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1 INTRODUCTION

The exascale supercomputer will be different than its predecessors
in many ways. Exaflop computation capabilities will be realized
by a vast ensemble of processors, co-processors, accelerators and
memory devices all connected over different forms of high band-
width interconnects. These future systems need to be more resilient
along with maintaining a balance between performance and power
consumption and minimizing their trade-offs.[1][2] The emergence
of non-volatile memory (NVM) technologies, such as phase change
memory (PCM) will enable memory devices that can maintain state
of computation in the primary memory architecture and will be a
part of the future computing architectures. We see more potential
in using these memory devices as specialized hardware rather than
commodity hardware. This will lead to sophisticated methods of
capturing system/application state at checkpoints and eventually
increasing the consistency of the data. Utilizing persistent memory
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regions to improve HPC resiliency is the key aspect of this project.
The unique aspect of NVM is that it retains data while being byte-
addressable, i.e., it can be mapped directly in the program address
space.[4][5] This feature opens new avenues for HPC Resilience
methodologies where lightweight and efficient checkpointing and
logging mechanisms can be developed. These methods can enable
system and application resilience at a much finer grain and provide
a required basis for programming. There is a lack of convenient
programming interfaces that helps integrate these methods into the
existing applications too.[3] Our aim is to develop novel resilience
methodologies for future HPC systems with easy programming in-
terfaces to tap the complete potential of persistent memory regions.

2 DESIGN

We introduce three modes of usage of NVM devices to aid in ensur-
ing HPC resilience.

o NVM-based Main Memory : This mode provides a uni-
fied memory region that treats NVM and DRAM uniformly.
The memory allocated on NVM is crash consistent. Critical
data structures can be directly allocated on persistent mem-
ory devices and can be accessed directly by the processor.

o Application-directed Checkpointing : In this mode, the
API allows users to select which data needs to be protected
through persistence to improve efficiency and avoid space
and time overheads. We maintain a copy of the data struc-
ture in persistent memory while the application computes
on the data structure in DRAM.

e Data versioning : This mode preserves multiple snap-
shots of the application state such that the application
recovery process may select among previous versions. It
requires maintenance of data values, structure, and meta-
data related for each version. Along with a persistent copy
we also store another copy of the same data structure in
the persistent memory region transparently.

The design strategy behind these modes of persistent memory
usage is to enable checkpointing at the data structure level. We
backup some data structures that are more critical than others at
different stages of the application in terms of failure recovery. We
have developed a simple API to prototype the above three modes of
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memory usage. The API has functions that help with the initializing
stage, allocation stage, updating stage and finalizing stage.

3 EXPERIMENTAL EVALUATION

We evaluate our implementation on a 16-node cluster with Dual
socket, Quad-Core AMD Opteron, 128 GB DRAM memory, Intel
SSD varying in size from 100GB to 256GB. We test our implemen-
tation against the DGEMM benchmark!. We tested for 4, 8 and
16-node configurations for a matrix sizes of 1000, 2000 and 3000
elements. We collected execution times and GFLOPS averaged them
over 100 runs for every configuration. We observe that DGEMM
performs similarly when used both with only DRAM memory and
only Persistent memory. Its performance is also similar between Ap-
plication directed checkpointing and Data Versioning. Using only
one kind of memory shows around 2 orders of magnitude better
performance than using persistent memory as a backup of DRAM
memory. This difference in performance is due to a very naive map-
ping and lookup algorithm used in our implementation with O(n)
complexity. The node scaling does not affect the performance at
all. The performance deteriorates quickly as the size increases for
the Application directed checkpointing and Data Versioning usage
modes which is depicted by the rapid decrease in GFLOPS. The per-
formance degrades partly due to the inefficient lookup mechanism
and increase in cache misses because of increased problem size.

4 FUTURE WORK

In the future, we would further develop the memory usage modes
to make them more efficient and maintain complete system state
with minimal overhead and support more complex applications.
Here, we developed lightweight recovery mechanisms to work with
the checkpointing schemes to reduce downtime and rollback time.
We would like to take this idea further and combine them with
intelligent policies that can help build resilient static and dynamic
runtime system.

5 CONCLUSION

In this work, we showed that Non-volatile memory devices can be
used as specialized hardware for improving the resilience of the
applications and we demonstrated three potential memory usage
models with consistent performance for node and problem size
scaling.
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