
Machine Learning Models for GPU Error Prediction
in a Large Scale HPC System

Bin Nie∗, Ji Xue∗, Saurabh Gupta†, Tirthak Patel‡, Christian Engelmann§, Evgenia Smirni∗, and Devesh Tiwari‡
∗ College of William and Mary ({bnie, xuejimic, esmirni}@cs.wm.edu)

† Intel Labs (saurabg@gmail.com)
§ Oak Ridge National Laboratory (engelmannc@ornl.gov)

‡ Northeastern University (patel.ti@husky.neu.edu, tiwari@northeastern.edu)

Abstract—Recently, GPUs have been widely deployed on large-
scale HPC systems to provide powerful computational capability
for scientific applications from various domains. As those applica-
tions are normally long-running, investigating the characteristics
of GPU errors becomes imperative. Therefore, in this paper,
we firstly study the conditions that trigger GPU errors with
six-month trace data collected from a large-scale operational
HPC system. Then, we resort to machine learning techniques
to predict the occurrence of GPU errors, by taking advantage
of the temporal and spatial dependency of the collected data. As
discussed in the evaluation section, the prediction framework is
robust and accurate under different workloads.

I. INTRODUCTION

Over the past decade, advancements in GPU architecture
have provided significant increase in computational power.
As a result, GPUs have become parts of the mainstream
high performance computing facilities to simulate physical
phenomena more quickly and accurately (i.e., at a finer gran-
ularity) [1–3]. As GPUs are more widely adopted in scale-out
computing architecture and process technology shrinks, GPU
soft errors become a critical challenge. Reliable execution of
applications can lead to higher productivity and lower I/O
overhead. However, understanding the source of GPU soft
errors itself is challenging. Past work has shown evidence to
indicate the plausible relationship between power/cooling in-
frastructure and GPU errors, but no clear understanding on the
exact conditions that trigger faults [4]. GPU nodes consume
significantly high amount of power, especially when running
compute-intensive scientific applications. Unfortunately, high
power consumption results in elevated temperature, and that
may have non-trivial implication on hardware reliability as
previous studies have demonstrated correlation between tem-
perature and device reliability [5].

The key to mitigating GPU reliability challenge is to under-
stand the relationship among GPU soft errors and different fac-
tors including power consumption, temperature, and workload
behavior. To this end, the goal of this paper is to explore the

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

interaction among temperature, power consumption, workload
characteristics, and GPU soft errors, and to exploit these
interactions toward GPU soft error prediction.

Previous works have investigated the interplay between
temperature and device reliability on hard disk drives,
solid state drives, and CPUs [5–9]. In contrast, our work
focuses on understanding the interplay between work-
load/temperature/power consumption and GPU soft errors on
the Titan supercomputer, which is America’s fastest supercom-
puter for open science [10].

In this paper, we discover that workload characteristics,
certain GPU cards, temperature and power consumption could
have predictive or associative capabilities with GPU errors,
but it is non-trivial to exploit it for error prediction. Motivated
by these observations and challenges, we explore a machine-
learning-based error prediction model that captures hidden
interactions among system and workload properties. Such
model is useful in guiding a flexible error protection scheme
for GPU nodes, i.e., dynamically turning on or turning off
error protection based on prediction.

One may argue that completely turning off error protection
may be too risky. However, it is important to notice that the
impact of ECC overhead on real-world computational science
applications can be as high as 10% on GPUs [11]. In fact, ECC
overhead on GPUs are prohibitively high for some domains.
Computational scientists already naively turn off ECC for
their application runs [12]. In such cases, a prediction model
would be useful instead of naively turning off ECC. Note that
decreasing memory bandwidth by some fraction can actually
have larger performance impact than the decreased fraction of
bandwidth, especially for higher utilizations due to queuing
theory ramifications.

Acknowledging the necessity of an error predictor, this
paper elaborates on the challenges, process, and solutions
involved in building an effective machine-learning-based pre-
diction model. In particular, we show how to systematically
select a massive set of features by categorizing features into
spatial and temporal dimensions. Then we discuss how to learn
the desired prediction function in a generic yet meaningful
way. We also illustrate how to overcome the imbalanced
dataset challenge and trade-offs in applying various machine
learning models, including Logistic Regression (LR), Gradient
Boosting Decision Tree (GBDT), Support Vector Machine
(SVM), and Neural Network (NN).

Finally, we evaluate the machine learning model via differ-
ent metrics and under diverse testing scenarios. Our results
indicate that the proposed techniques achieve high prediction
quality and are robust under different conditions. In particular,
the GBDT-based solution achieves an F1 score of 0.81, signifi-
cantly outperforming other competitive techniques. Especially,
the corresponding high recall (i.e., 0.87) and good precision
(i.e., 0.76) indicate that the model is conservative in identifying
as many SBE cases as possible. Such model is preferable
as the aftermath of missing an SBE occurrence is likely to
be more severe than mislabeling a non-SBE occurrence. Our
evaluation also uncovers interesting insights from compari-
son across different models, training/testing data, and feature
combinations. We show that the proposed techniques impose
moderate overhead and are practically feasible for GPU soft
error prediction.

II. BACKGROUND

The Titan supercomputer is one of the fastest supercom-
puters for open science [10]. The basic block is a node, that
consists of one AMD Opteron 6274 CPU and one NVIDIA
K20X GPU. Four nodes make up one slot. In each slot,
there are two high-speed interconnect Gemini routers, each
shared by two nodes. The next granularity level is one cage,
which is composed of 8 slots. Three cages form one cabinet.
There are 200 cabinets, organized as a 25 × 8 grid, and a
total of 18,688 GPUs on the Titan. Major memory struc-
tures in K20X GPUs are protected by error-correcting codes
(ECC). Device memory, L2 cache, instruction cache, register
files, shared memory, and L1 cache are protected by Single
Error Correction Double Error Detection ECC, while read-
only data cache is parity protected. Non-memory structures
such as logic, thread schedulers, instruction dispatch unit, and
interconnection network are not protected.

Various types of GPU errors occur on the system including
hardware failures. NVIDIA provides a list of XID errors and
documents their possible causes [13]. In this study, we focus
on GPU soft errors. Particularly, we target single bit errors
(SBEs), as they occur most frequently on Titan GPUs. Other
errors, i.e., double bit errors (DBEs), are less frequent and
statistically unsuitable for prediction. The ECC mechanism
is typically turned on to detect SBEs. However, ECC incurs
significant overhead to storage and memory bandwidth. If the
impact of SBEs could be understood well with predictive
capability, turning-off ECC could improve performance and
reduce associated overhead.

Our traces contain GPU-error related data from February
2015 to June 2015 (more than 60 million node hours). SBEs
are collected via the nvidia-smi utility on all GPU nodes. This
utility provides snapshot information, i.e., it does not times-
tamp individual SBEs, but records SBEs before and after each
batch job. This enables to perform data analytics on SBEs,
albeit at the granularity of a “batch job”. We denote a batch
job as a set of applications that are submitted simultaneously
by the same user. Applications (also referred as “apruns”) can
run within a submitted batch job (also referred as “job”). The

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
X

0

1

2

3

4

5

6

7

Y

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

N
o
rm

.
N

u
m

 o
f

S
B

E
 N

o
d
e
s

Fig. 1. Non-uniform distribution of GPU error offender nodes at the cabinet
level.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
X

0

1

2

3

4

5

6

7

Y

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

N
o
rm

.
N

u
m

 o
f

S
B

E
 A

p
ru

n
s

Fig. 2. Non-uniform distribution of SBE-affected application runs at the
cabinet level.

SBE count is collected at the start and end of a batch job. The
tracing framework can identify the node location on which
SBEs occur. We collect GPU resource utilization information
such as GPU core-hours, maximum memory consumption, and
total memory consumption on a per application basis. We
collect the temperature and power consumption information in
out-of-band manner without instrumenting applications. This
information is approximately collected every minute for every
node.

We do recognize that this work is subject to assumptions
and limitations. This study assumes apruns having the same
binary name are of the same type, as user codes and workflow
execution practices are unknown to us. This may negatively
impact the data analysis and prediction accuracy. Batch jobs
may contain multiple apruns, but we cannot tell which apruns
encounter SBEs. So we conservatively assume that SBEs
occur in all those apruns. Finally, large-scale HPC facility
is often dynamic with respect to software stack changes and
operational practices. Hence, correctly including the impact
of these factors in the data analysis is challenging. Moreover,
soft errors can be trigged by transient bit-flips due to external
charge-carrying particles or device failures, i.e., variations,
yield, aging effects, or electron migration. We cannot distin-
guish soft errors by their root causes in this work due to lack
of information.

III. GPU ERROR CHARACTERIZATION

Soft errors may occur during an application execution on
GPUs for multiple reasons, i.e., cosmic ray strikes, voltage
fluctuations, elevated temperature, manufacturing defects, and
complex workload-hardware interaction. However, pinpointing
the root cause of soft errors is challenging and cannot be
easily used to predict soft error occurrences. While soft error
occurrences have limited predictability, we find that not all soft
error occurrences are random. Our results reveal that certain
system and workload properties may have hidden correlations
with GPU soft errors, albeit such correlations can not be
attributed as causations. In particular, we show that certain
GPU cards, workload behavior, GPU temperature, and GPU

0%
20%

40%
60%

80%
100%

SBE-affected application

0%

20%

40%

60%

80%

100%
T
o
ta

l
S
B

E
 c

o
u
n
t

(a) Total SBE count

0%
20%

40%
60%

80%
100%

SBE-affected application

0%

20%

40%

60%

80%

100%

Fr
a
c.

 o
f

S
B

E
 a

p
ru

n
s

(b) Frac. of SBE apruns

Fig. 3. Workload and GPU error distribution: a small set of workloads
experience most of the soft errors (a), and fraction of executions affected
by SBEs for SBE-affected apps (b).

power consumption may have complex interactions with GPU
soft error occurrences.

A. SBE Offender Nodes

We start by investigating how GPU errors are distributed
across the entire system. Since the 200 cabinets on the Titan
are organized as a 25 × 8 grid, we present the normalized
average value of SBE-affected nodes at the cabinet level in
Fig. 1. Clearly, GPU errors are not uniformly distributed. The
number of SBE-affected GPU cards are not the majority of
all cards in the system either. As shown later in Section VII,
exploiting such observation in isolation is not likely to yield
good prediction of upcoming SBEs. For example, if we predict
that all applications executing on these SBE offender nodes
will experience errors, it results in a high false positive
rate because SBE offender nodes do not experience errors
uniformly over all days either. Actually, 80% of error offender
nodes experience a soft error on less than 20% of the total
days over the sampling period. Nevertheless, the non-uniform
distribution of soft error offender nodes in space and time
domain open the possibility for learning-based predictions.

B. Application

It is also interesting to analyze the impact of various
workloads on GPU soft error occurrences. As a first step, we
explore the spatial distribution of SBE-affected applications
and observe the non-uniform distribution across the Titan
system (see Fig. 2). Next, we look at the severity of SBE-
affected applications by analyzing their SBE count (application
and SBE correlation is normalized by the GPU core hours
(i.e., runtime × number of nodes)). Fig. 3(a) shows that a
smaller set of workloads, less than 20% of all applications,
experience the majority of errors (≥ 90%). However, Fig. 3(b)
shows that even SBE-affected applications do not experience
SBEs uniformly across all application runs. The top 20% of
the SBE affected workloads experience all their share of soft
errors during 60% of their total application executions, while
the lower 20% of the SBE affected workloads experience all
their share of soft errors during less than 10% of their total
application executions. We further investigate the relationship
between the severity of SBE-affected applications and their
GPU utilization, i.e., core-hours and memory (see Fig. 4).
The high Spearman coefficient values indicate that applications

10-4 10-3 10-2 10-1 100 101 102

Norm. SBE count

10-6

10-5

10-4
10-3

10-2

10-1
100

101
102

N
o
rm

.
G

P
U

 c
o
re

-h
o
u
rs

correl. coefficient=0.89

(a) GPU core-hours

10-4 10-3 10-2 10-1 100 101 102

Norm. SBE count

10-5

10-4

10-3

10-2

10-1

100

101

102

N
o
rm

.
G

P
U

 m
e
m

o
ry

correl. coefficient=0.70

(b) GPU memory

Fig. 4. Scatter plot of SBE count of SBE-affected applications and their GPU
utilization: core-hours (a) and memory (b). X-axis and y-axis are in log scale.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
X

0

1

2

3

4

5

6

7

Y

0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08

N
o
rm

.
C

u
m

.
G

P
U

 T
e
m

p
.

(a) Temperature distribution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
X

0

1

2

3

4

5

6

7

Y

0.80
0.84
0.88
0.92
0.96
1.00
1.04
1.08

N
o
rm

.
C

u
m

.
G

P
U

 P
o
w

e
r

(b) Power consumption distribution
Fig. 5. Distribution of temperature (a) and power consumption (b) accumu-
lative over the whole period at the cabinet level.

with more SBEs tend to utilize more GPU memory and for
longer duration.

The above observations imply that application related mea-
surements, such as utilization, are good indicators for SBE
occurrences. While these observations provide useful ground
truth for error prediction, simple prediction strategies based on
these findings alone lead to low prediction quality (discussed
in Section VII).

C. Temperature and Power Consumption

Consistent with previous studies on GPU errors [4, 14–
16], here we analyze the potential relationship between GPU
temperature/power consumption and GPU errors.

1) A bird’s eye view: We first explore whether GPU temper-
ature/power consumption correlate with soft error occurrences.
Fig. 5 shows the cumulative temperature/power consumption
over the entire sampling period of every cabinet in the Titan.
We observe that the temperature distribution is non-uniform
in space, i.e., cabinets in the upper left corner and lower right
corner tend to be hotter than the rest ones. In contrast, power
consumption is more evenly spread, implying that the Titan is
intensively utilized both time-wise and space-wise.

Next, we compare the non-uniform temperature distribu-
tion with the SBE-affected nodes distribution(Fig. 1). The
calculated Spearman correlation coefficient is as low as 0.07,
implying that the accumulative temperature distribution is not
related to the SBE offender nodes distribution in space. The
same observation is reached when comparing temperature
distribution and SBE-affected application distribution (the

10 20 30 40 50 60 70
Temperature(◦C)

0.00

0.02

0.04

0.06

0.08

0.10
P
ro

b
a
b
ili

ty
avg=31.71
std=4.81

(a) SBE-free period

10 20 30 40 50 60 70
Temperature(◦C)

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

b
a
b
ili

ty

avg=35.02
std=6.42

(b) SBE-affected period

Fig. 6. Temperature distribution of SBE offender nodes during SBE-free
period (a) and SBE-affected period (b). Vertical lines represent mean values.

0 50 100 150 200
Power (watt)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
a
b
ili

ty

avg=55.79
std=22.68

(a) SBE-free period

0 50 100 150 200
Power (watt)

0.00

0.02

0.04

0.06

0.08

0.10

0.12
P
ro

b
a
b
ili

ty

avg=72.63
std=31.55

(b) SBE-affected period

Fig. 7. Power consumption distribution of SBE offender nodes during SBE-
free period (a) and SBE-affected period (b). Vertical lines represent mean
values.

Spearman correlation coefficient is only 0.15). Similar analysis
is conducted for power consumption, which also shows weak
correlation. In summary, the effect of temperature on SBEs
may not be entirely captured by SBE offender nodes or
workload characteristics only.

2) Considering the time dimension: Unlike the bird’s eye
view, we turn the focus to SBE offender nodes and temperature
characteristics across time. We divide the time dimension
in two parts: (1) the time during which a soft error occurs
(SBE-affected period), and (2) the time during which no soft
error occurs (SBE-free period). Fig. 6 shows the empirical
temperature distribution of SBE offender nodes during these
two periods. The distribution for GPU power consumption is
presented in Fig. 7.

We observe that the SBE offender nodes are relatively hotter
during the SBE-affected period by more than 3◦C on average,
compared to SBE-free period (Fig. 6 (a) vs. (b)). The SBE
offender nodes also consume relatively higher power during
the SBE-affected period by more than 15 watts on average,
compared to the SBE-free period (Fig. 7 (a) vs. (b)). Note
that, higher power consumption likely contributes increased
temperature. However, due to varying cooling efficiency and
workload characteristics, temperature elevation may be caused
by other factors too. The above observation implies that
SBEs are more likely to happen during periods of elevated
temperature. However, our measured data do not conclu-
sively indicate that SBEs definitely occur above a certain
threshold of temperature/power consumption. Sometimes even
during the SBE-free period, temperature can be significantly
high (Fig. 6(a)), making the SBE occurrence prediction non-
trivial. Nevertheless, these observations are encouraging as
they demonstrate a relationship between temperature/power

0 40 80 120 160
Time(min)

20

25

30

35

40

45

50

55

T
e
m

p
e
ra

tu
re

(◦
C

)

node_gpu

node_cpu

slot_avg

cage_avg

0 40 80 120 160
Time(min)

20

25

30

35

40

45

50

55

T
e
m

p
e
ra

tu
re

(◦
C

)

node_gpu

node_cpu

slot_avg

cage_avg

0 40 80 120 160
Time(min)

0

40

80

120

160

P
o
w

e
r(

w
a
tt

)

node slot_avg

(a) Temperature and
power from first run

0 40 80 120 160
Time(min)

0

40

80

120

160

P
o
w

e
r(

w
a
tt

)

node slot_avg

(b) Temperature and
power from second run

Fig. 8. Effect of neighboring components on temperature/power of an
application over two runs on the same node overtime. Vertical solid lines
represent the start and end of the aprun execution.

consumption and SBE occurrences, which can be potentially
used for prediction.

3) Considering the space dimension: Besides the time
domain, it is natural to explore the space domain. Fig. 8
shows that a given workload’s power consumption profile
alone may not determine the temperature profile. In fact,
our measured data indicate that GPU power consumption
and temperature profile can change for the same workload
across runs, possibly with effects from the neighboring nodes
and components (i.e., spatial effects). We investigate how
the temperature profile changes when the same workload is
executed repeatedly on the same node. Intuitively, one does
not expect the temperature profile to change in such situation.
To test this, we pick a computational chemistry application
that is executed multiple times on the same node at different
times. Fig. 8 shows the temperature and power profiles of GPU
during two different runs on different days, but on the same
node to avoid location specific power/cooling side-effects. We
plot the average temperature and power values for all other
nodes in the same slot or cage, as well as the temperature
profile of the CPU in the same target node, to illustrate the
effect of neighboring nodes and CPU in the same node on
the GPU temperature profile. For the power profile, we do not
have the ability to measure CPU power consumption out-of-
the-band. We include the 30min time window before and after
the application run to evaluate the results in context.

From Fig. 8, we observe that the temperature profile changes
from one run to another, and is not necessarily correlated
with fluctuations in the power profile. The result indicates that
changes in the temperature/power consumption of neighboring
nodes and the CPU in the same target node may contribute
to the variation in the temperature profile of the target node.
Other factors such as change in power/cooling efficiency in
the spatial region may also contribute to variation in the
temperature profile, although these factors are hard to detect
and quantify. Motivated by the above evidence, we argue that
temperature and power consumption from the neighboring

nodes in the same slot, as well as the temperature of the
CPU on the same node, may also help with SBE occurrence
prediction. Still, it is non-trivial to understand whether or
how much the behavior of neighboring nodes can actually
improve the error prediction capabilities. In Section VII,
we will quantify the impact of these features on prediction
effectiveness.

In summary, our analysis reveals that certain GPU cards,
workload, and GPU temperature/power consumption could
have predictive or associative capabilities with GPU errors,
but it is non-trivial to exploit them for error prediction. In
Section VII, we demonstrate that simple schemes based on
these observations lead to poor prediction effectiveness, while
machine-learning-based approaches capture hidden interac-
tions and significantly outperform simplistic predictions.

IV. OVERVIEW OF THE METHODOLOGY

In the previous section, we illustrate that GPU errors are
potentially correlated with different system and workload
characteristics. Formally, we are interested in finding a math-
ematical function that maps these properties (features) to the
probability of GPU error occurrence. If we express system and
workload dependent properties as features x0, x1, x2, . . . , xn,
there exists a function, Fpred, such that the probability of GPU
error occurrence during program execution is expressed by
formula:

Proberr = Fpred(x0, x1, x2, . . . , xn) (1)
Note that, many such functions can exist with varying
accuracy-levels because the probability of GPU error occur-
rence during program execution may not always be dependent
on the value of different features only. It is possible that
a mathematical function can not fully capture the behavior
because of inherent randomness involved with soft error oc-
currences. Therefore, the goal is to “learn” a classification
function, Fpred, that provides high accuracy level based on
the available features. Given this, we take the following steps
to find a desired function.

Step 1: Feature selection and engineering. We select a
set of features as input to the desired function. We elaborate
the process, challenges, and solutions involved in selecting a
useful set of features (Section V).

Step 2: Function discovery. We discuss how to learn the
desired classification function in a generic yet meaningful
way. We provide details on the challenges in learning the
classification function (Section VI).

Step 3: Analysis of the learned function. We investigate
the usefulness of the learned function and analyze the function
to assess if it can provide meaningful results under different
circumstances (Section VII).

We emphasize that these steps are means to show that
such a problem can be solved with reasonable accuracy and
under practical constraints. The rest of the paper focuses to
demonstrate the execution of these steps. We note that deep
learning algorithm based approaches are not covered in this
work due to their typical high overhead and limited suitability
to nature of our problem.

V. FEATURE SELECTION

Determining an effective set of features to learn the de-
sired function is challenging. First, measuring and collecting
plausible features correlated with GPU errors is not always
possible. For example, the memory access pattern could be
associated with SBEs. However, the overhead to collect this
information in a production system with dynamically changing
workloads is cost prohibitive. Second, selecting features from
what can be measured and collected is taxing. One can
conservatively collect data from all instrumentation sources,
but it may result in excessive storage and processing overhead
without clear understanding if they are correlated to the final
outcome. Consequently, feature selection is a critical aspect
toward learning the desired function. We refer the process
of transforming the selected features into quantifiable and
meaningful representation as feature engineering.

These challenges are addressed by following the observa-
tions discussed in Section III. We identify the features that
have correlations with GPU soft errors and organize them
into the time and space dimensions. Our key premise is that
soft errors are not an outcome that can be predicted by
observing the instantaneous values of features. Therefore, it
is important to include both temporal and spatial dimensions
to the selected features. Next, we list different features and
their corresponding quantifiable representation.

A. Temporal Features

Application: As discussed in Section III-B, some appli-
cations experience higher number of soft errors than others,
indicating that application-specific features could be useful to-
ward soft error prediction. We use application-specific features
that can be obtained in non-intrusive manner, including appli-
cation binary name, total execution time (from past runs), and
GPU resource utilization. GPU resource utilization includes
the aggregate GPU core time, aggregate GPU memory, and
maximum GPU memory. To capture the temporal behavior,
we also use the application name that ran before this execution
to account for post-effects of an application run.

Temperature/power consumption: We have shown ev-
idence that temperature may be correlated with soft error
occurrences (Section III-C2). However, capturing this complex
correlation is non-trivial. We propose the following represen-
tation of temperature feature to capture temporal aspects. We
use the mean and standard deviation of the temperature for
the current application run as an input feature. To capture
the dynamic behavior during a run, we use the mean and
standard deviation of the temperature difference between two
consecutive measurements as another set of input features.
However, these features do not account for recent historical
temperature behavior. To address this, we use temperature
characteristics before the execution of a current application
on the node as a feature. Specifically, we use the mean
and standard deviation of the temperature series and the
temperature difference between two consecutive minutes on
the same node before the execution of current application. We
consider four time windows: 5min, 15min, 30min, and 60min

prior to the start of the current execution. Similarly, we apply
the above described metrics for GPU power consumption.

B. Spatial Features

Node location: Our characterization results indicate that
the error offender nodes are not uniformly distributed in
space, and some error offenders experience SBEs repeatedly
(Section III-A). Therefore, node location is used as a feature
to capture node-specific and location-specific correlations.

Temperature/power consumption: In Section III-C3, we
show the prediction capabilities with temperature and power
consumption on neighboring nodes. Similar to the represen-
tations of temperature and power consumption used in the
temporal feature set, we leverage the mean and standard
deviation of temperature and power consumption, as well
as the mean and standard deviation of difference between
two consecutive measurements for (1) the temperature of the
CPU on the same node and (2) the temperature and power
consumption of the GPU nodes in the same slot, as parts of
the spatial feature set.

SBE history: We include the error frequency in order
to capture non-uniform temporal distribution of SBEs (Sec-
tion III). Specifically, we use the total error count over
preceding days at the node-level and for the whole machine
as features to capture the spatial behavior in error occurrence.
We refer this as SBE rate history at the local (node) and global
(whole machine) level. We also include the SBE rate in the
recent past for the given application and the allocated node to
the given application as features.

VI. MACHINE LEARNING FRAMEWORK AND MODEL

After describing the feature engineering in Section IV, here
we discover the function that captures the relationship between
input features and GPU soft error occurrences. We use several
widely-used machine learning models to discover the desired
classification function including Logistic Regression (LR),
Gradient Boosting Decision Tree (GBDT), Support Vector
Machine (SVM), and Neural Network (NN). Our goal is to
understand how the classification function can be learned
effectively via carefully choosing the combination of features
and an appropriate learning model, as well as what insights
can be learned from evaluating such models.

A. Overview

The first step of the machine learning framework involves
building the training dataset by collecting input features.
In our case, we periodically collect earlier described input
features for jobs running on the Titan. As a second step,
this training dataset is used to build the machine learning
model. The chosen model outputs the desired classification
function that can be used for GPU soft error prediction. The
desired classification function is a two-class classifier (i.e.,
whether an error occurs or not during the target program
execution), and is dependent on the training dataset and the
selected model. Building training dataset and estimating the
classification function are an iterative process that aims to

refine the learned classification function. However, the model
construction is typically relatively less frequent (i.e., once
every two weeks) and not on the critical path of program
execution. The final step is to feed the features of the target
program into the models to predict error occurrence.

Some input features for the target application run can be
collected prior to execution (e.g., machine-level error rate,
node specific characteristics), while certain program specific
features such as GPU power and temperature profiles can not
always be known a priori. We experiment with two approaches
and achieve similar results. In the first approach, the prediction
can be done at the end of the application execution, and
a possible re-execution may be required depending on the
program’s resilience needs. In this case, all input features
are known correctly. The second approach is that certain
input features are learned using statistical models and fed
into the learned function. Note that, this approach can not
guarantee that all input feature values are 100% accurate.
Fortunately, HPC workloads are fairly repetitive. It is possible
to effectively learn and accurately predict program specific
features, i.e., temperature and power profile, by leveraging
time-series prediction tools, e.g., [17].

B. Challenge: Imbalanced Dataset

It is desired to select the training and testing data so that they
cover a wide variety of workload and system properties, and
are representative of a real-world scenario. In our approach,
any workload execution that uses GPU resources is a qualified
sample. This ensures that our dataset corresponds to different
kinds of workloads distributed over both time and space
dimensions. However, this data collection approach results
in a challenging problem: highly imbalanced dataset. The
problem stems as only a limited number (≤ 2% in our case)
of application runs encounter SBEs. This makes the size of
majority class (SBE-free samples) much larger than that of
the minority class which is our focus.

Mitigating the imbalanced dataset challenge usually has two
solutions. The first one is over-sampling the minority class,
i.e., by generating synthetic samples, as done in [18, 19]. The
other solution is under-sampling the majority class, i.e., by
randomly choosing a subset of samples [20] or by clustering
algorithms like k-means [21]. However, none of the above
methods takes the inherent dataset features into consideration.
So in the next part, we propose a two-stage method, which first
leverages the dataset characteristics to mitigate the challenge
of the imbalanced dataset, and then apply machine learning
models to predict SBE occurrences.

C. Two-Stage Machine Learning Models

1) Leveraging dataset characteristics: In Section III, we
observe that a small fraction of GPU nodes and workloads
are responsible for a large number of SBEs. It is intuitive
to think that previous SBE-affected nodes/workloads may
continue seeing SBEs while those SBE-free nodes/workloads
are likely to remain in “safe status” in the future. Accordingly,
we consider three basic schemes: Basic A predicts that any

TABLE I
PRECISION AND RECALL FOR BASIC SCHEMES.

SBE Non-SBE
Scheme Precision Recall Precision Recall
Random 0.02 0.50 0.98 0.50
Basic A 0.40 0.94 0.99 0.98
Basic B 0.02 0.69 0.98 0.24
Basic C 0.00 0.06 0.98 0.76

application run involving SBE offender node will result in
SBE-affected run (i.e., SBE class). Basic B predicts that pre-
viously SBE-affected applications will result in SBE-affected
run. Basic C predicts that top SBE-affected applications will
result in an SBE-affected run. Top SBE affected applications
are defined as the top 20% applications affected by SBEs in
training phases in terms of their total number of SBEs.

Table I presents the prediction effectiveness of the above
three basic schemes, compared to a random classifier. Pre-
cision indicates the percentage of correct predictions in all
predictions, defined as:

Precision =
True Positives

True Positives+ False Positives
, (2)

while recall reveals the ratio of identified samples to the
ground truth, expressed in the following formula:

Recall =
True Positives

True Positives+ False Negatives
(3)

The random classifier randomly guesses the case, and hence,
achieves 0.5 recall. But, due to the high imbalance between
two classes, the random classifier achieves very low precision
for SBE class prediction. Basic A significantly outperforms the
random classifier and the other two basic schemes, achieving a
high SBE prediction recall (0.94), albeit at fairly low precision
(0.40). This indicates that the scheme Basic A could capture
the most SBE cases but still over-predicts the SBE class,
implying that this scheme alone is insufficient for robust pre-
diction but it needs to be incorporated with more sophisticated
dynamic learning techniques.

2) TwoStage method: Inspired by Basic A, which achieves a
reasonable prediction quality, we derive a TwoStage method.
This method leverages the inherent temporal dependency of
our dataset and takes advantage of the power of machine
learning techniques. Unlike Basic A, our solution is able to
accurately predict the samples from SBE offenders, instead
of blindly assuming them to always encounter SBEs in the
future. During the training period, we train the model solely
on samples from SBE offender nodes. The prediction flow is
presented in Fig. 9. At the first stage, samples are checked to
see if they are coming from SBE or non-SBE offender nodes.
They are passed to the second stage only if they came from
the SBE offender nodes. The advantages of this method are
three-fold: (1) SBE offender nodes are much smaller than the
total GPU population. Therefore, it automatically reduces the
training data size, resulting in less training overhead (both in
terms of time and storage). (2) As discussed previously, the re-
lationship between SBEs and different features is complex. By

Sample:
<app, node>

node saw
SBE before? SBE

Yes Yes

SBE-Free
No No

Stage 1 Stage 2

Predict as
SBE sample?

Fig. 9. TwoStage method: prediction flow.

focusing on SBE offender nodes only, we avoid the noise and
interference coming from those error-free samples. (3) Most
importantly, it solves the problem of data imbalance, where
the ratio between SBE-free samples and SBE-affected ones is
roughly 2 : 1 after the first stage, given that the original ratio
is almost 50 : 1. The downside is this method always misses
SBE occurrences on previously error-free nodes. Fortunately,
in such a steady system, such probability is low and frequent
periodic training of the model resolves this issue. As shown
in Section VII, TwoStage introduces low overhead and can be
trained periodically to provide high prediction quality.

D. Machine Learning Model Selection

As mentioned previously, we select four widely used ma-
chine learning models that provide wide variety in trade-offs
and advantages. Logistic Regression (LR) is a simple and fast
model for understanding the influence of several independent
variables but limited by the linear function between inputs
and outputs. Gradient Boosting Decision Tree (GBDT) is
a boosting-based model that is essentially an ensemble of
weak models, that is effective in tackling the variance-bias
problem, but computationally expensive. Support Vector Ma-
chine (SVM) is designed to solve this problem by performing
non-linear classification using a kernel. Artificial Neural
Networks (NN) are inspired by biological neural networks and
are composed of many interconnected neurons. The weights
associated with the neurons are used to approximate non-linear
functions of the input. Neural networks capture the complex
pattern between features and targets.

In the evaluation section (Section VII), we incorporate the
aforementioned models to our TwoStage method and compare
the effectiveness of different models.

VII. EVALUATION AND ANALYSIS

In this section, we evaluate the prediction models incorpo-
rated with TwoStage under various scenarios and in multiple
aspects. Before discussing the prediction results, we describe
the data used for model training and testing, as well as the
evaluation metrics.

A. Data Description and Evaluation Metrics

We collect all the features discussed in Section V over the
entire sampling period (from January to June, 2015) for both
SBE-affected and SBE-free periods. We divide this dataset
into three pairs of training and testing datasets (i.e., three sub-
datasets) based on the time dimension. In each sub-dataset,
the training dataset consists of 3.5-month samples, and the
samples in the following two weeks are used for testing.

Precision Recall F1 Score
0.0

0.2

0.4

0.6

0.8

1.0
Basic A LR GBDT SVM NN

Fig. 10. Comparison of SBE occurrence prediction across different models
for DS1.

Each sample is identified as a pair of the application name
and the node. For example, our first training dataset (i.e.,
DS1) corresponds to 6.7 thousand application executions, with
roughly 5 million samples. Note that each application run may
produce multiple number of samples depending on the number
of nodes allocated during the execution. For determining the
length of the training and testing datasets, we follow the rule-
of-thumb ratio of the testing data size to the training data size
(20%−25%) [22]. We also ensure that the three testing datasets
cover diverse workloads and have different compositions of
samples.

In order to meaningfully evaluate the results, it is important
to choose the most appropriate metric. Accuracy is a simple
and widely used metric to assess the effectiveness of pre-
dictions. However, it is misleading for evaluating imbalanced
datasets. In our testing datasets, around 98% of the application
executions (samples) fall into the majority class (i.e., non-SBE
class). For example, a naive method, such as always predicting
each sample as non-SBE case, will lead to an accuracy of 98%.
Other commonly used metrics include precision and recall, see
Section VI-C1. The main goal of any prediction mechanism
is to improve precision without sacrificing recall. However,
precision and recall sometimes can be conflicting, as while
increasing the true positives, the false positives may also in-
crease [23]. Consequently, we use F1 Score [24], the harmonic
mean of precision and recall (see Eq. 4), as the evaluation
metric to capture such trade-off between prediction and recall.
In general, higher F1 score indicates better prediction quality.

F1 Score =
2× Precision×Recall

Precision+Recall
(4)

B. Machine Learning Model Comparison

As stated in Section VI-D, we apply four machine learning
models (i.e., LR, GBDT, SVM, and NN) on the second stage
of TwoStage method. Here, we discuss which machine learning
model works most efficiently.

1) Accuracy and robustness comparison: Across machine
learning models: Choosing an effective model is one of
the key challenges in designing any machine learning based
prediction tool. Therefore, we compare four commonly used
machine learning models to investigate which one works
best. Fig. 10 reveals the F1 score of SBE class using the
first dataset (DS1). Note that the result of SBE-free class not
shown here (also in later evaluation parts) because all models
are able to achieve high prediction quality of SBE-free cases

TABLE II
F1 SCORE FOR SBE OCCURRENCE PREDICTION.

Dataset Basic A LR GBDT SVM NN
DS1 0.56 0.67 0.81 0.70 0.69
DS2 0.75 0.80 0.81 0.79 0.77
DS3 0.55 0.52 0.71 0.55 0.51

(i.e., the majority class) due to the highly imbalanced nature
of our testing samples. We notice that applying machine
learning models always significantly surpasses the Basic A
scheme, with at least 0.1 improvement of F1 score. Moreover,
applying GBDT model achieves the highest F1 score (0.81),
outperforming the least effective one (using LR) by 0.14. To
investigate why GBDT works better than the other models,
we also look at the precision and recall values. We find that
all four models are able to achieve a similar precision values
(around 0.8), but using GBDT is able to achieve a much
higher recall value (0.87) than those of applying the other
three models (around 0.6). High recall value implies that the
boosting nature of GBDT enables this model to identify more
SBE samples, while similar precision across four different
learning models indicates that GBDT also conservatively
predicts SBE occurrence as the other three. This result
suggests that GBDT achieves the most accurate prediction of
SBE occurrences among the four machine learning models.

Across different datasets: We have shown that applying
GBDT yields to the best prediction result for the first dataset.
It is of great importance to validate whether GBDT works
best for other datasets (i.e., DS2 and DS3). Remember that,
we divide our raw dataset into three sub-datasets according
to the time dimension (see Section VII-A). Note that these
testing and training datasets are disjoint and the machine
learning models are trained independently for each dataset.
Table II summarizes the F1 scores of applying different
models on the other two datasets. First, we have the similar
observation as the first dataset, that is applying machine
learning models almost always leads to increment in F1 score,
compared with scheme Basic A. Secondly, using GBDT in our
TwoStage method results in satisfactory prediction quality (F1
score) across different datasets, and significantly outperforms
all the other machine learning models. Even for the most
tough-to-predict dataset (DS3), where the basic scheme only
achieves a F1 score of 0.55, applying GBDT in our TwoStage
method improves the F1 score to 0.71, while the other three
learning models lead to slightly worse F1 score. The above
observations confirm the efficiency and robustness of GBDT.

In summary, TwoStage with GBDT is able to exploit the
hidden patterns between input features and the target, and
hence is overall effective to be leveraged for SBE occurrence
prediction, although the false negative rates vary from 9% to
22% in our datasets.

2) Model overhead comparison: In Section VII-B1, we
have illustrated that the TwoStage method with GBDT is
effective and robust. Meanwhile, a light-weight model which

TABLE III
MEAN TRAINING TIME FOR VARIOUS MODELS.

Model LR GBDT SVM NN
Mean Time 4.81 s 40.53 s 1.04 h 20.01 min

can be trained quickly and periodically is always desirable. It
would be meaningless if the method introduces huge overhead
to the system. Toward this perspective, we measure the training
time of applying different models, and the comparison is
presented in Table III. Note that all experiments are conducted
on an Intel Xeon server (Intel E5-4627v2) with 512GB RAM.
The training time is the longest when applying SVM, which
is approximately one hour. This is due to the computationally
expensive quadratic RBF kernel used in the SVM model. LR
consumes the least amount of time, but it also fails to provide
a guaranteed prediction quality (see Fig. 10 and Table II).
Considering both prediction quality and overhead, applying
GBDT stands out since it strikes this balance well. Note that
the training process can be done offline and periodically (i.e.,
repeated every two weeks), that prediction time of the models
is negligible, and that the data movement overhead for storing
and preprocessing the data is of the order of minutes.

All the aforementioned supporting evidence implies that
TwoStage with method GBDT is practically feasible for error
prediction. Therefore, in the later sections, we will show
results of this model only.

C. Feature Analysis

Besides choosing an appropriate machine learning model,
selection of features is another key to achieving a high-quality
prediction model. In Section V, we illustrate several features
from temporal and spatial perspectives, which may contribute
to the SBE occurrence prediction. But it does not imply that all
features are needed to train the most effective model. However,
it is an non-trivial process to discover and engineer the feature
set resulting in the highest prediction quality. In this section,
we will explain how to perform the feature subset discovery
process.

Unfortunately, the large number of features and complexity
of advanced learning models make it challenging to mean-
ingfully understand the impact of each feature. Consequently,
we simplify this problem by grouping features into several
coarse-grained categories. Then, we train several models with
each feature group. The goal is to see which feature group
contributes most to the prediction quality. We also train one
model that consists of all features. Fig. 11 shows the effect of
different feature groups on the prediction quality, in the form
of the percentage of improvement over the Basic A scheme.
The labels in the figure legend indicate the corresponding
feature groups used in each experiment.

We observe that almost all the models trained with any
feature group positively contribute to the SBE occurrence pre-
diction, but to different degrees of improvement. Meanwhile,
no single feature group is the winner across all datasets. For
example, Hist is the most effective feature group for DS1,
but it surprisingly negatively impacts the prediction quality in

DS1 DS2 DS3
-10%

0%

10%

20%

30%

40%

50%

Im
p
ro
v
e
m
e
n
t

Hist

TP

App

All

Fig. 11. Effect of different feature groups on F1 score, in terms of the
improvement over scheme Basic A. All means using all features discussed in
Section V. Hist, TP, and App represent using SBE history, temperature/power
consumption, and application-related features.

DS2. However, in all datasets, using the combination of all
features always results in the biggest improvement, implying
that all features are valuable and needed to achieve good
prediction performance.

Besides coarse-grained feature grouping, it is also interest-
ing to conduct a deeper and more fine-grained investigation
on input features. We start off by quantifying the impact of
various types of temperature/power consumption features. As
stated in Section V, temperature and power consumption fea-
tures are collected from both temporal and spatial perspectives,
on the targeted node and other neighboring nodes in the same
slot. Therefore, we conduct experiments with various combi-
nation of temperature and power consumption features to see
their impact on SBE occurrence prediction (see Table IV).
Cur refers to using temperature and power consumption data
collected only from the targeted node during the application
run, together with all other groups of features mentioned
in Section V. Besides what used in Cur, CurPrev also
leverages the temperature and power consumption data prior to
the execution of application on the targeted node (in four time
windows, up to one hour). Similarly, CurNei adds the temper-
ature and power consumption data on neighboring nodes (i.e.,
in the same slot as the targeted node). CurPrevNei leverages
all temperature and power consumption features discussed
above. Interestingly, we notice that the prediction quality is
not significantly affected by the various feature combinations.
Looking at F1 Score, CurPrev and CurPrevNei work
worse than Cur. In contrast, CurNei achieves a slightly
better prediction quality, but it also leverages more features
which means it will introduce more overhead in terms of the
data collection and model training. Especially, Cur exhibits
high recall and good precision, which is preferred in SBE
occurrence prediction. Consequently, we select Cur as an
effective and light-weight representation of temperature and
power consumption information for model training.

As a next step, we analyze the impact of various types of
history features on the SBE occurrence prediction. Unlike the
aforementioned experiments, here we conduct the experiment
by removing one type of history features and see the decrement
in F1 score. First, we compare the effects from global (overall
information collected from the whole system) and local (infor-
mation collected from the targeted node) SBE history on SBE
occurrence prediction in Fig. 12(a). Interestingly, removing
global and local history even increases the F1 score in DS2,

TABLE IV
EFFECT FROM TEMPORAL AND SPATIAL ASPECTS OF TEMPERATURE AND

POWER FEATURES.

Feature Set Precision Recall F1 Score
Cur 0.764 0.865 0.820

CurPrev 0.801 0.830 0.815
CurNei 0.815 0.838 0.826

CurPrevNei 0.807 0.829 0.818

DS1 DS2 DS3
-30%
-25%
-20%
-15%
-10%
-5%
0%
5%

10%

Im
p
ro
v
e
m
e
n
t

Global

Local

(a) Global vs. Local

DS1 DS2 DS3
-30%
-25%
-20%
-15%
-10%
-5%
0%
5%

10%

Im
p
ro
v
e
m
e
n
t

Before

Yesterday

Today

(b) Length of history

Fig. 12. Decrement on F1 score if removing a certain feature set from the
original feature combination: global vs local (a), and different length of SBE
history (b).

which is consistent with the observation in Fig. 11, where
SBE history features contribute negatively in DS2. However,
if we focus on DS1 and DS3, we notice that local history
information plays a more important role in prediction, i.e.,
removing these features leads to 15% to 25% loss in F1 score.
Furthermore, the impact of history length on prediction quality
is presented in Fig. 12 (b). From this figure, we observe the
importance of SBE history generally increases as it is closer
to current time. Note also that there is no particular length
(i.e., today, yesterday, or full history) that is always effective
across all datasets. This illustrates the importance of inclusion
of all SBE history features.

D. Prediction Analysis

Previously, we have determined the best machine learning
model for theTwoStage method (with GBDT), and the most
effective feature combination. Here, we conduct an evaluation
on the prediction quality of this model with the most efficient
feature combination as inputs. Due to the space constraints, we
illustrate the analysis on the results of using the first dataset
only. The quality of prediction for the two other datasets is
commensurable with that of DS1.

1) Spatial robustness: We explore if TwoStage performs
well uniformly over the whole space on Titan. Fig. 13 (a)
shows the closeness among the cumulative distribution plots
of SBE predictions across the entire system for the ground
truth, predictions (true positives plus false positives) and true
positives. We then present the absolute difference between
the number of SBE affected application runs (ground truth)
and the prediction for the testing period at cabinet-level in
Fig. 13(b). For over 95% of cabinets, the error difference is
relatively small, ranging in [−15, 13]. In fact, there are only 3
(out of 200) cabinets where the prediction overestimates SBE
affected application runs by more than 25. This is encouraging
as thousands of applications are executed over each cabinet.

0 20 40 60 80
100

120
140

160

Num. of SBE Occurrence

0%

20%

40%

60%

80%

100%

C
D

F

Ground Truth

Prediction

True Positives

(a) Comparison of CDFs

30 20 10 0 10

Ground Truth - Prediction

0%

20%

40%

60%

80%

100%

C
D

F

(b) Diff. from prediction

Fig. 13. Comparison between SBE occurrence prediction and ground truth
at cabinet-level.

TABLE V
SBE OCCURRENCE PREDICTION FOR “SHORT-RUNNING” AND

“LONG-RUNNING” APPLICATIONS.

Application Precision Recall F1 Score
All 0.76 0.87 0.81

Short 0.77 0.94 0.84
Long 0.93 0.90 0.92

We also perform such analysis at the node level and observe
accurate prediction for more than 99% of nodes (result not
shown due to space constraint).

We also investigate how the choice of optimal model
changes over space in the machine. We find that TwoStage
method with GBDT model remains the close-to-the-best
choice among all models for all cabinets. The number of
cabinets where this scheme is not the optimal choice is limited
across the machine in all three datasets. In fact, we find that
even if the prediction model is chosen with the oracle knowl-
edge about the optimal model, the overall F1 score improves
only by 0.01, 0.02, and 0.001 for all three datasets, respec-
tively. Overall, our results indicate that TwoStage method with
GBDT model delivers robust and consistent results across the
whole machine, and it is not restricted to performing well only
in selected spatial sections of the machine.

2) Effect of application runtime: Furthermore, we look
into if the prediction quality is significantly impacted by the
length of the execution. In other words, do short-running
and long-running applications attain comparable prediction
quality? We classify an application as “short-running” one
if the runtime falls in the bottom 25 percentile range and as
“long-running” one if the runtime falls in the top 25 percentile
range. Table V confirms that both types of application achieve
high prediction quality with comparable F1 scores. Moreover,
“long-running” applications achieve better prediction quality
than “short-running” ones. This is quite favorable since the
cost of mislabeling a “long-running” application would be
higher, e.g., if re-execution is needed.

3) Effect of SBE severity: An error predictor that is able to
label more severe application runs (i.e., with a higher number
of SBEs) as SBE-affected class is more desirable. Towards this
goal, we first group application runs into four levels of SBE
severity (25 percentile per level), i.e., the bottom 25 percentile
applications with the least number of SBEs are in level Light
while the top 25 percentile ones are in level Extreme. Table VI

TABLE VI
PERCENTAGE OF CORRECTLY CLASSIFIED SBE-AFFECTED APPLICATION

RUNS IN FOUR SEVERITY LEVELS.

Severity Light Moderate Severe Extreme
PCT. 74% 88% 93% 95%

presents the percentage of correctly classified SBE-affected
runs in each level. Our results indicate that as the number
of SBEs increases among application runs in our dataset, the
effectiveness of the TwoStage method grows. For example,
74% of the application runs in level Light are already correctly
predicted to be SBE-affected cases. The percentage number
increases as the SBE severity level goes higher, ending in 95%
for Extreme application runs. The results show that TwoStage
method is able to achieve high prediction quality for SBE
occurrences, especially for those more severely affected runs.

VIII. DISCUSSION

Time Series-based Feature Prediction. As stated in Sec-
tion VI, some input features into our TwoStage method cannot
be known before the execution of application, such as the
temperature and power consumption during the application
run. Therefore, we need to leverage time-series prediction tools
to forecast those features. Fortunately, there has been a rich
body of works on time-series prediction. ARMA/ARIMA [25]
have been widely used for time series prediction in several sys-
tems areas. For example, Tran and Reed [26] use ARIMA to
improve block prefetching for scientific applications. [17, 27],
which leverages neural networks to capture the temporal
and spatial dependency with/across time series, has shown
efficiency in predicting irregular patterns of time series of
performance measures, including data center resource usage.
Generally speaking, we can take advantage of these prediction
tools to first forecast such time series-based features, and then
plug into our TwoStage method for SBE occurrence prediction.
Application of SBE Prediction. Intuitively, GPU soft error
prediction can work together with the system scheduling
algorithm. For example, based on the prediction result of
SBE occurrences, one can dynamically turn on or turn off
the ECC protection on targeted nodes and applications for
the sake of lower ECC overhead. One may argue that the
aftermath of mislabeling a SBE sample can be too much
given the fact that no prediction technique can guarantee 100%
accuracy. Several prior works indicate that this standpoint is
too conservative. First, some hardware errors (i.e., transient bit
flips) occurred during application runs can be masked in the
final outputs, meaning that these errors are imperceptible by
the end users [28–31]. Moreover, even those corrupted outputs
are not always got rejected as long as the severity level of
corruption is below certain user-acceptable threshold [32] .
For instance, in the field of approximate computing, users are
willing to trade accuracy with better performance [33–37].
Similarly, it is desirable under certain situations to sacrifice
accuracy for lower reliability overhead. In fact, due to the
prohibitively high error protection overhead, computational
scientists already take actions by naively turning off error

protection for their application runs [12]. As comparison, the
proposed error predictor shows the superiority in better striking
the balance between performance, overhead, and reliability.

IX. RELATED WORK

Characterizing system failures in HPC systems has been an
important topic for decades [7, 38–40]. Oliner et al. [41] ana-
lyze logs collected from five HPC systems. Researchers have
also looked specifically into DRAMs and HDDs, demonstrate
pitfalls in error studies and their impact on system reliability
assessment [6–9, 38].

There are relatively limited studies on GPU reliability of
large scale systems. One reason is that the GPU architecture
is recently deployed in large-scale HPC systems, compar-
ing to other components like disks and CPUs. Martino et
al. [42] investigate GPU errors in Blue Waters at the National
Center for Supercomputing Applications, while recent efforts
present GPU error characterization for the Titan supercom-
puter [4, 15]. Those authors study spatial and temporal locality,
error frequency and correlation with jobs for various types
of GPU errors. They also conduct a detailed analysis and
characterization on GPU soft-errors and how they associate
with GPU resource utilization, workload type, etc. However,
none of these look at the complex interplay of temperature,
power consumption, and GPU SBEs. Also, related previ-
ous works have not proposed any predictive capabilities for
GPU errors guided by different factors including temperature,
power, and application characteristics [43–46]. In this paper,
we start from characterizing the features that may have hidden
relationship with GPU soft errors, such as temperature and
power consumption, and then develop a prediction scheme to
capture the occurrence of SBEs.

CONCLUSION

In this paper, we analyzed large amounts of measured
system related data to understand the characteristics of
temperature, power, workloads, and SBE distribution. We
proposed machine learning based techniques to exploit these
insights for GPU soft-error prediction. We examined the
effectiveness of our approach under various scenarios and in
multiple aspects including its accuracy, robustness, overhead,
comparison across different machine learning models, and
model interpretations.

Acknowledgment We thank reviewers for their constructive feed-
back. The work was supported by in part through NSF grants
CCF-1649087, CCF-1717532, Northeastern University, and by the
U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, program manager Lucy Nowell. This
work also used in part the resources of, the Oak Ridge Leadership
Computing Facility, located in the National Center for Computational
Sciences at ORNL, which is managed by UT Battelle, LLC for the
U.S. DOE under contract number DE-AC05-00OR22725.

REFERENCES

[1] J. S. Vetter, R. Glassbrook et al., “Keeneland: Bringing heterogeneous
GPU computing to the computational science community,” Computing
in Science & Engineering, vol. 13, no. 5, pp. 90–95, 2011.

[2] D. Kothe and R. Kendall, “Computational science requirements for lead-
ership computing,” Oak Ridge National Laboratory, Technical Report,
2007.

[3] C. L. Mendes, B. Bode et al., “Deploying a large petascale system:
The blue waters experience,” Procedia Computer Science, vol. 29, pp.
198–209, 2014.

[4] D. Tiwari, S. Gupta et al., “Understanding GPU errors on large-scale
HPC systems and the implications for system design and operation,”
in High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on. IEEE, 2015, pp. 331–342.

[5] N. El-Sayed, I. A. Stefanovici et al., “Temperature management in data
centers: Why some (might) like it hot,” ACM SIGMETRICS Performance
Evaluation Review, vol. 40, no. 1, pp. 163–174, 2012.

[6] B. Schroeder, E. Pinheiro et al., “DRAM errors in the wild: a large-scale
field study,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 37, no. 1. ACM, 2009, pp. 193–204.

[7] V. Sridharan, J. Stearley et al., “Feng shui of supercomputer memory
positional effects in DRAM and SRAM faults,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2013 International
Conference for. IEEE, 2013, pp. 1–11.

[8] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an MTTF of 1, 000, 000 hours mean to you?” in FAST, vol. 7,
no. 1, 2007, pp. 1–16.

[9] L. N. Bairavasundaram, Characteristics, impact, and tolerance of partial
disk failures. ProQuest, 2008.

[10] “Top500 list,” https://www.top500.org/list/2016/06/, 2016.
[11] R. M. Betz, N. A. DeBardeleben et al., “An investigation of the effects

of hard and soft errors on graphics processing unit-accelerated molecular
dynamics simulations,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 13, pp. 2134–2140, 2014.

[12] A. W. Gotz, M. J. Williamson et al., “Routine microsecond molecular
dynamics simulations with AMBER on GPUs. 1. generalized born,”
Journal of chemical theory and computation, vol. 8, no. 5, pp. 1542–
1555, 2012.

[13] “Understanding XID errors,” http://docs.nvidia.com/deploy/xid-errors/
index.html, 2015.

[14] S. Gupta, D. Tiwari et al., “Understanding and exploiting spatial
properties of system failures on extreme-scale HPC systems,” in De-
pendable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP
International Conference on. IEEE, 2015, pp. 37–44.

[15] B. Nie, D. Tiwari et al., “A large-scale study of soft-errors on GPUs in
the field,” in High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on. IEEE, 2016, pp. 519–530.

[16] B. Nie, J. Xue et al., “Characterizing temperature, power, and soft-
error behaviors in data center systems: Insights, challenges, and op-
portunities,” in Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2017 IEEE 25th International
Symposium on. IEEE, 2017, pp. 22–31.

[17] J. Xue, F. Yan et al., “PRACTISE: Robust prediction of data center
time series,” in Network and Service Management (CNSM), 2015 11th
International Conference on. IEEE, 2015, pp. 126–134.

[18] F. Provost, “Machine learning from imbalanced data sets 101,” in
Proceedings of the AAAI’2000 workshop on imbalanced data sets, 2000,
pp. 1–3.

[19] N. V. Chawla, K. W. Bowyer et al., “SMOTE: synthetic minority over-
sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

[20] R. Sipos, D. Fradkin et al., “Log-based predictive maintenance,” in
Proceedings of the 20th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, 2014, pp. 1867–1876.

[21] M. M. Botezatu, I. Giurgiu et al., “Predicting disk replacement towards
reliable data centers,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 39–48.

[22] I. Guyon, “A scaling law for the validation-set training-set size ratio,”
AT&T Bell Laboratories, pp. 1–11, 1997.

[23] N. V. Chawla, “Data mining for imbalanced datasets: An overview,” in
Data mining and knowledge discovery handbook. Springer, 2009, pp.
875–886.

[24] D. M. Powers, “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation,” 2011.

[25] G. E. Box, G. M. Jenkins et al., Time series analysis: forecasting and
control. John Wiley & Sons, 2015.

[26] N. Tran and D. A. Reed, “Automatic ARIMA time series modeling for

adaptive I/O prefetching,” IEEE Transactions on parallel and distributed
systems, vol. 15, no. 4, pp. 362–377, 2004.

[27] J. Xue, B. Nie et al., “Fill-in the gaps: Spatial-temporal models for
missing data,” in 2017 13th International Conference on Network and
Service Management (CNSM). IEEE, 2017, pp. 1–9.

[28] K. S. Yim, C. Pham et al., “Hauberk: Lightweight silent data corruption
error detector for GPGPU,” in Parallel & Distributed Processing Sym-
posium (IPDPS), 2011 IEEE International. IEEE, 2011, pp. 287–300.

[29] B. Fang, K. Pattabiraman et al., “GPU-Qin: A methodology for eval-
uating the error resilience of GPGPU applications,” in Performance
Analysis of Systems and Software (ISPASS), 2014 IEEE International
Symposium on. IEEE, 2014, pp. 221–230.

[30] S. K. S. Hari, T. Tsai et al., “SASSIFI: Evaluating resilience of GPU
applications,” in Proceedings of the Workshop on Silicon Errors in
Logic-System Effects (SELSE), 2015.

[31] G. Li, K. Pattabiraman et al., “Understanding error propagation in
GPGPU applications,” in High Performance Computing, Networking,
Storage and Analysis, SC16: International Conference for. IEEE, 2016,
pp. 240–251.

[32] R. Venkatagiri, A. Mahmoud et al., “Approxilyzer: Towards a systematic
framework for instruction-level approximate computing and its applica-
tion to hardware resiliency,” in Microarchitecture (MICRO), 2016 49th
Annual IEEE/ACM International Symposium on. IEEE, 2016, pp. 1–14.

[33] S. Mitra and Y. Hayashi, “Bioinformatics with soft computing,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 36, no. 5, pp. 616–635, 2006.

[34] R. K. Jena, M. M. Aqel et al., “Soft computing methodologies in
bioinformatics,” European Journal of Scientific Research, vol. 26, no. 2,
pp. 189–203, 2009.

[35] H.-L. Truong and T. Fahringer, “Soft computing approach to perfor-
mance analysis of parallel and distributed programs,” Euro-Par 2005
Parallel Processing, pp. 622–622, 2005.

[36] S. Mitra, S. K. Pal et al., “Data mining in soft computing framework: a
survey,” IEEE transactions on neural networks, vol. 13, no. 1, pp. 3–14,
2002.

[37] J. Meng, S. Chakradhar et al., “Best-effort parallel execution framework
for recognition and mining applications,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1–12.

[38] A. A. Hwang, I. A. Stefanovici et al., “Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for
system design,” in ACM SIGPLAN Notices, vol. 47, no. 4. ACM,
2012, pp. 111–122.

[39] B. Schroeder, R. Lagisetty et al., “Flash reliability in production: The
expected and the unexpected,” in 14th USENIX Conference on File and
Storage Technologies, FAST, 2016., 2016, pp. 67–80.

[40] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337–350, 2010.

[41] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Dependable Systems and Networks, 2007. DSN’07. 37th
Annual IEEE/IFIP International Conference on. IEEE, 2007, pp. 575–
584.

[42] C. Di Martino, Z. Kalbarczyk et al., “Lessons learned from the analysis
of system failures at petascale: The case of blue waters,” in Dependable
Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP Interna-
tional Conference on. IEEE, 2014, pp. 610–621.

[43] A. Gainaru, F. Cappello et al., “Fault prediction under the microscope:
A closer look into HPC systems,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society Press, 2012, p. 77.

[44] A. Gainaru, F. Cappello et al., “Taming of the shrew: Modeling the
normal and faulty behaviour of large-scale HPC systems,” in Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Interna-
tional. IEEE, 2012, pp. 1168–1179.

[45] M. S. Bouguerra, A. Gainaru et al., “Improving the computing efficiency
of HPC systems using a combination of proactive and preventive
checkpointing,” in Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium on. IEEE, 2013, pp. 501–512.

[46] E. Heien, D. LaPine et al., “Modeling and tolerating heterogeneous
failures in large parallel systems,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Conference
for. IEEE, 2011, pp. 1–11.

