetic faults and study
the resulting effects. In this paper we discuss the motiva-
tion and our initial use of software fault injection to support
the evaluation of resilience for HPC systems. We mention
background and related work in the area and discuss the de-
sign of a tool to aid in fault injection experiments for both
user-space (application-level) and system-level failures.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability; C.4 [Computer Systems Organiza-
tion|: Performance of Systems—Fault tolerance

General Terms

Experimentation, Reliability

Keywords

Fault injection, Resilience

*University of Tennessee; Electrical Engineering and Com-
puter Science Department; Knoxville, TN 37996, USA.

TThis work was supported by the U.S. Department of En-
ergy, under Contract DE-AC05-000R22725.

Copyright 2008 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.

Resilience’09, June 9, 2009, Munich, Germany.

Copyright 2009 ACM 978-1-60558-593-2/09/06 ...$5.00.

1. INTRODUCTION

Errors are an un-avoidable aspect of high-performance
computing systems, and their management accounts for a
great deal of effort at all levels of the execution environment.
While errors occur they are only significant if they interrupt
productive work, i.e., produce a failure. The goal of resilient
systems is to mask these failures to enable applications to
continue execution at an acceptable level.

Currently, there is much discussion surrounding the re-
silience of large scale systems. A central facet being how
to detect and react to the enormous increase in errors that
such large systems face. What errors occur and how they
ultimately manifest as failures in the system is a topic of
extensive investigation. Many projects are looking at log
analysis to identify faults in order to develop prediction tech-
niques, which might be used to avoid future failures or help
identify the root causes of failures. However, several basic
questions persist, like "what is failing?” and "how well does
the system mask failures from applications?” As the systems
increase in size, a systematic method for evaluating how the
overall system copes with failures is a crucial component in
resilience research.

The use of software based fault-injection provides such
a vehicle for experimentation related to fault-tolerance, to
evaluate the level of detection and recovery supported by
current software environments used on the HPC platforms.
This facility provides a methods to perform controlled ex-
perimentation. For example, to evaluate the effectiveness of
current failure prediction and failure mining techniques. The
end objective being to gain a better understanding of how
systems are coping with known issues. The approach allows
for iterative improvement into the quality of the simulated
faults, i.e., fidelity with respect to real-world errors. This
synthetic approach to failures will provide a basis for look-
ing at existing detection and reaction techniques, some of
which may not currently be employed in HPC environments,
i.e., borrowing from other domains like embedded/portable
systems [2].

In this paper, we present preliminary work on the use of
software fault injection to aid research in resilient HPC sys-
tems. We provide a brief overview of techniques and high-
light prior work that has made use of fault injection. We also
discuss our current efforts in the creation of a tool to aid in
fault injection experiments for HPC systems. The basic ar-
chitecture is given and the associated criteria/requirements.

2. BACKGROUND

Fault injection is the purposeful introduction of faults (or
errors) into a target. These intentional faults can be intro-
duced through hardware or software methods [5]. The hard-
ware based approach obviously requires specialized equip-
ment to bother introduce the fault, and to detect the effects.
In a software based approach, or software implemented fault
injection (SWIFI), there is more flexibility in terms of how
to implement and detect the faults. However, the faults are
limited in scope to those that are accessible via software [5].
For example, radiation induced memory “soft errors” can
be injected via hardware/environmental approaches but can
only be simulated through software by techniques like bit-
flips, etc.

The distinction between faults, errors, and failures is fun-
damental to work on fault-injection. In [1] this relationship
in clarified, and is paraphrased here:. a fault is a defect
that exists in a service but may be “active” or “dormant”;
the error occurs when a fault becomes active; if the error
is not suppressed and becomes visible outside the service a
failure occurs. Therefore, for fault-injection experiments we
will identify what services to perturb in order to evaluate
the resilience of the service, and overall system, to failures.

3. FAULT INJECTION FRAMEWORK

Despite the common use of fault injection techniques for
testing and evaluation, there exist very few publicly avail-
able open source tools. To aid in our resilience studies, we
have begun development of a prototype to aid in our fault
injection experiments. Our approach is guided by the fol-
lowing criteria:

e simplicity — easy to setup, define, and perform fault
injection experiments

e versatility — support experiments at various levels of
software stack (user- / kernel-level)

e reproducibility — framework should allow for reproducible

. 1
experiments

e distributed environments — support for experiments on
both local and remote nodes; and physical and virtual
machines

The expectation is that the underlying mechanisms for
performing the fault injection and detection will be abstracted
by the framework. This allows users to focus on the exper-
iments without having to get deeply involved with the low-
level mechanisms. This separation also allows for different
injection/detection techniques to be explored at the lower
levels.

In this section, we present our framework for fault injec-
tion. Section 3.1 presents the motivation for this work and
Section 3.2 presents the actual architecture of the proposed
framework.

3.1 Motivation

The fault injection framework aims at enabling testing of
fault tolerance and system resilience mechanisms and poli-
cies, as well as the evaluation of fault reporting/detection
mechanisms.

'Note, some injection techniques may be non-deterministic,
e.g., timeouts, and therefore non-reproducible but the
framework proper should be consistent.

Therefore the notion of “experimentation” is central to
our framework. This notion allows one to define the con-
text for the execution of the framework, how to instantiate
the different framework’s components, and how to run those
components. For that, an experiment is based on different
components: “fault injectors” which actually inject the fail-
ure into the system; “fault detectors” which try to detect a
given type of failure; and “analyzers” which get information
from detectors and analyze it (detectors are simplistic com-
ponents that do not include any policy, they for instance
may just parse system logs). In addition to those mecha-
nisms, the framework is also composed by a description of
the experimentation, i.e., the policy to drive the experimen-
tation.

Therefore, the framework should allow for the startup of
experiments that couple a “fault injector” with an appropri-
ate “fault detector”. An “analyzer” component is used to
encode policies about given fault scenarios, to keep the in-
jectors and detectors more general purpose. The framework
will provide the minimum functionality to support exper-
iment startup/shutdown and common supporting services,
e.g., interprocess communication (IPC) setup, logging.

Control Host

Driver { CLT)

‘ Contraller (Fromtend) |

1 11 I T

‘ Trjectors ‘ ‘ Detectors | ‘ Analyzers ‘
/ ¥
i
Victim (targef)

Victim

Contraller

] R

Injectors Detectors Analyzers

| [
o0 -0

[~
L=

Figure 1: High-level diagram of the components and
architecture.

3.2 Architecture

Injectors.

“Injectors” are the components that actually create a fail-
ure on a given system. Injectors can be local and/or remote;
the remote injectors having the capability to limit the im-
pact of failure on the injector itself.

An injector is typically composed of two parts: a backend
that actually creates the fault (e.g., kill a process) and a
frontend that creates the interface with the framework.

For instance, to avoid fault impacts on the injector, one
may decide to use ssh and remotely trigger faults. In that
case, the backend is actually the ssh daemon on the node
where the fault has to be injected (and calls a local com-
mand such as killall my_app) and the frontend remotely

executes the ssh command.

Detectors.

“Detectors” are generally coupled with injectors: while an
injector actually creates a fault, the detector attempts to
discover the existence of the fault and report it. Detectors
are typically an abstraction of the technical details regarding
the detection of a specific fault.

Analyzers.

“Analyzers” are responsible for collating the information
and processing into a useful form. The analyzer can be
used to interpret the events associated with a given detec-
tor/injector configuration. The coupling of analyzers with
detectors/injectors is managed by a framework configuration
file, “finject.conf”. This file specifies the acceptable compo-
nent tuples supported by the framework, which are selected
based on information given in the experiment input records.

Controller.

The controller manages the life-cycle of all components
instantiated for a given experiment (e.g., creation, termi-
nation). It makes sure that all components are correctly
created and setup so an experiment can actually run.

Fault Type.

It has been indicated in the literature that the “fault type”
will influence the detection mechanism. Therefore, it is ex-
pected that detectors and injectors will be coupled and an
appropriate analyzer will be used to evaluate the results.

Examples of fault types are:

[processor |memory|communication|device] fault

Experiments also include various “arguments” and “flags”
that are passed to the components related to the given fault
type. For example, the following arguments are used to
specify a target (victim) application and memory address
for an experiment.

app=’loopnest-forever’,addr=’0xbfef4000’
finject=’user-memory’

Fault flags are typically optional, which could be passed to
the analyzer for “hints” as to the expected behavior for a
given experiment. Examples of flags are

victim-status=[offline|online]
finject=[user-memory|kern-memory]
sudo=’/usr/bin/sudo’

Fault Mode.

We identified 3 fault modes: (i) permanent — will persist
throughout remainder of FI session; (ii) transient — singular
(one time) faults; (iii) intermittent — repeating faults (e.g.,
occurrence of 50%).

Examples of fault modes are:

[permanent | transient|intermittent] fault

Monitors.
A passive service that can be used by detectors.

Victim.

The “victim” is the target of the fault to inject. The value
of this field is used to contact the target. Note, the target can
be the local machine or the hostname of a remote physical
machine (or virtual machine). Examples of victims are:

[localhost |node13|ubuntu-vm]

Driver.

The “driver” is the interface between the user and the
framework. The driver actually interprets the experiment
description (i.e., the policy for the experimentation) and in-
teracts with the controller to drive the experiment.

Currently, the driver is designed to use an input file which
describes the experiment. The format for the experiments
file is currently just a flat file with line oriented records. The
record fields are separated by colons (‘:’). In some cases, the
field may contain multiple options that are expressed in a
key / value pair (key=value). Lines beginning with a pound
symbol (‘#’) are treated as comments and ignored, as are
blank lines. We are currently experimenting with different
injection mechanisms and expect the format to evolve but
the current structure is simple and easy to extend. The
following shows a sample experiments file?,

#

finject experiments

#

Format:

fault_type:fault_mode:fault_args:victim:flags
#

memory:intermittent:app=’/tmp/fileptr’: \
ubuntu-vm:finject=’kern-memory’,dargs=’50’

register:permanent:app=’/tmp/loopnest-forever’: \
localhost:finject="user-memory’

Additionally, there is a framework configuration file, fin-
ject.conf, that is used to group compatible injectors-detectors-
analyzers. This determines what backend modules are to be
used for the experiments. The following shows an example
entry from this file.

[user-memory]
injector=injectors/frob-reg-injector
detector=detectors/child-watcher
analyzer=analyzers/basic-counter

4. LINUX - MEMORY FAULT INJECTION

Our initial investigation, in preparation for the proposed
framework, used the Linux kernel-level fault injection facil-
ity [8] to introduce memory errors into the system. Here we
describe the relevant aspects and components. The individ-
ual components used to drive this initial work, will be used
as the the injectors and detectors in our current prototype.

4.1 Memory in Linux

In the Linux kernel, memory can be allocated in two main
ways. Either the kernel can request memory in pages, which
is the main way the Linux kernel handles memory, or by
making more fine-grained requests via the slab layer. When
requesting pages, the kernel can only get memory in incre-
ments of the page size for that particular architecture. In
order to pick a different sized chunk of memory, it needs

2Note, due to column widths restrictions in the paper, new-
lines have been inserted into the example.

to call some sort of kernel space malloc call (kmalloc()
or vmalloc()). These requests eventually result in either
a page being requested or memory being pulled off of the
slab. The slab layer is used to cache freed memory from the
kernel to make requesting the same types of objects later
much faster®. This keeps the kernel from having to allocate
and set up memory every time it is requested and facilitates
faster memory allocations. Both of these (slab and pages)
have injection points for the Linux fault injection framework
that are discussed in Section 4.2.

4.2 Linux Fault Injection

Starting with version 2.6.20, the Linux kernel includes a
fault injection (FI) framework that can be used to inject
faults into memory and block devices. As of version 2.6.25.7,
the framework could inject three different types of errors:
slab errors, page allocation errors, and disk IO errors. For
our purposes, we focussed on the memory errors and specif-
ically the slab errors.

We used this Linux based framework to begin our studies
into system-level fault injectors. We chose this as a starting
point because of Linux’s wide-spread use and its ties to vir-
tualization solutions like Xen. The Linux FI framework is
extensible and supports runtime configuration. Also, since
it is at the operating system level, the faults can be directed
at both user-space (application-level) and system-level tar-
gets. To enable the Linux FI framework, there are a set
of files in the /debug file-system to direct the kernel to the
location where faults should be inserted. This can be auto-
mated within an application or through a script. Since Linux
is open-source the FI mechanisms can be modified and en-
hanced for specific points of interest. Therefore, future work
can extend the kernel to support new fault injection capabil-
ities such as network IO errors, which can then be leveraged
as part of our experiment based framework.

4.3 Mechanisms for Detecting Failures

Once the faults are injected, there must be methods to
reliably detect these faults using methods that can be seen
at the user level. Currently, these methods typically include
using output from standard error and checking the return
codes of the applications. These are simple, easy to im-
plement methods of checking for problems that might be
occurring in the application which can be extended later to
include more complex detection mechanisms, e.g., analyzing
system logs [9]. The current detection mechanisms are pur-
posely simplistic to help with the development and testing
of the injection framework.

4.4 Implementation

The fault injection and failure detection experiments, that
are based on the Linux in-kernel framework, are currently
implemented as a small application called “watcher”. The
“watcher” performs all the tasks necessary to create and de-
tect faults. First, it sets up the fault injection environment
by setting the appropriate values in the /debug file-system
used by the Linux kernel fault injection mechanisms. Next
it launches, the application that it will be monitoring and
duplicates its file descriptors for stderr and stdout so it
can monitor the output from the program. It also begins
to monitor the system logs in /var/log/messages so it can

3 A list of slab object types and associated statistics can be
obtained from /proc/slabinfo.

see when faults are injected. Then the watcher turns on the
Linux kernel fault injection and waits for output from the
program. At some point, the child process will complete and
return a value which the watcher will capture and report on.
Throughout this process the watcher is tracking how many
faults are injected and how many of those faults became ap-
plication detectable failures. Note, this single application
approach was somewhat cumbersome and is broken apart
to fit into our new experiment based framework, ‘finject’,
which is discussed in Section 5.

S. EVALUATION

Based on the architecture discussed in Section 3, an ini-
tial framework prototype has been developed called finject.
While the implementation is ongoing, a preliminary evalu-
ation was performed using memory/register based fault in-
jection experiments. One that performs fault injection via
an entirely user-level interface, i.e., ptrace(2). The second
is an adaptation of our prior experiment using the Linux in-
kernel fault injection facility. In both cases the target (vic-
tim) is a user-space process.

The various components of the framework (Section 3) are
implemented as Perl modules. The actual backend exe-
cutable associated with a given component, e.g., Injector
Component, is referred to as a “module”. For instance, the
Analyzer Component will select an Analyzer Module. In the
below discussion, a general description is provided for the
various component/modules used in the experiments. Note,
to simplify the discussion this distinction between compo-
nent and module is largely ignored.

The general flow of an experiment is as follows:

1. Driver: reads and processes list of experiments
2. Driver: invokes Controller with an experiment

3. Controller: reads framework configuration (policy) set-
tings

4. Controller: redirects STDERR for children
5. Controller: starts Analyzer

6. Analyzer: routes Detector/Injector STDOUT to Ana-
lyzer STDIN

7. Analyzer: starts Detector

8. Detector: starts victim App, watches/reports to Ana-
lyzer

9. Analyzer: starts Injector

10. Injector: victimizes App, reports to Analyzer
11. Analyzer: waits on Detector/Injector

12. Analyzer: sends results to Controller

13. Controller: prints results and returns to Driver

| Field | Value |

Description |

Count (victims) 100 Number of victim application instances
Total (injections) | 2197 | Number of injected failures for all runs
Minimum 1 Number of injections to victim failure
Maximum 98 Number of injections to victim failure
Mean 21.97 Number of injections to victim failure
Median 17 Number of injections to victim failure
Mode 4 Number of injections to victim failure
Std.Dev. 21.419 | Number of injections to victim failure

Table 1: Statistics associated with Experiment-I (register bit-flip)

5.1 Experiment I

This experiment introduced faults into a user-space appli-
cation via the ptrace(2) system call. The errors were in the
form of register bit-flips and resulted in application failure
at a varied frequency rate. In the tests, an arbitrary max
of 100 injected failures was set, with application failures oc-
curring at varied points (see Table 1). The experiment used
a basic analyzer to count the number of faults injected and
failures detected and reported the results to the controller
for display.

Note, in earlier experiments the target application did a
bit of work and then called a sleep function. As we be-
gan injecting faults we noticed that there were never errors.
After further investigation, we realized that the majority
of the time was spent in these sleep routines, which were
not effected by our fault injection method (register bit-flip).
Therefore, in later tests all sleep statements were removed
from the target application.

The three components and target (victim) application used
for Experiment I are as follows:

target — ‘loopnest-forever’ simply generates work forever,
using a shallow hierarchy of calling sub-functions in
order to have items pushed on/off the stack and return
values that are used in the output data.

analyzer — ‘basic-counter’ which takes input from STDIN
and counts occurrences of input from the injector and
detector. Upon completion it returns the results to the
controller which displays them to the user.

detector — ‘child-watcher’ this is a basic program that starts
a given application and watches the return status to see
if the application exited with a non-zero status and/or
signal. Upon detection of such an event, it prints to
STDOUT, which is routed to the analyzer.

injector — ‘frob-reg-injector’ this is a simplistic program
that flips a bit in a register for a given application via
the ptrace(2) interface. Upon injection of a fault, it
prints to STDOUT, which is routed to the analyzer.
The program stops when either the target (PID) no
longer exists, or a max number of tries is reached.

5.2 Experiment II

The second experiment used the Linux fault injection fea-
ture [8] as described in Section 4.2. Here the earlier single
“watcher” program was split into separate pieces and re-run
using the Flnject framework. In this scenario, we focus on
exercising slab based memory failures. The victim applica-
tion opens a temporary file using the tmpfile() function,

which generates a unique filename and opens a file handle of
type FILE*, e.g., fopen(). As described in Section 4.1, the
slab layer maintains a cache of memory objects. In this ex-
periment we focused on failures to the ’filp’ objects, which
are associated with FILEx memory allocations. Therefore,
when the victim application was run with a probability of
slab failures set to 100%, all calls to tmpfile() returned an
error (NULL). Note, we also confirmed the case of a 50%
failure rate by adjusting the Linux-FI parameters, i.e., with
probability=50% and times=25, for N = 50, 25 failures oc-
curred.

The three components and target (victim) application used
for Experiment II are as follows:

target — ‘fileptr’ is a program that tries to create N tempo-
rary file, with an associated file pointer object (FILE*)
using the tmpfile() function. Upon file create/open
failure, a formatted error message is printed to STD-
OUT.

analyzer — ‘basic-counter’ which takes input from STDIN
and counts occurrences of input from the injector and
detector. Upon completion it returns the results to the
controller which displays them to the user.

detector — ‘fileptr-watcher’ starts the child process, watch-
ing the STDOUT and return code. The child’s STD-
OUT is scanned for a sentinel that is used to signal
failure events. The parent detects these events, and
reports them to the analyzer.

ingector — ‘linux-fi-injector’ scan for occurrences of Linux-
FI occurrences and prints formatted messages to an-
alyzer. In current configuration, this module just re-
ports on actual kernel generated fault injections, i.e.,
kernel is the actual injector.

6. RELATED WORK

There has been a great deal of work into fault injection
with varied approaches. A review of fault injection tech-
niques and significant tools is available in [5]. The Xcep-
tion [7] project leveraged hardware supported debugging
and performance monitoring capabilities to implement ef-
ficient fault injectors and detectors. e.g., breakpoint regis-
ters. In [12] a general purpose tool was developed to support
dependability studies to include distributed environments.

The FAUmachine [10] project includes a full hardware
simulator (virtual machine) and supports the injection of
faults into the disk (read/write errors), network (packet loss)
and bit-flips to CPU registers and memory. The FAUma-
chine project’s virtual machine is similar to the more widely

known user-mode Linux (UML) virtual machine, where the
Linux kernel runs as a user-level process.

In [2], modifications were made to the QEMU CPU emula-
tor to support injection of faults for the purpose of evaluat-
ing research on self-healing operating system mechanisms.
The fault injection utility was primarily targeted at the
ARM architecture.

In [6], the effects of injecting faults into Linux system calls
were studied. This included sending invalid or corrupted
(bit-flipped) arguments to system calls, and corruption of
the arguments for the internal kernel functions. They in-
dicated that the bit-flip approach resulted in more failures
than the invalid parameter approach.

Starting in Linux v2.6.20, support was added to allow for
fault-injection at instrumented points of key kernel subsys-
tems [8]. The current set of support injection points target
API level failures for memory (slab errors and page alloca-
tion errors) and disk IO errors.

FIG [4] is a fault-injection tool for introducing errors at
the library level. They use the LD_PRELOAD mechanism as-
sociated with the loading of shared libraries to interpose on
calls and inserting errors.

Note, while there has been a great deal published on fault
injection, and the techniques found to be quite useful, many
of the well cited works in the area are not freely available for
download. At least two are available as part of commercial
offerings, e.g., Xception, NFTAPE.

The area of dependability benchmarking leverages fault
injection in order to assess the integrity of systems. Many of
the tools mentioned here have been used in these studies [3,
11, 12].

7. CONCLUSION

We presented a general framework for fault injection in
distributed systems. Because of its modularity, the frame-
work enables experimentation with many different fault tol-
erance/system resilience mechanisms and policies. It also

enables experimentation with various fault reporting/detection

mechanisms. For instance, it is possible to test fault reports
via system logs injecting faults directly into the system.

To illustrate the benefit of the proposed framework, we
presented the implementation of a system for the injection of
faults into memory, using two different fault injection tech-
niques. One based on the ptrace(2) system call, and a
second based on Linux (in-kernel) fault injection capabili-
ties.

The current prototype is under active development. In the
future, we plan to extend the capabilities of the prototype
and increase our set of experiments. For example, use the
Linux FTI facility to test cases where the target (victim) is
at the system level (kernel modules). Additionally, we plan
to use the framework to investigate failure detection mech-
anisms and to evaluate tools for system resilience analysis.

8. REFERENCES

[1] Algirdas Avizienis, Jean-Claude Laprie, and Brian
Randell. Fundamental concepts of computer system
dependability. In JARP/IEEE-RAS Workshop on
Robot Dependability: Technological Challenge of
Dependable Robots in Human Environments,
May 21-22, 2001.

[2] Francis M. David and Roy H. Campbell. Building a
Self-Healing Operating System. In Proceedings of the

3]

[4]

[5]

[6]

[7]

8]

(10]

(11]

(12]

3rd IEEE International Symposium on Dependable,
Autonomic and Secure Computing, pages 3—17,
Columbia, MD, Sep 2007.

Dbench: Dependability benchmark project. Available
at: http://www.laas.fr/DBench/. (Last accessed
March 2009).

Fig: Library-level error injection for shared libraries in
unix/linux. Available at:
http://roc.cs.berkeley.edu/projects/fig/index.shtml
(Last accessed: March 2009).

Mei-Chen Hsueh, Timothy K. Tsai, and

Ravishankar K. Iyer. Fault injection techniques and
tools. Computer, 30(4):75-82, Apr 1997.

T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun.
Experimental Analysis of the Errors Induced into
Linux by Three Fault Injection Techniques.
Proceedings of International Conference on
Dependable Systems and Networks (DSN 2002), pages
331-336, 2002.

Jodo Carreira and Henrique Madeira and Jodo Gabriel
Silva. Xception: A Technique for the Experimental
Evaluation of Dependability in Modern Computers.
IEEE Transactions on Software Engineering, 24(2),
February 1998.

Linux fault injection capabilities infrastructure.
Documentation available at:
http://lxr.linux.no/linux/Documentation /fault-
injection/.

Adam Oliner and Jon Stearley. What supercomputers
say: A study of five system logs. In Proceedings of the
87th International Conference on Dependable Systems
and Networks (DSN). IEEE Computer Society,

June 25-28, 2007. Edinburgh International Conference
Centre, Edinburgh, UK.

S. Potyra, V. Sieh, and M. Dal Cin. Evaluating
fault-tolerant system designs using FAUmachine. In
Proceedings of the 2007 Workshop on Engineering
Fault Tolerant Systems (EFTS’07), page 9, New York,
NY, USA, 2007. ACM.

Roc: Recovery-oriented computing. Available at:
http://roc.cs.berkeley.edu/ (Last accessed: March
2009).

David T. Stott, Benjamin Floering, Daniel Burke,
Zbigniew Kalbarczyk, and Ravishankar K. Iyer.
NFTAPE: A framework for assessing dependability in
distributed systems with lightweight fault inectors. In
Proceedings of the 4th IEEE International Computer
Performance and Dependability Symposium (IPDS),
pages 91-100. IEEE, March 2000.

