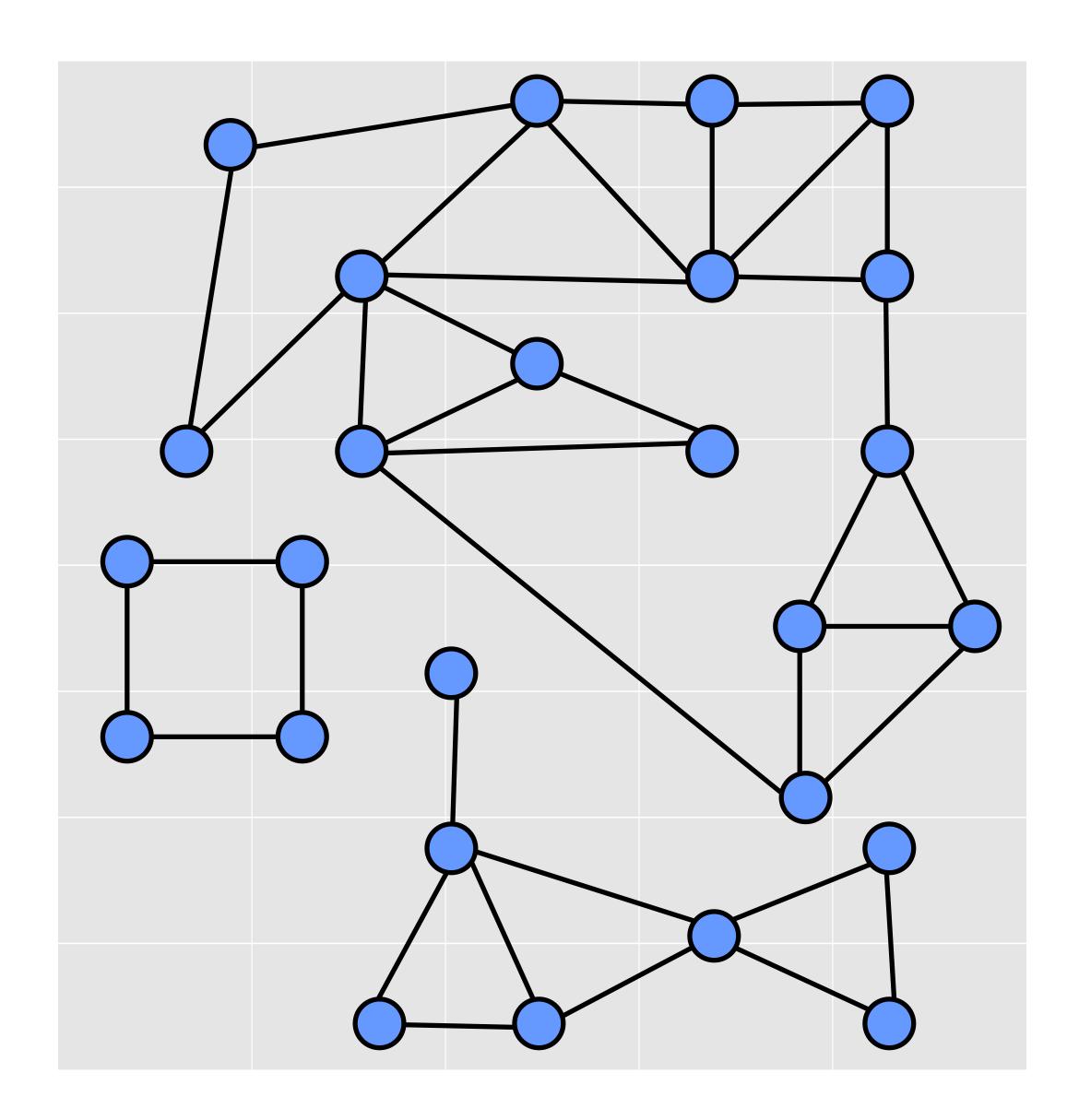
Self-stabilizing **Connected Components**

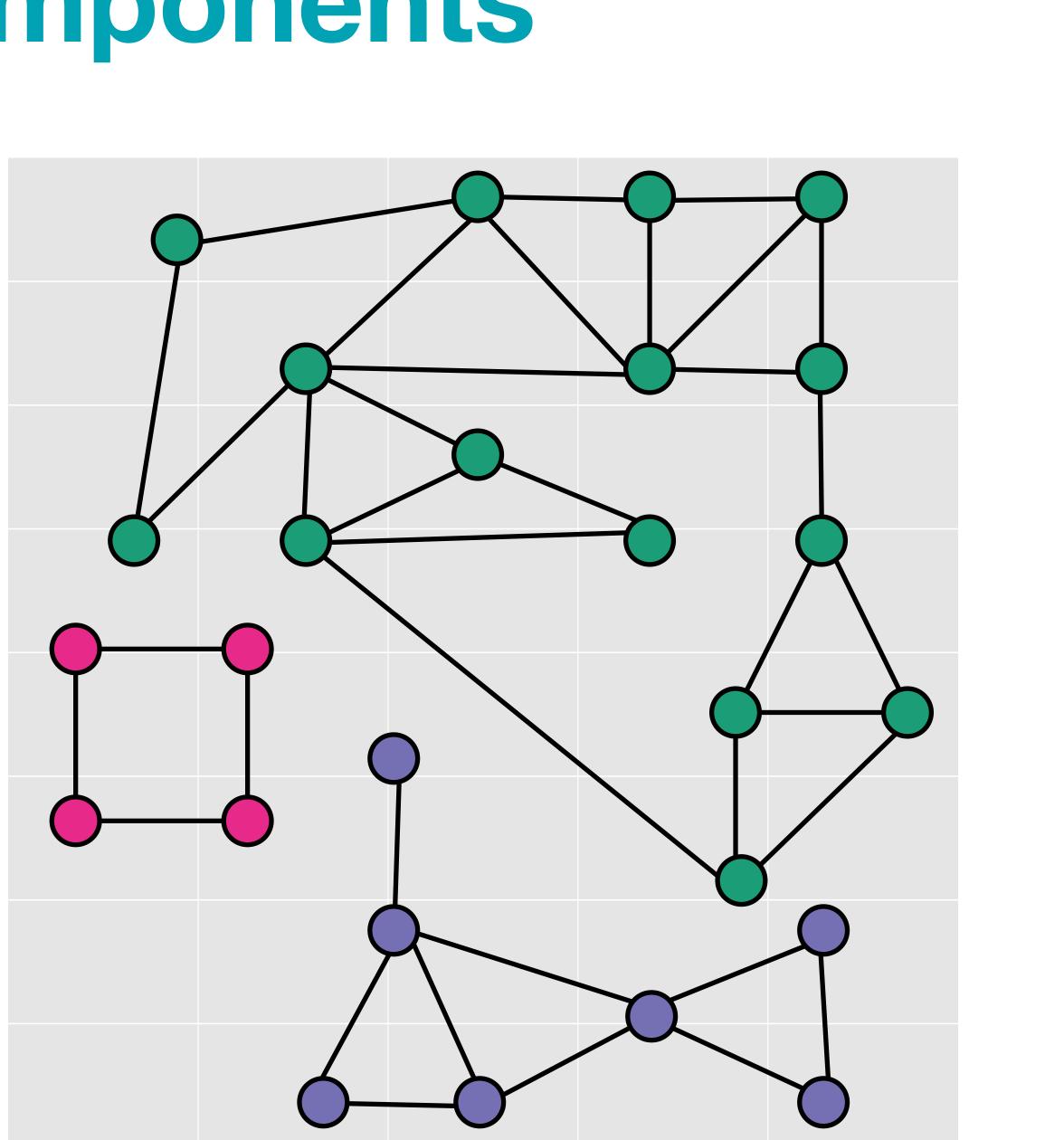
<u>Piyush Sao¹</u>, Christian Engelmann¹, Srinivas Eswar², Oded Green^{2,3}, Richard Vuduc²

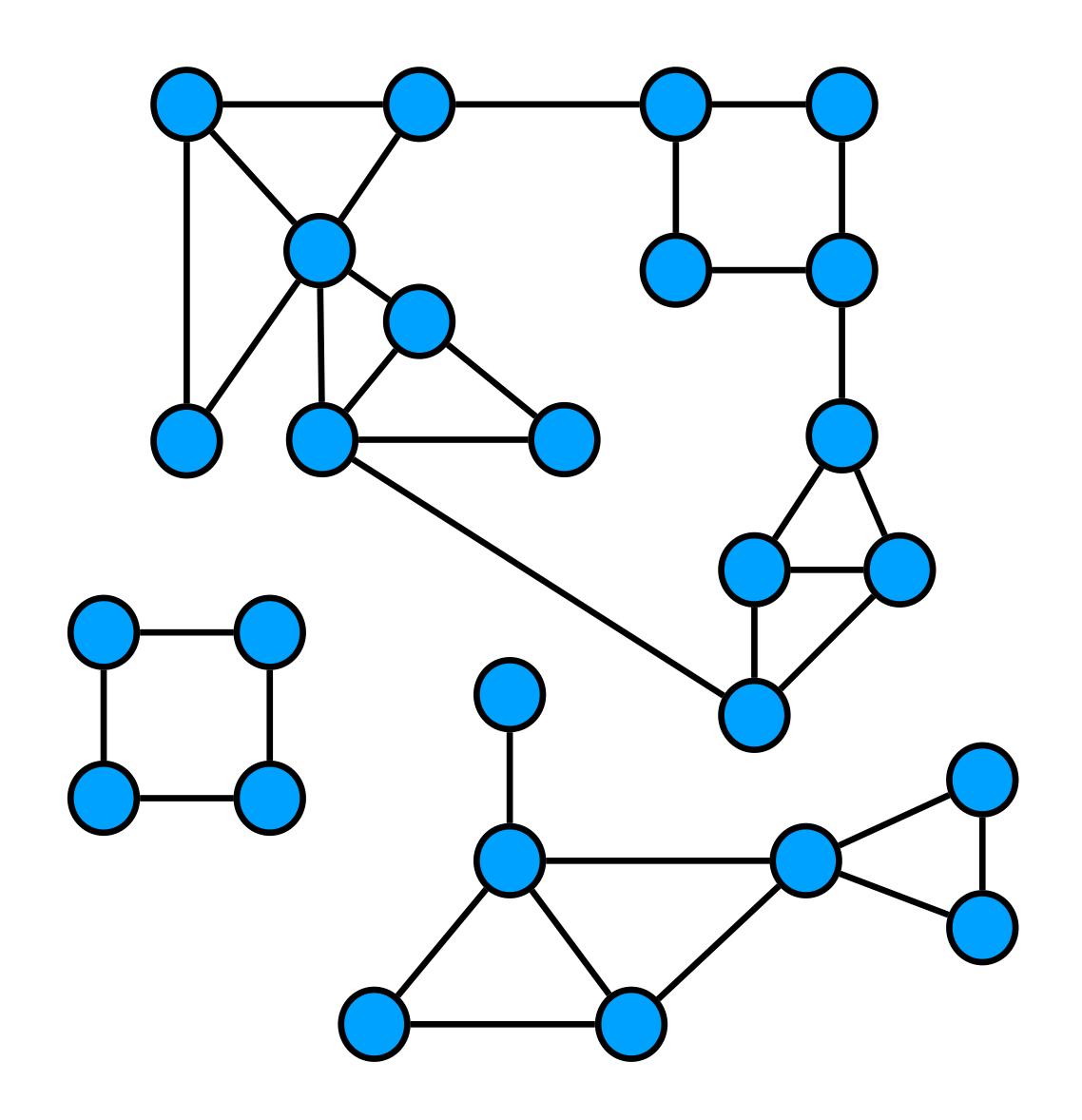
- ¹Computer Science & Mathematics Division, ORNL
- ² School of Computational Science and Engineering, Georgia Tech
 - ³ Nvidia Research

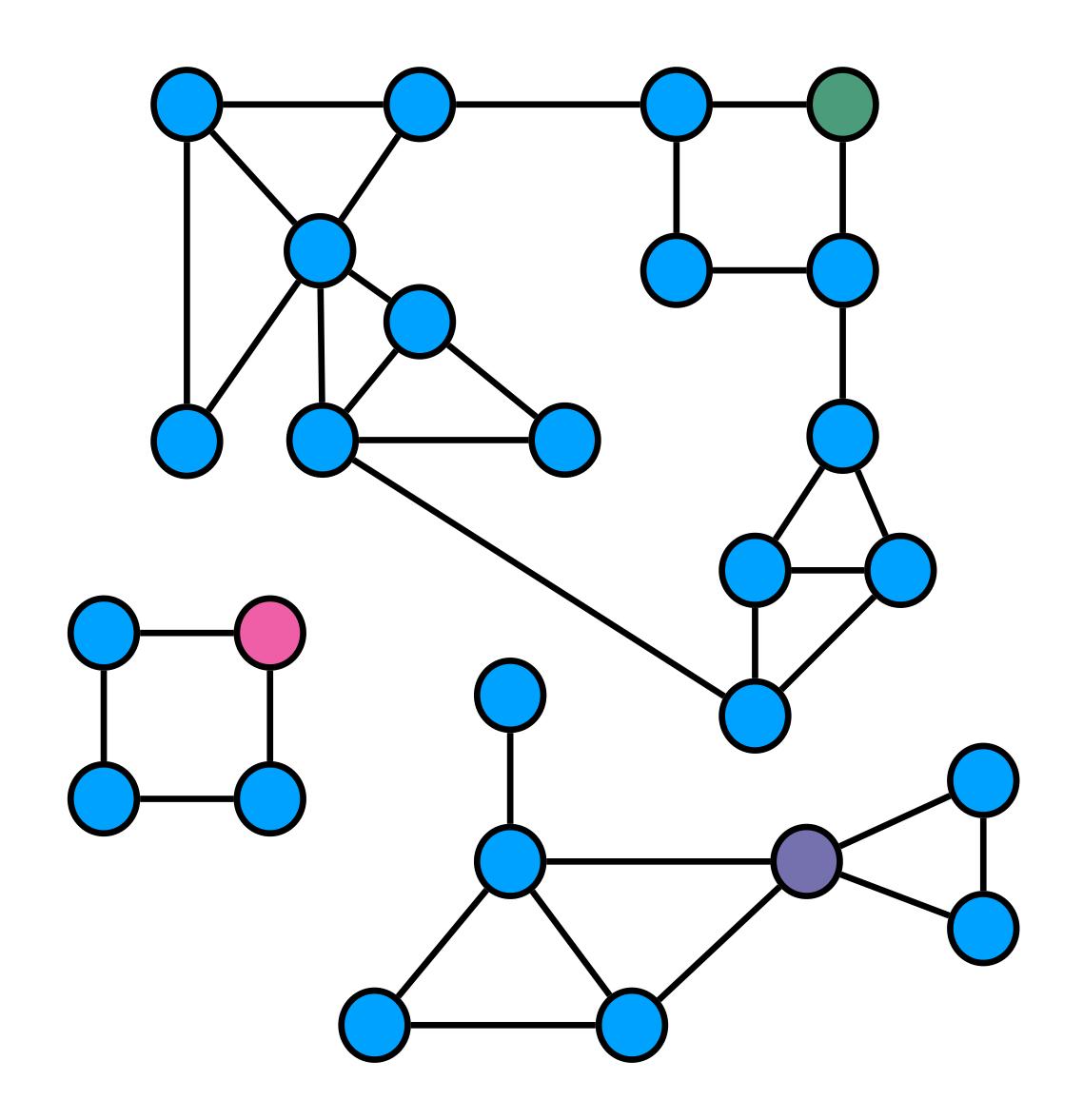


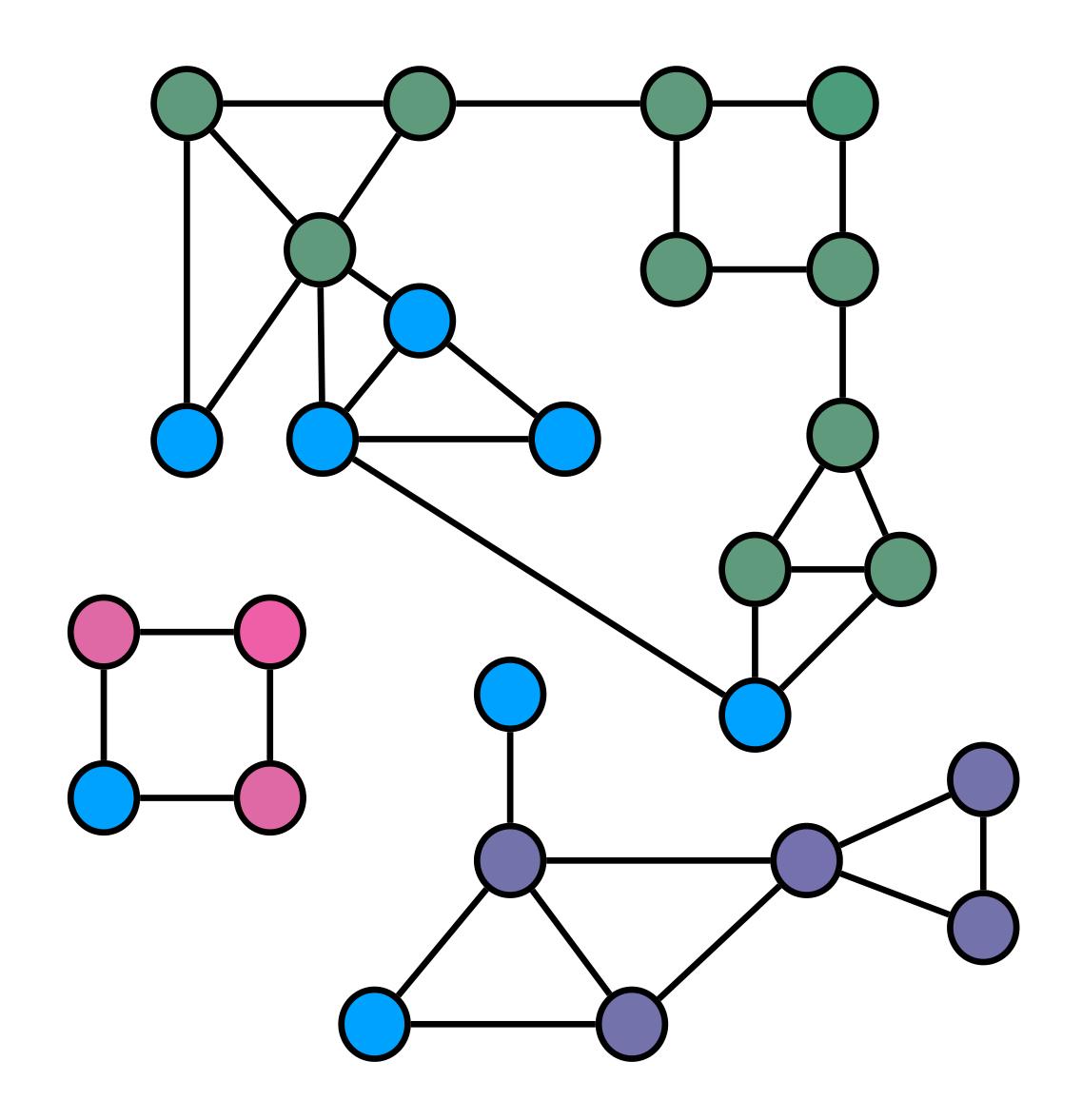
Graph Connected-Components

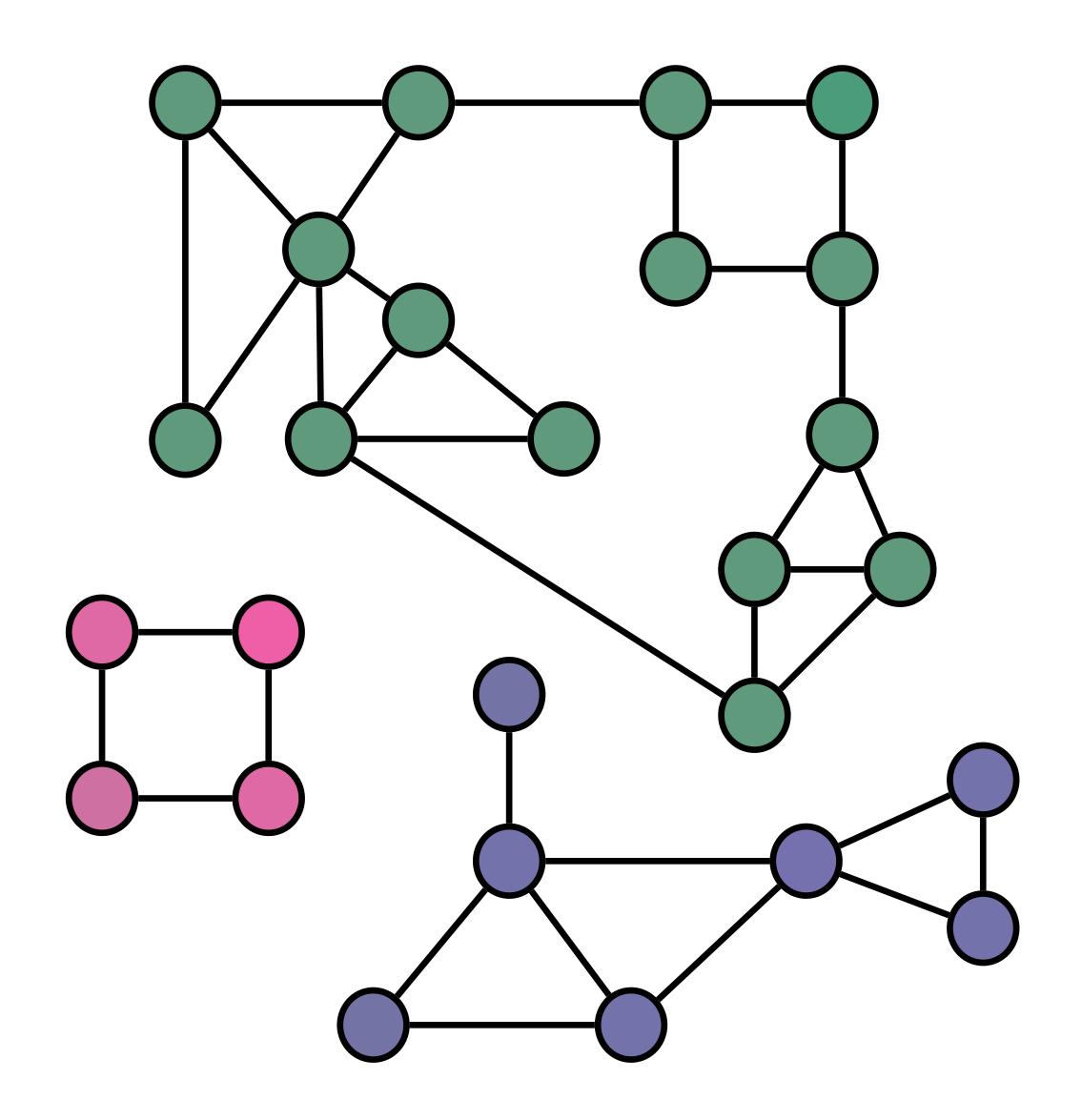




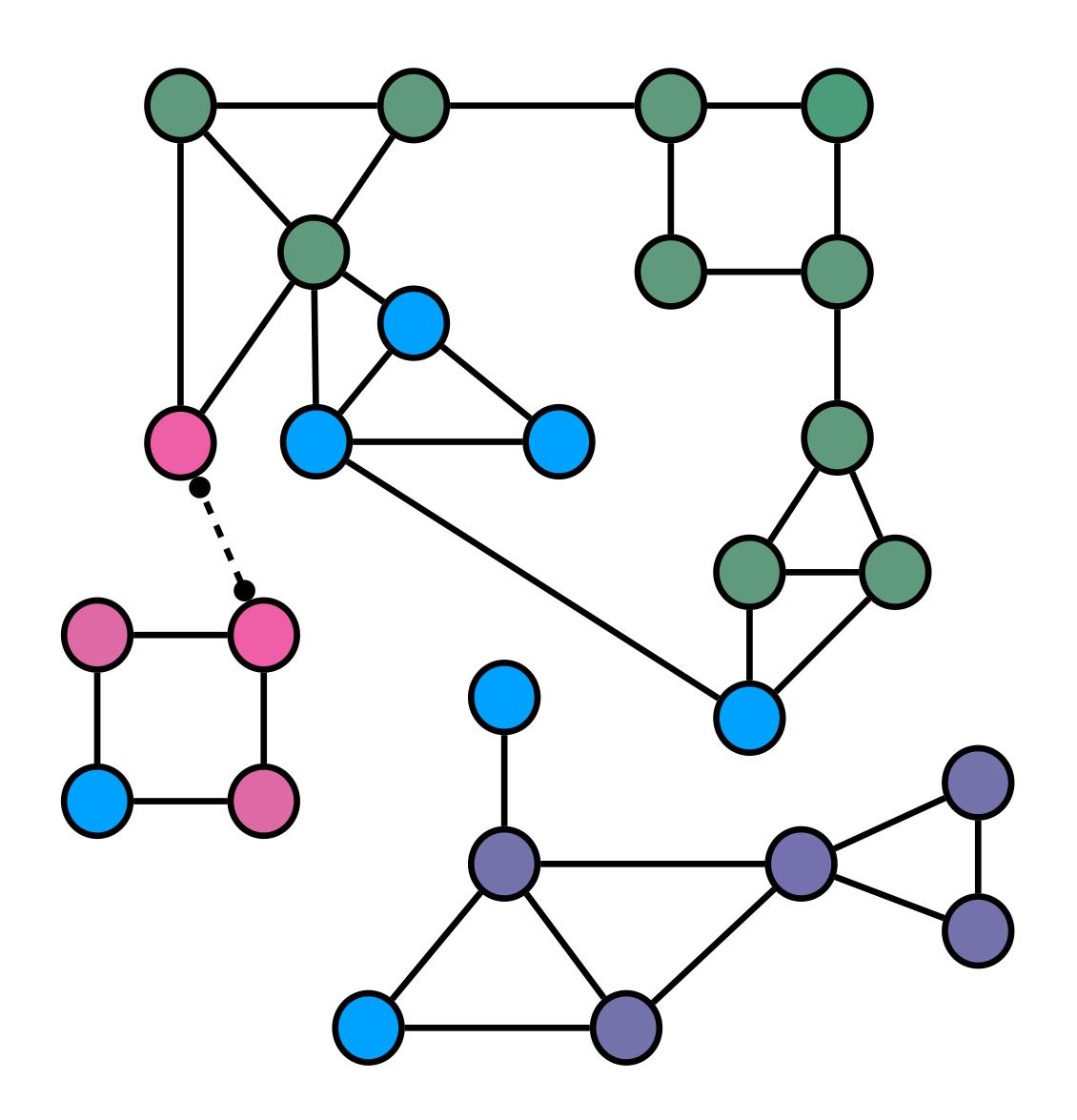




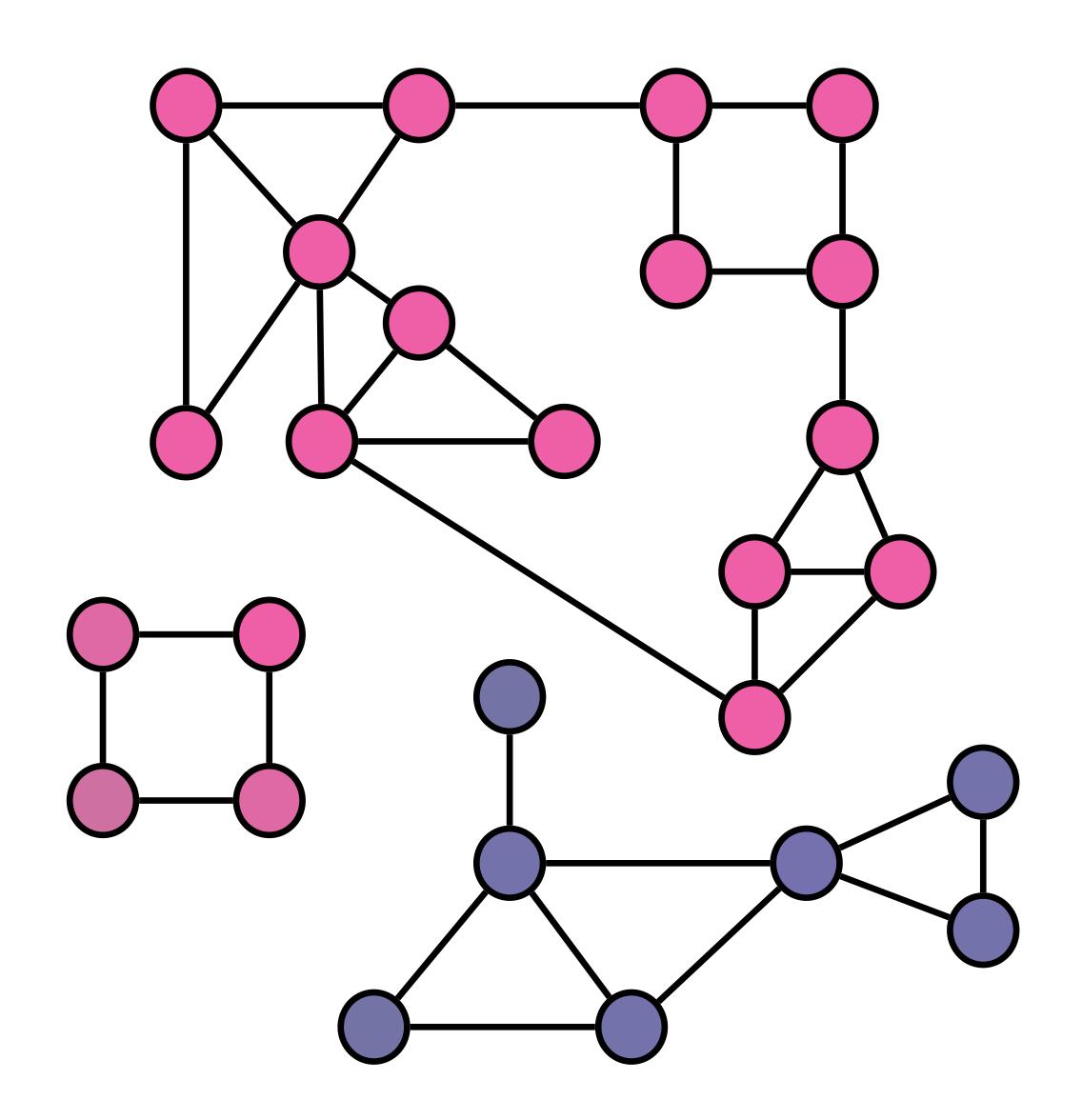




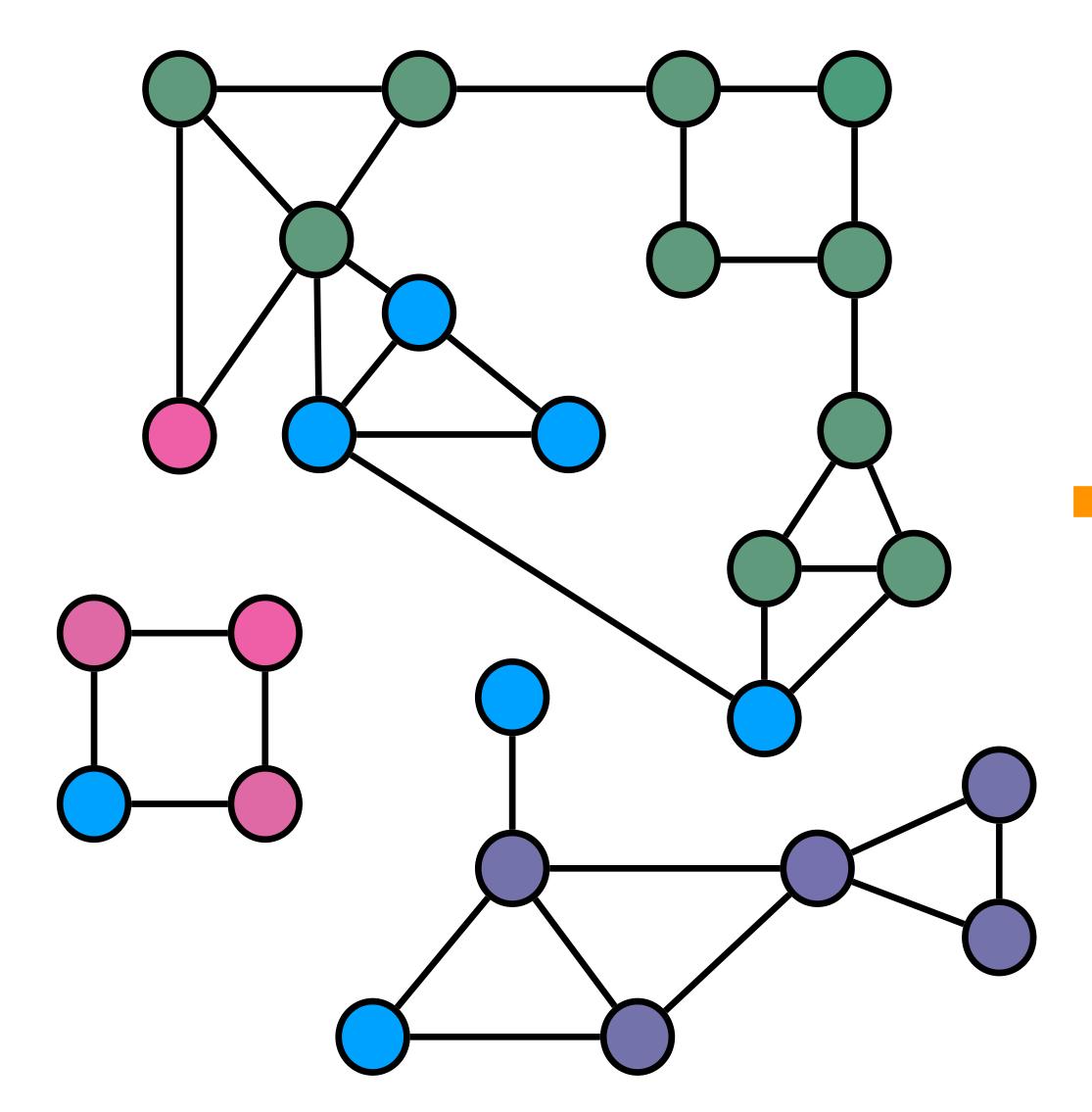
Impact of Faults in LP Algorithm



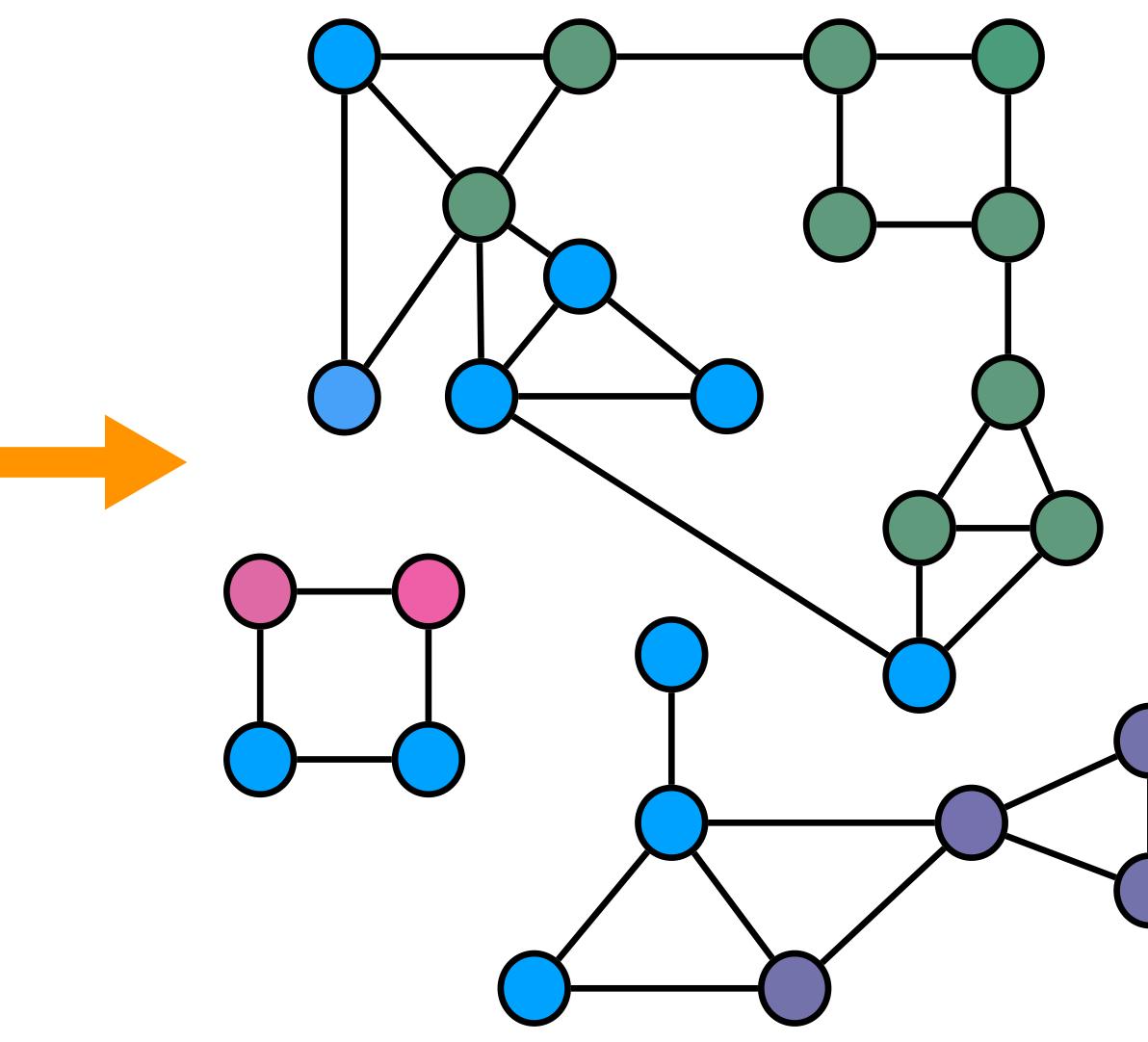
Impact of Faults in LP Algorithm



Self-stabilizing Connected-Components



Arbitrary State (valid or invalid)

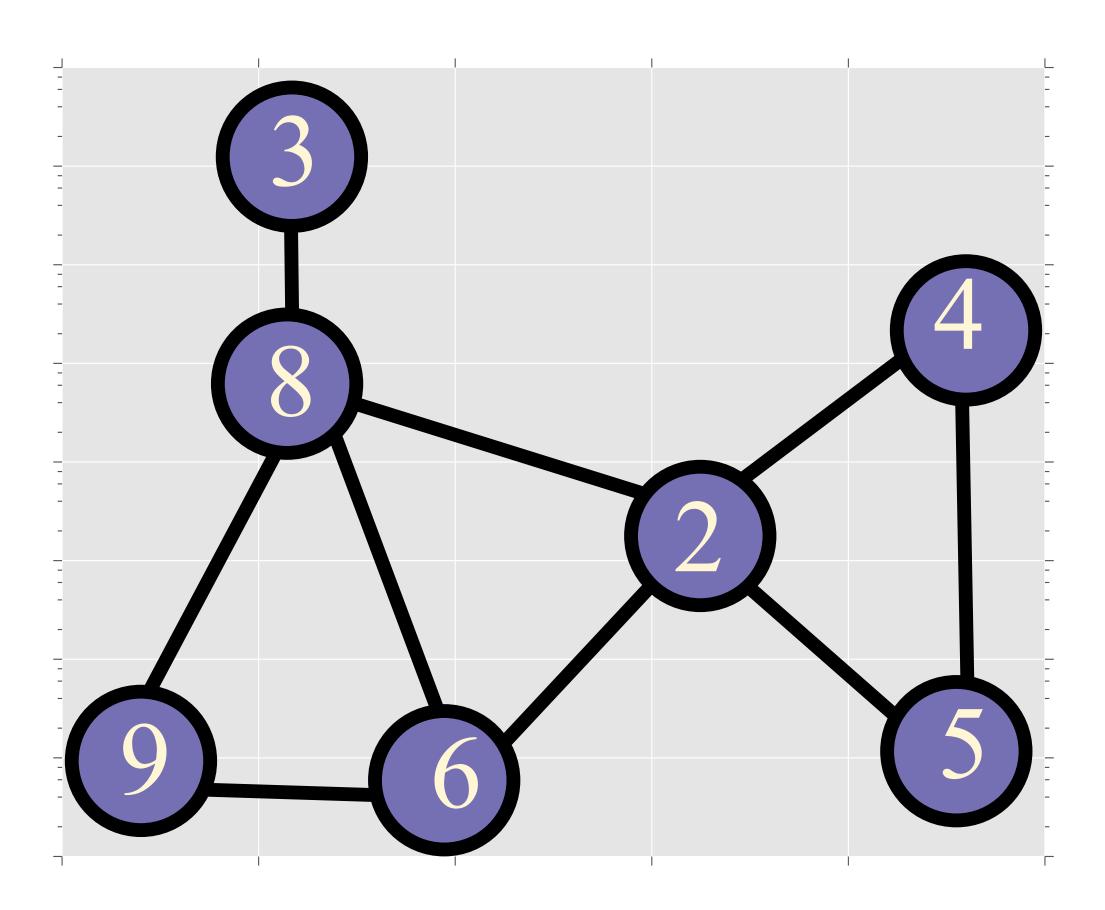


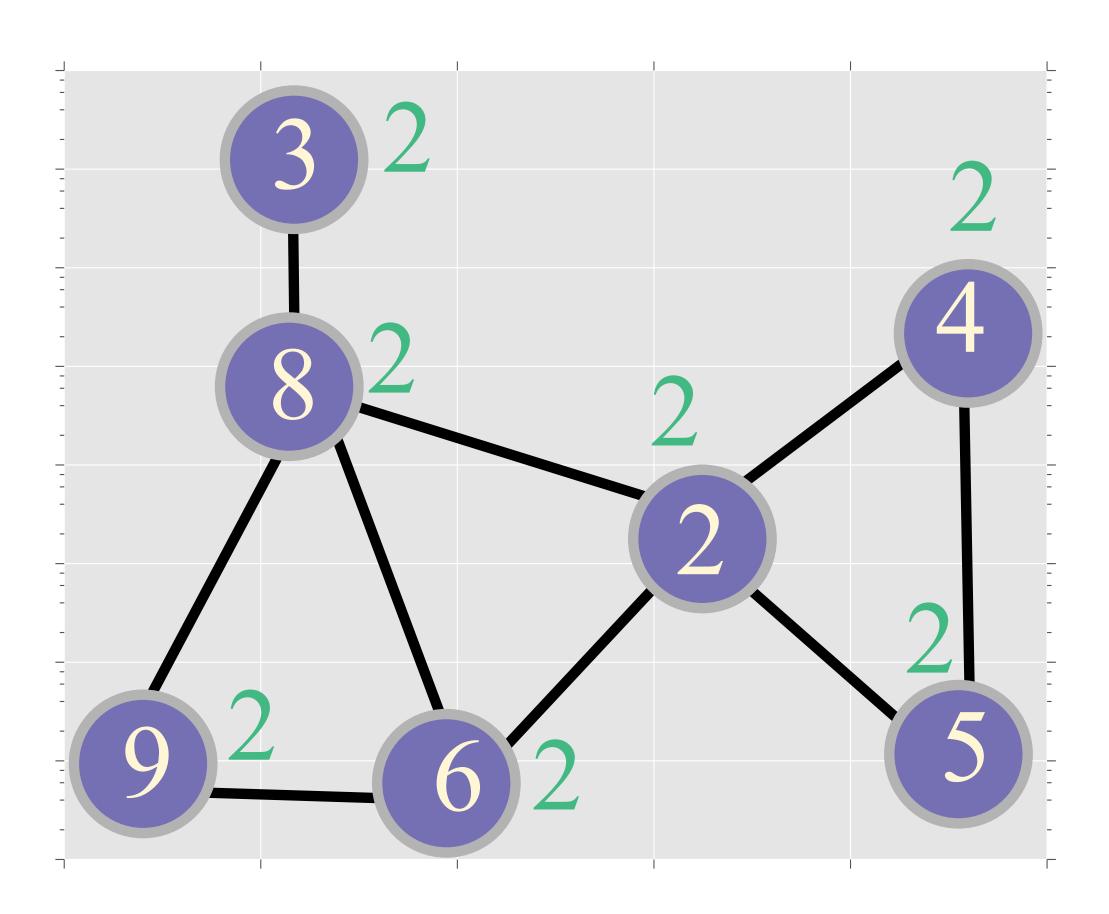
Guaranteed Valid State

0. Label-Propagation for Graph Connected-components Problem

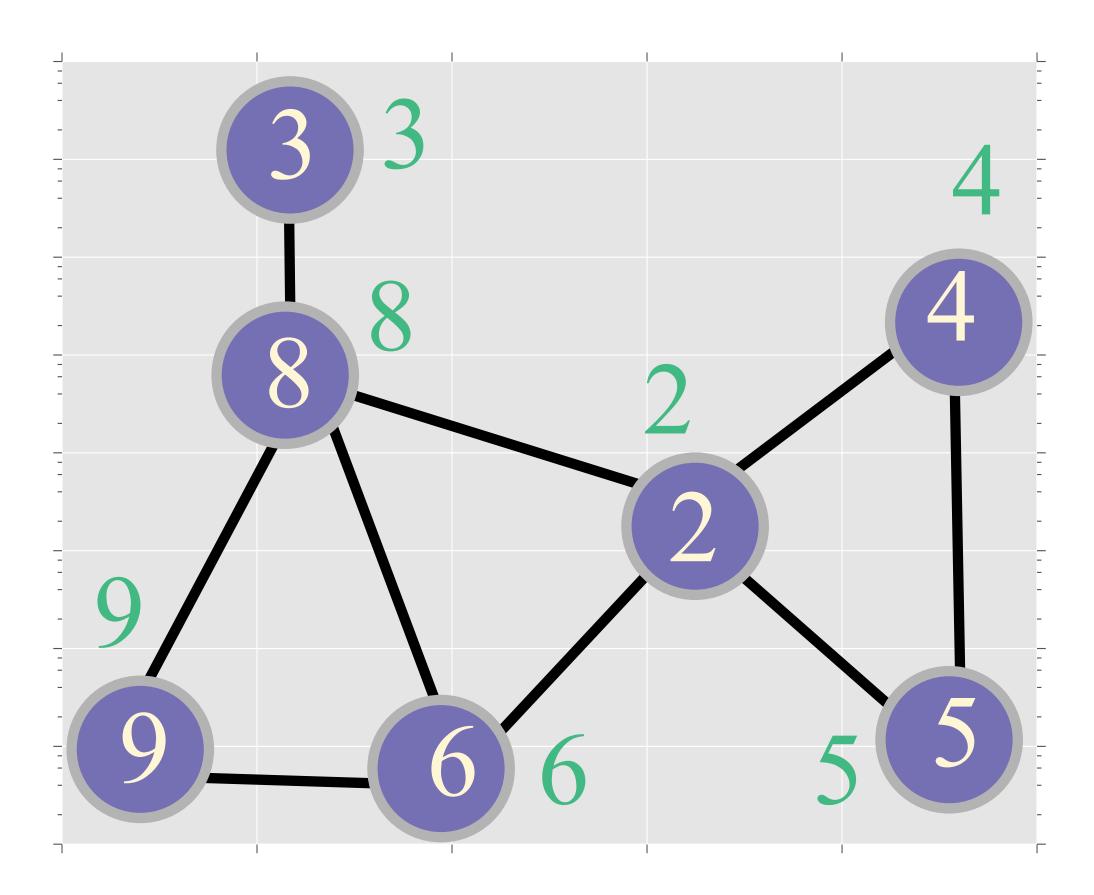
2. Self-stabilizing Connected Components – Sao, Engalmann, Eswar, Green, Vuduc (FTXS'19)

1. Self-correcting Connected Components - Sao, Green, Jain, Vuduc (FTXS'16)





LP-Initialization

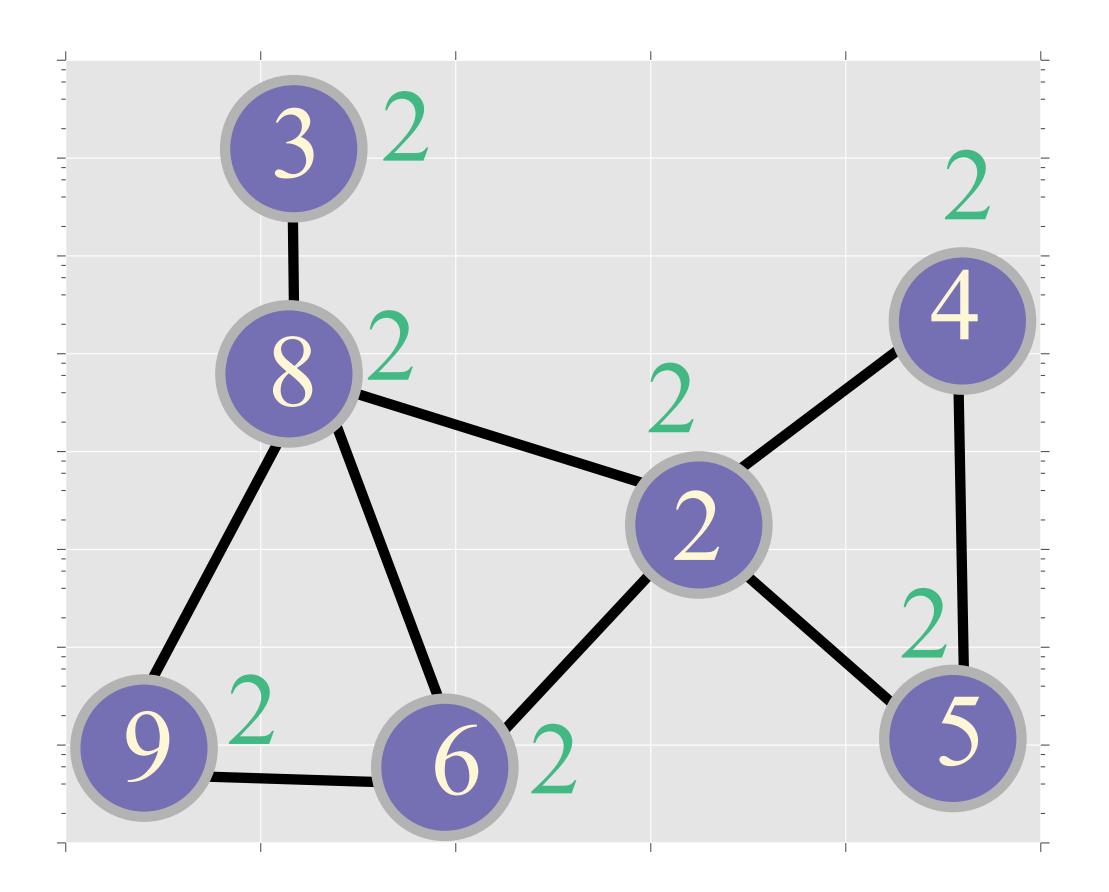


 $L^0(v) \leftarrow v$



 $L^{0}(v) \leftarrow v$ $L^{i+1}(v) \leftarrow \min_{u \in \mathcal{N}(u)} L^{i}(u)$

LP-Termination



 $L^0(v) \leftarrow v$ $L^{i+1}(v) \leftarrow \min_{\boldsymbol{u} \in \mathcal{N}(\boldsymbol{u})} L^{i}(u)$

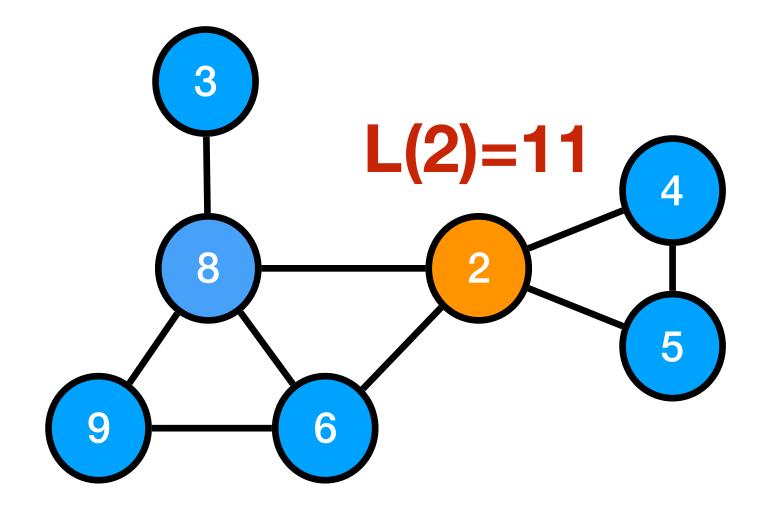
Final Label: $L^{\infty}(v)$

Terminates when there are no more label Changes

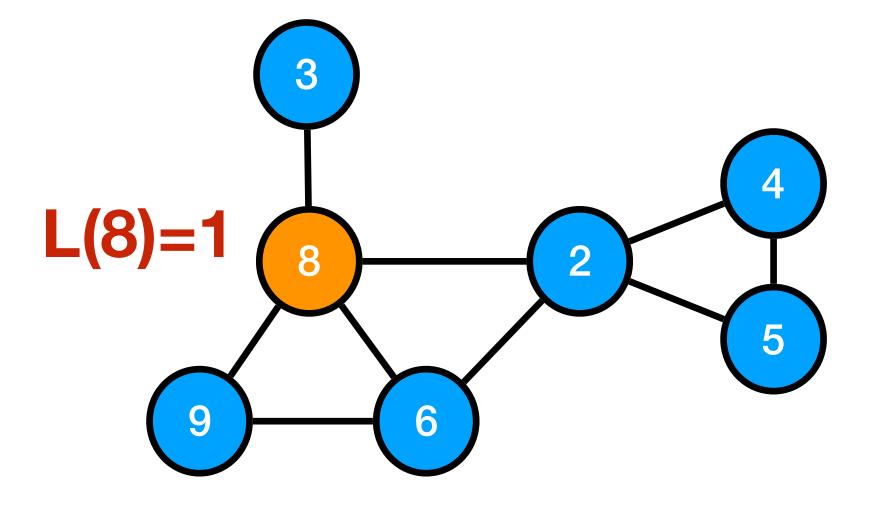
0. Label-Propagation for Graph Connectedcomponents Problem

1. Self-correcting Connected-Components - Sao, Green, Jain, Vuduc (FTXS'16)

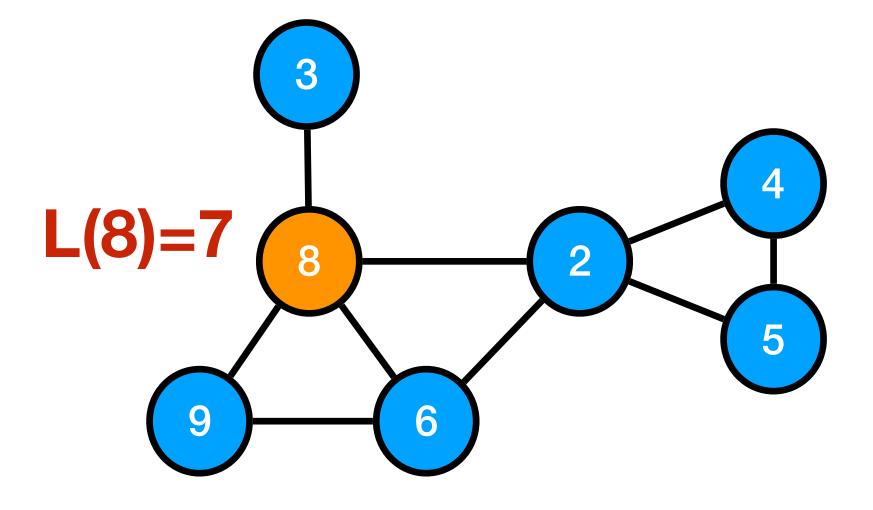
2. Self-stabilizing Connected-components – Sao, Engalmann, Eswar, Green, Vuduc (FTXS'19)

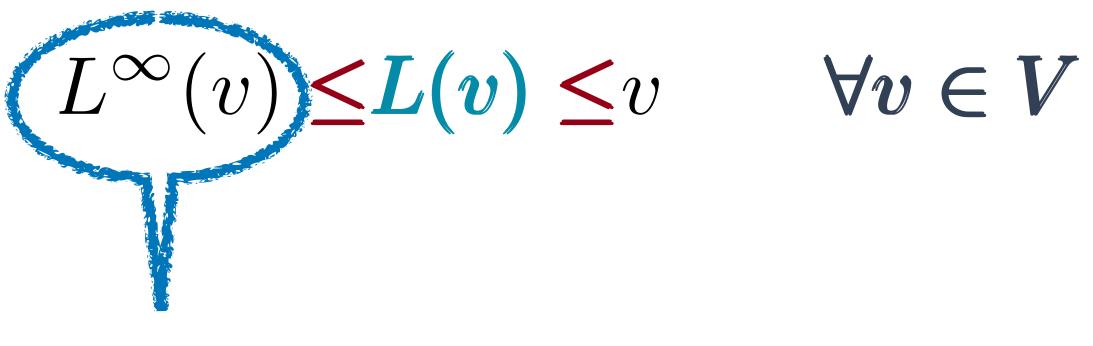


 $L^{\infty}(v) \leq L(v) \leq v$ $\forall v \in V$



 $L^{\infty}(v) \leq L(v) \leq v$ $\forall v \in V$





Unknown

Self-correcting Connected Components

$L^{i+1}(v) \leftarrow \min_{u \in \mathcal{N}(u)} L^{i}(u)$

Verifying this requires O(V+E) operations

 $P(v) \quad rac{v}{\mathrm{from}} \quad P(v)$

components Problem

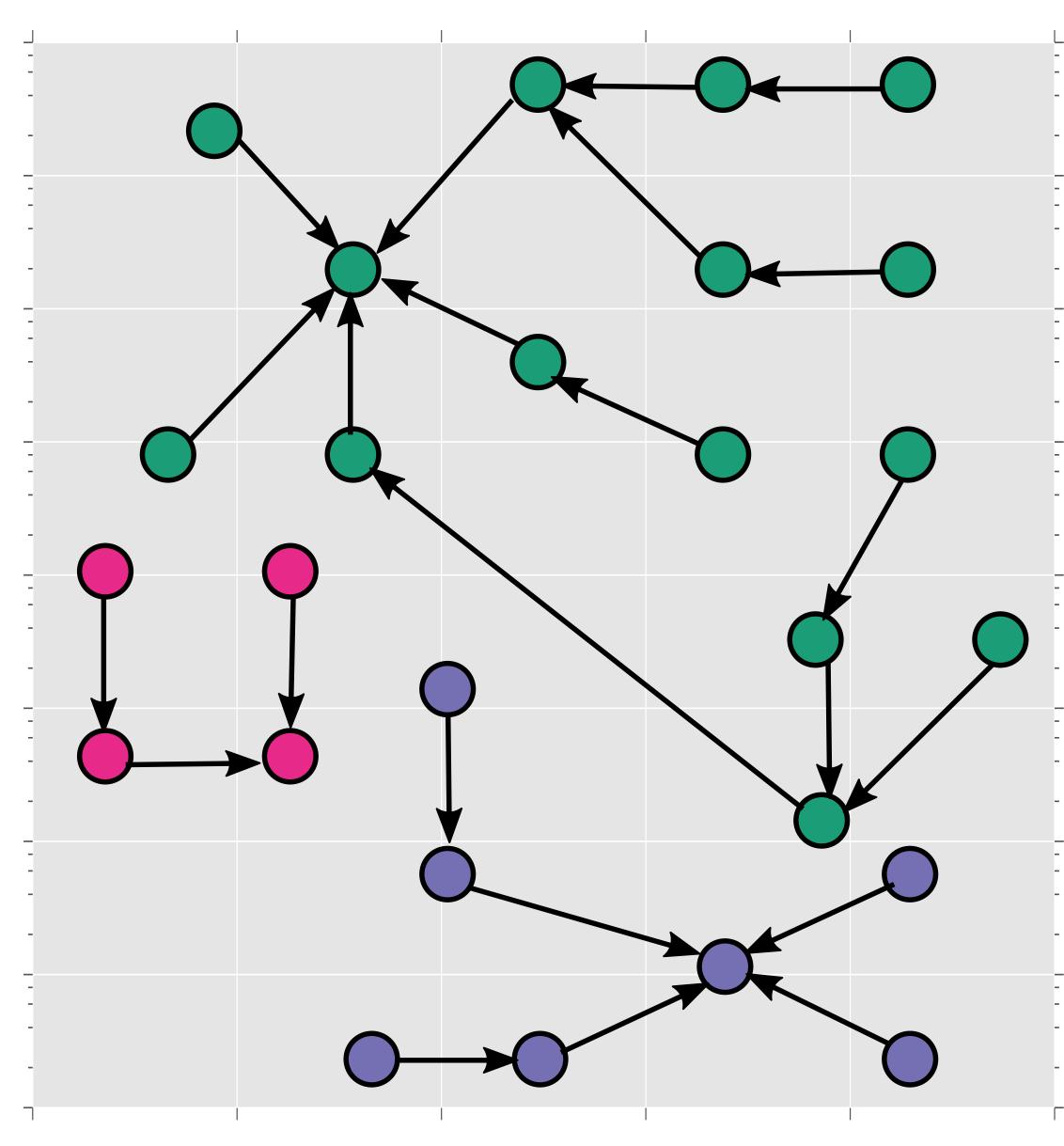
This Work

0. Label-Propagation for Graph Connected-

1. Self-correcting Connected-Components - Sao, Green, Jain, Vuduc (FTXS'16)

2. Self-stabilizing Connected-components – Sao, Engalmann, Eswar, Green, Vuduc (FTXS'19)

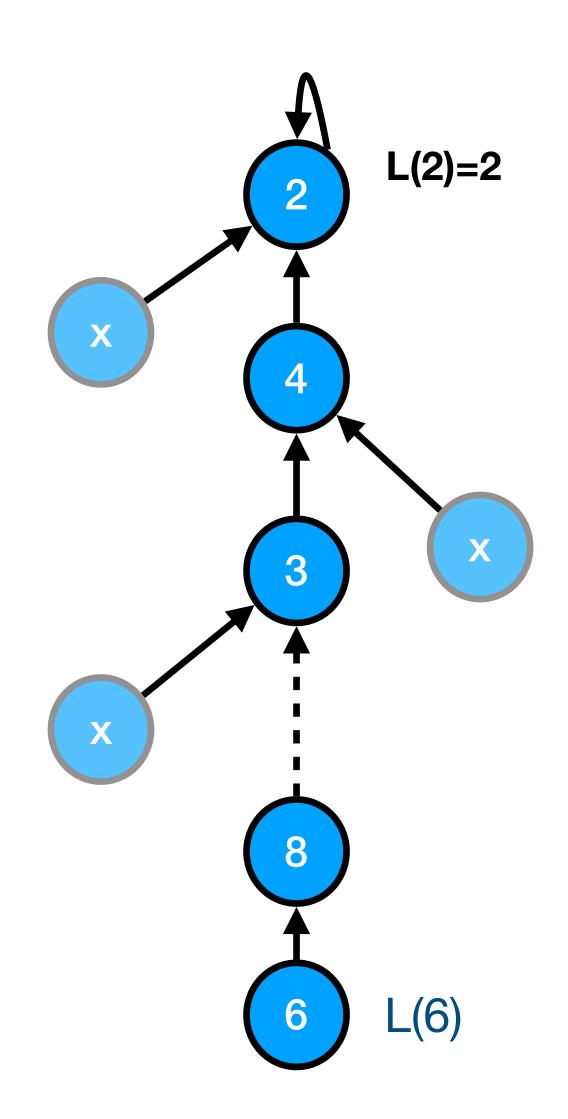
Propagation Graph (H)



$H = \{V, E_H\};$ $E_H = \{ v \to P(v), \forall v \in V \}$

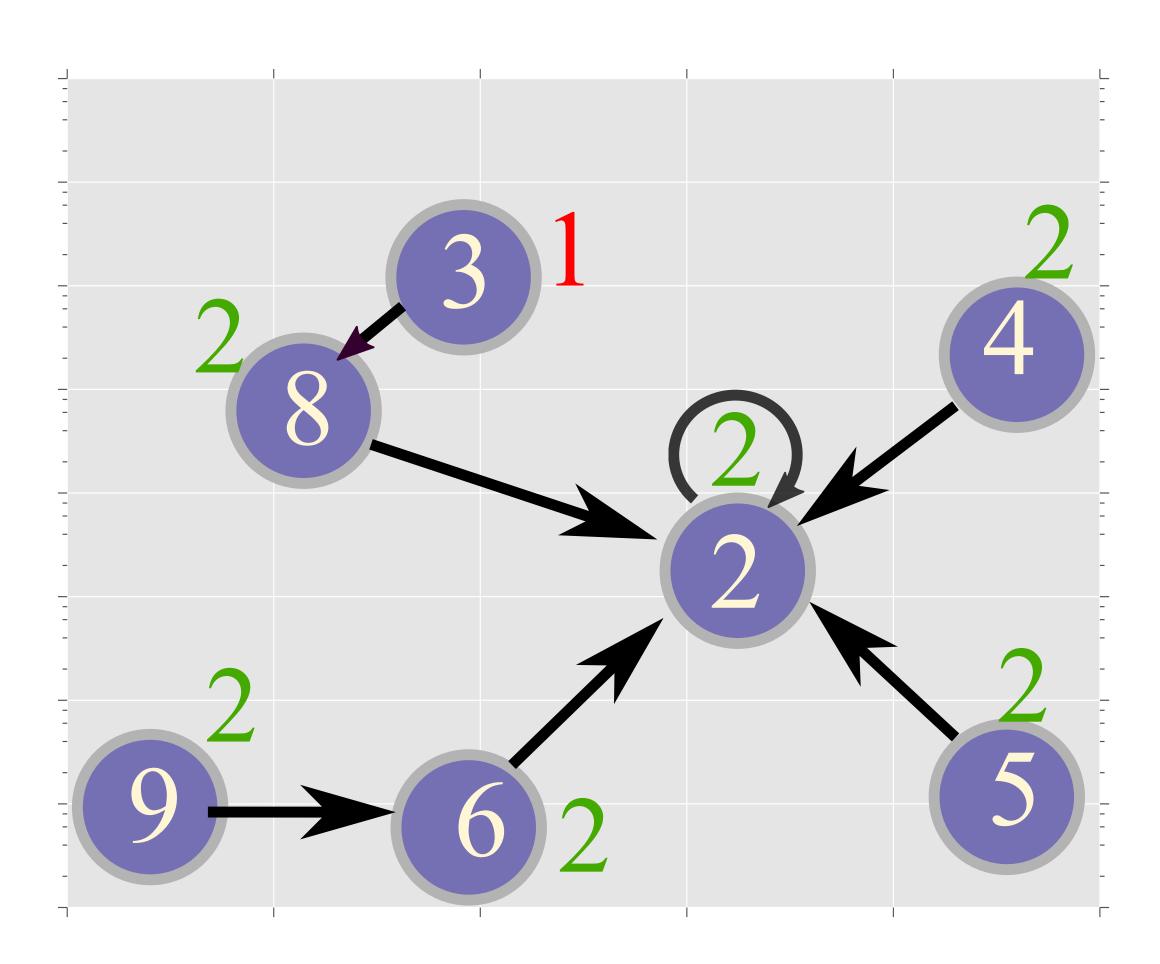


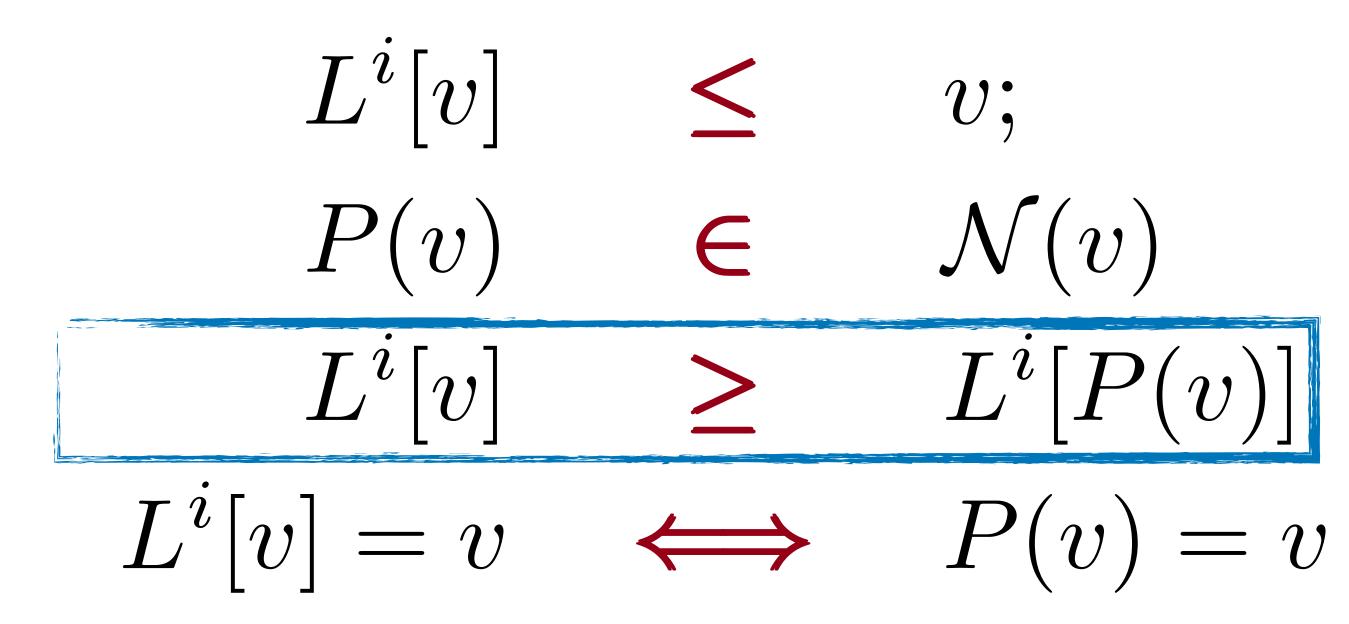
Properties of LP state

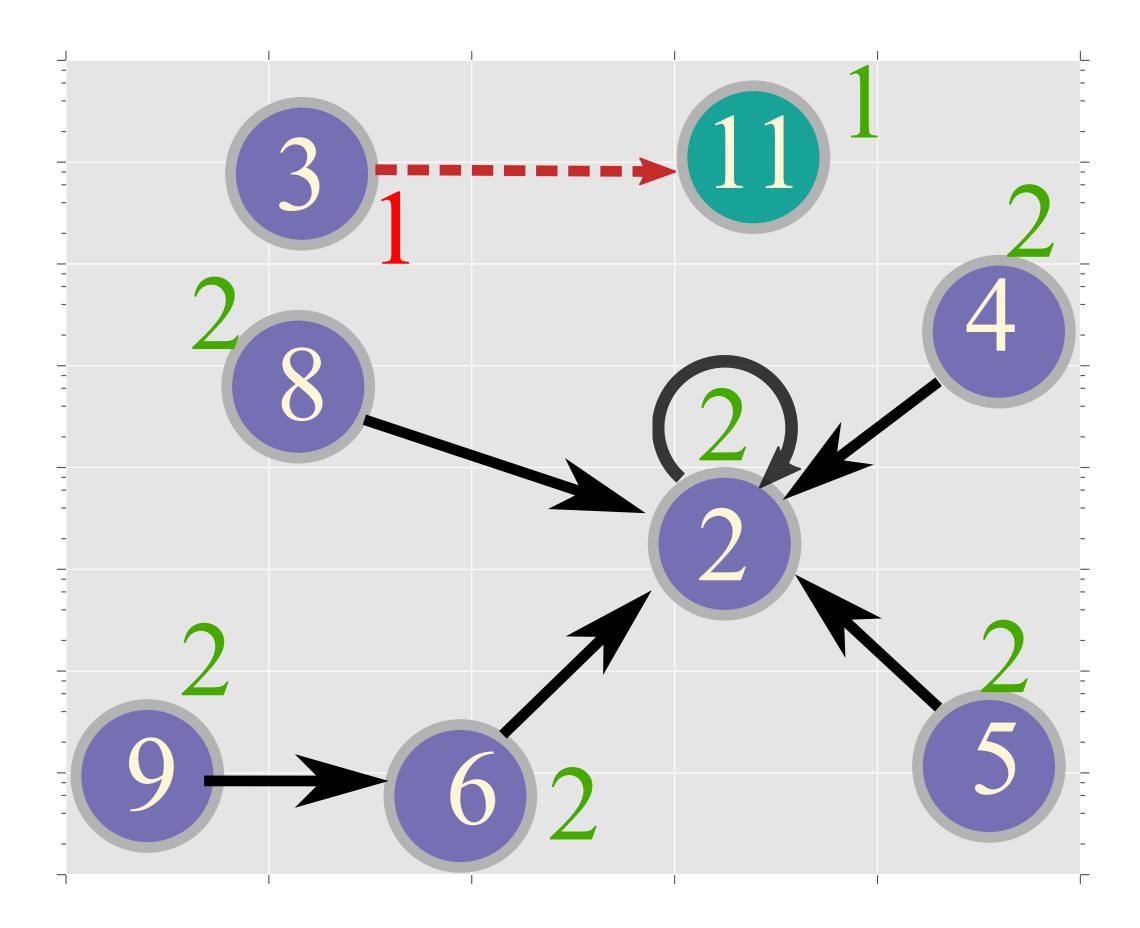


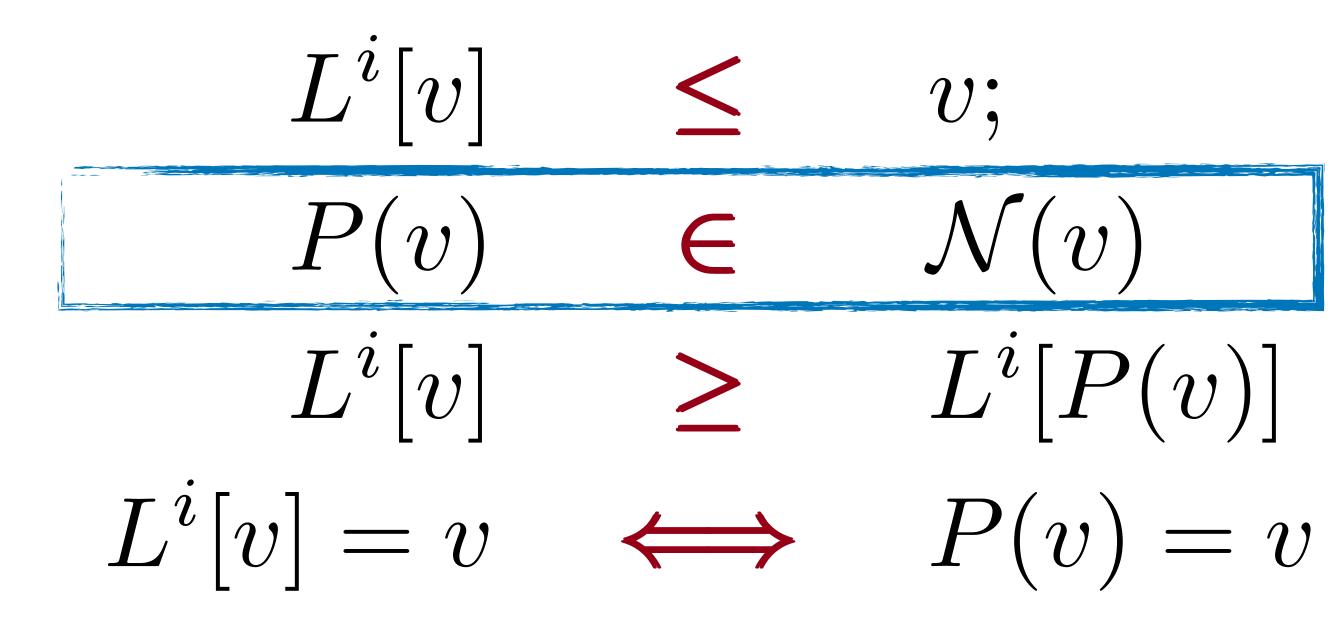
To verify: $L^{\infty}(v) \leq L(v) \leq v \qquad \forall v \in V$

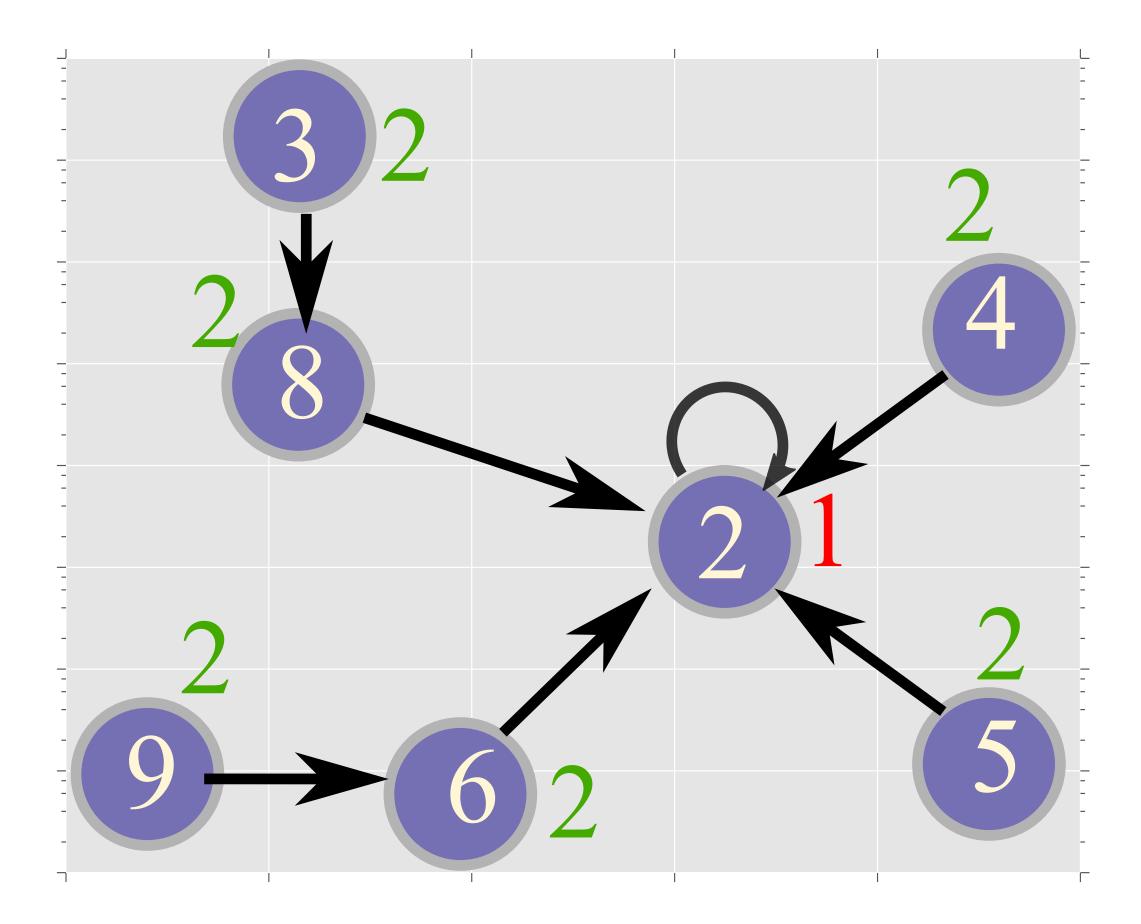
Example-1

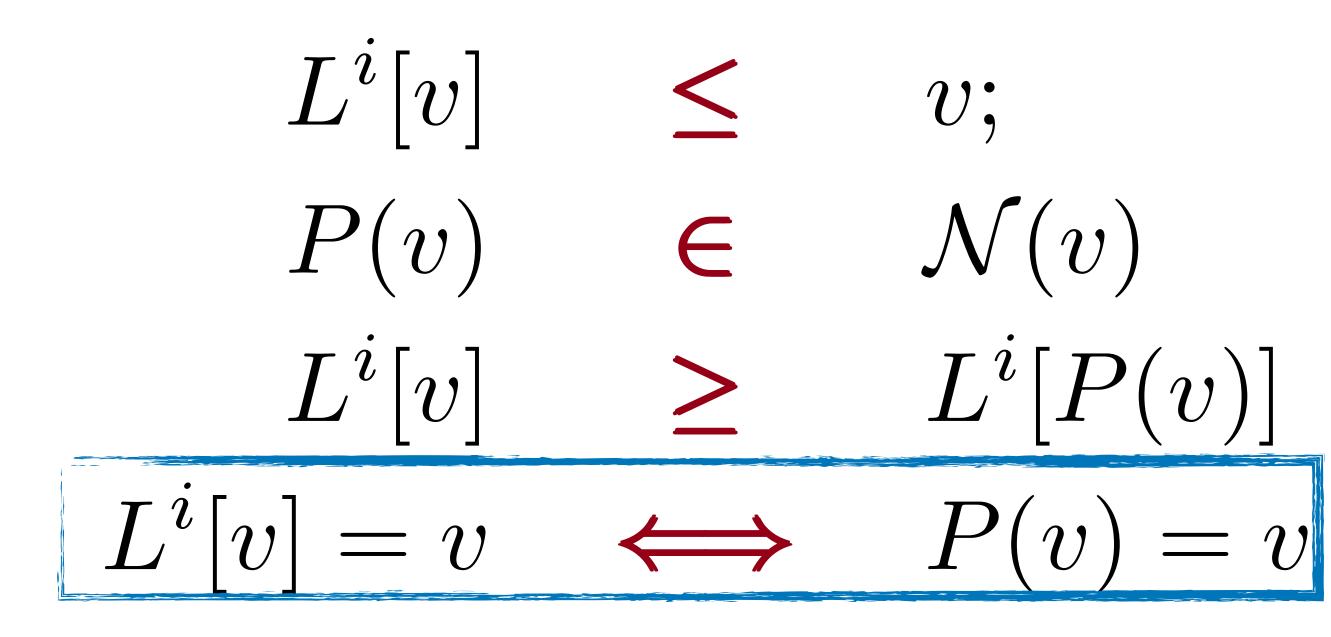


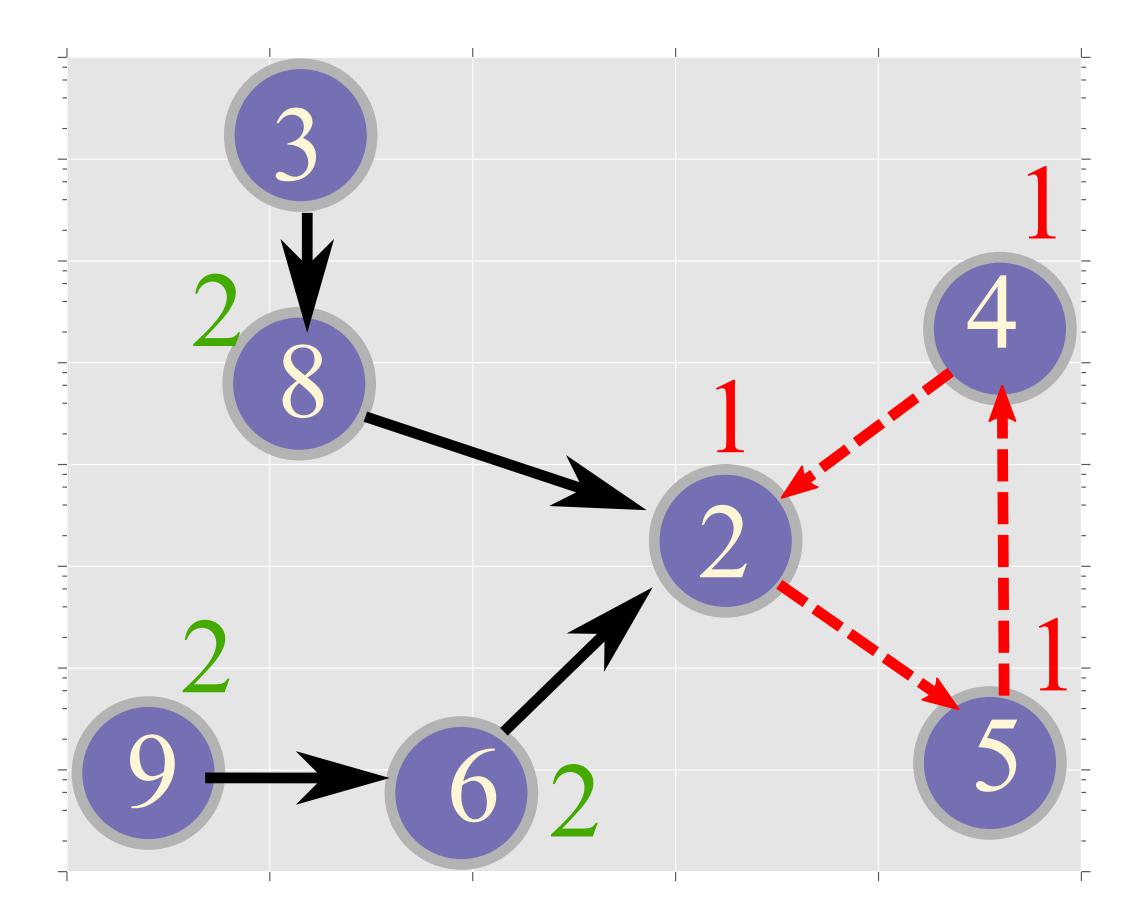






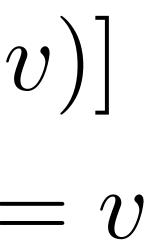




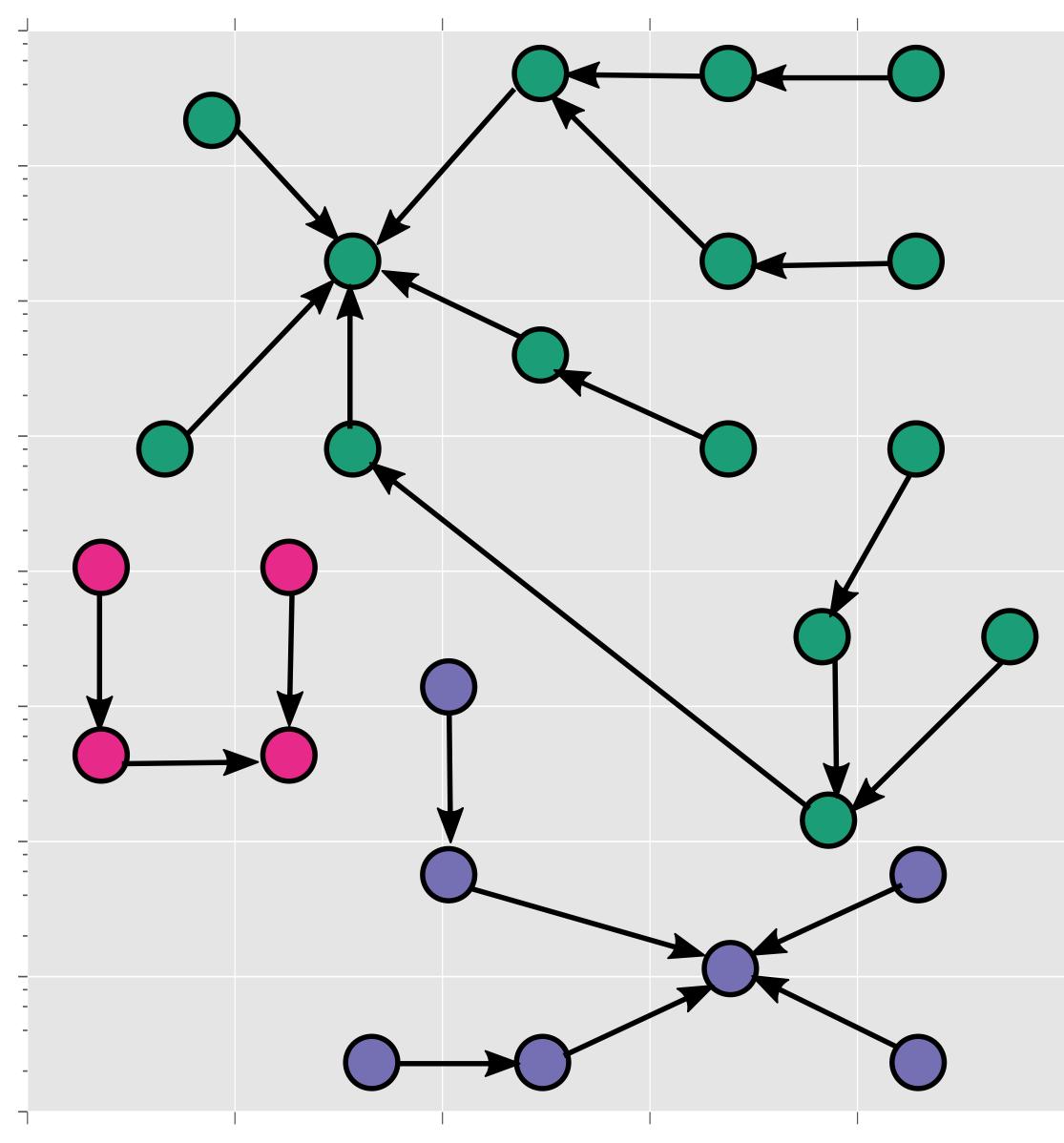


Not covered by any condition ?

$L^{i}[v]$ v; $\in \mathcal{N}(v)$ P(v) $L^i[P(v)]$ $L^{i}[v]$ \geq $\iff P(v) = v$ $L^i[v] = v$



Valid States



S={L,P} is valid when:

 $L^{i}[v]$ \leq v; $P(v) \in \mathcal{N}(v)$ $\geq L^{i}[P(v)]$ $L^i[v]$ $L^{i}[v] = v \quad \Longleftrightarrow \quad P(v) = v$ #cycles(H) =(i)

Detecting Cycles

S={L,P} is valid when:

 $L^{i}[v] \leq$ U; $P(v) \in \mathcal{N}(v)$ $L^{i}[v] \geq L^{i}[P(v)]$ $L^{i}[v] = v \quad \Longleftrightarrow \quad P(v) = v$ #cycles(H) =(i)O(V log V)

 $\mathcal{A}(v) = \min \mathcal{P}(v) = \min \left\{ P(v), \ P^2(v), \ldots \right\}$

If
$$v = \mathcal{A}(v)$$

Then

v is a vertex in a cycle in H; and
v has the smallest vertex-id in the cycle.

Self-stabilizing Connected Components

S={L,P} is valid when:

 $L^{\imath}[v]$ \leq U;E P(v) $\mathcal{N}(v)$ $L^i[P(v)]$ $L^{i}[v]$ > $L^i[v] = v$ P(v) = v \iff #cycles(H)()_

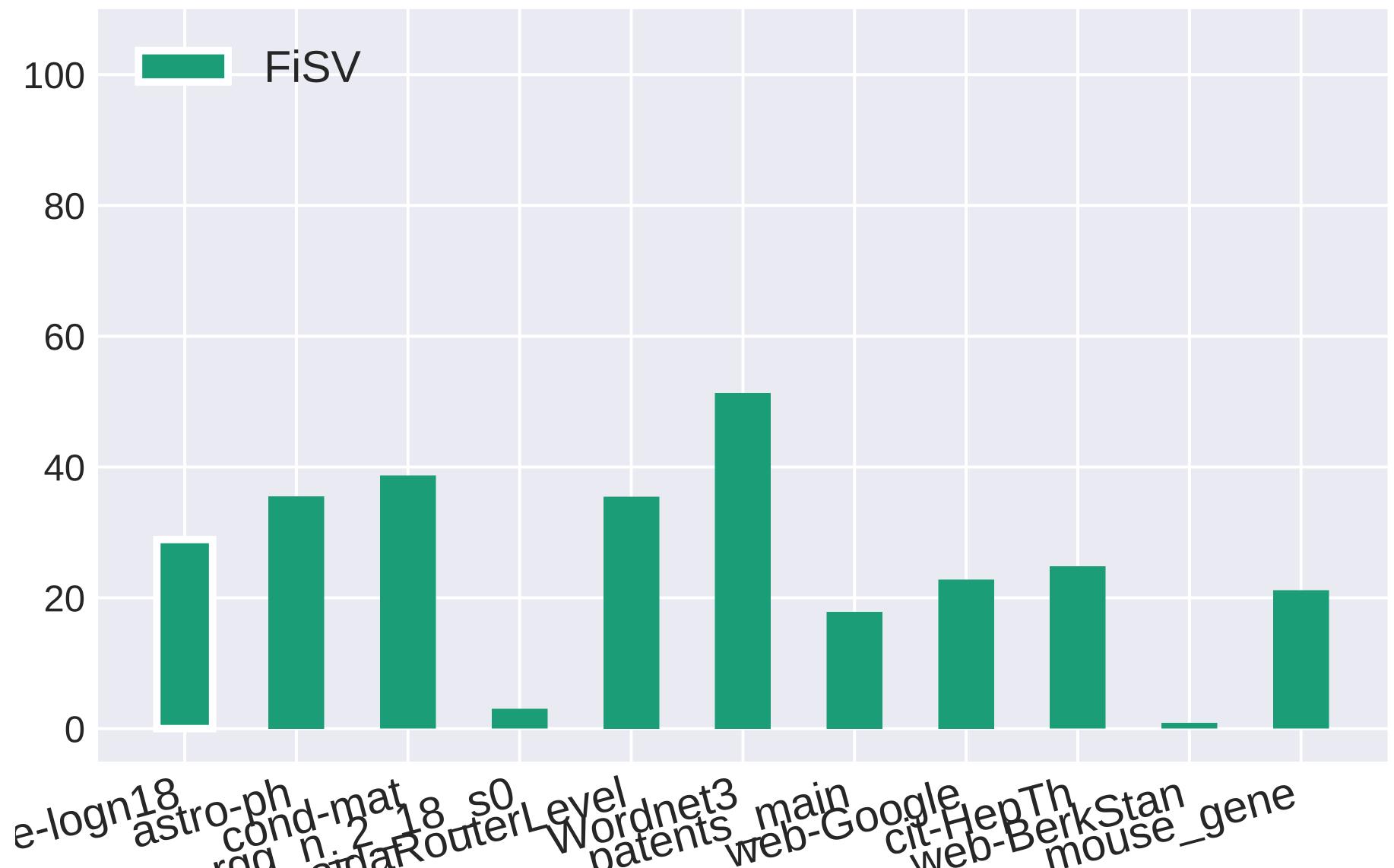
Perform state check after the algorithm reports convergence

SsHSV

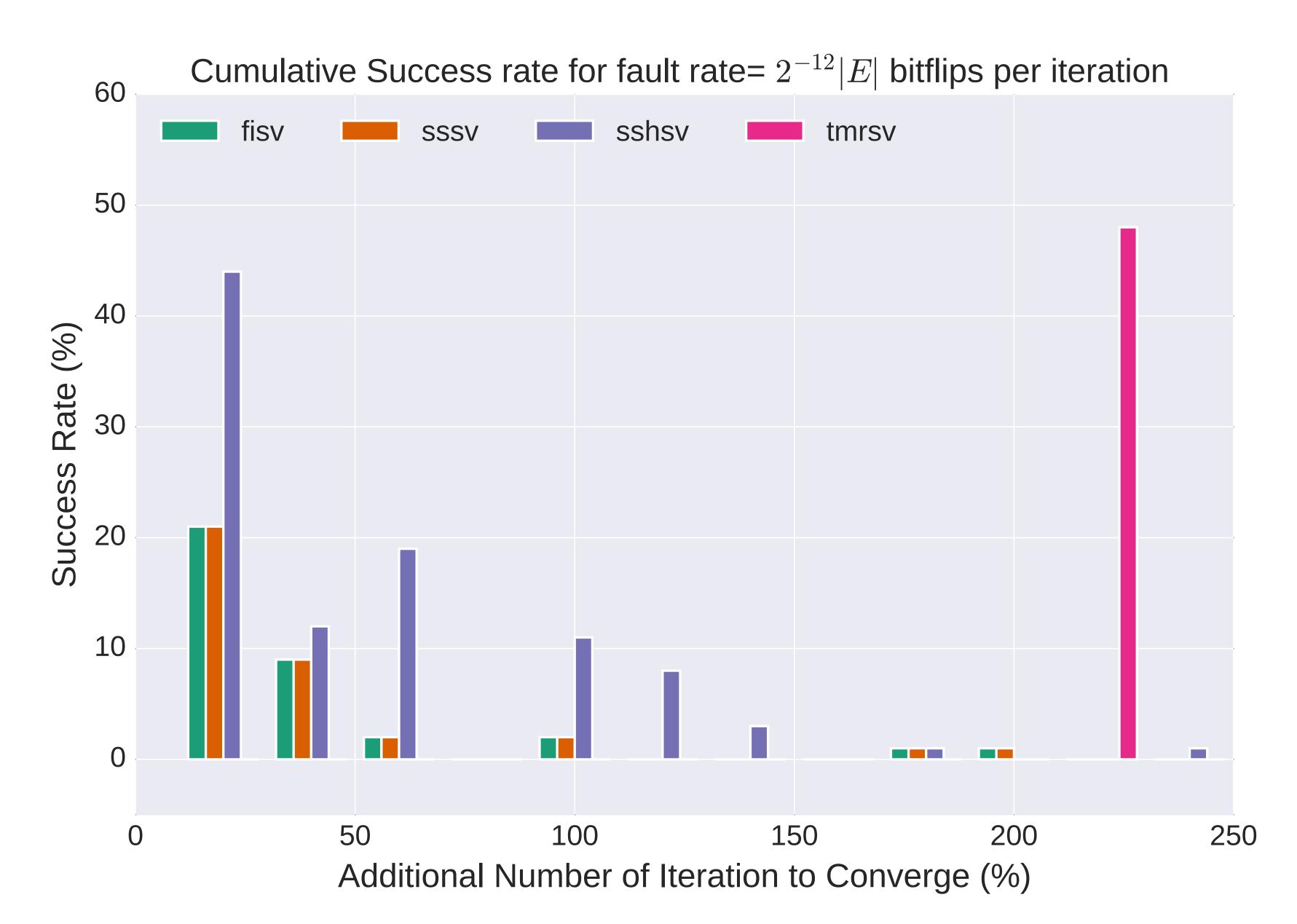
Perform local checks after every iteration and full state check after the algorithm reports convergence

Overhead of Self-stabilization

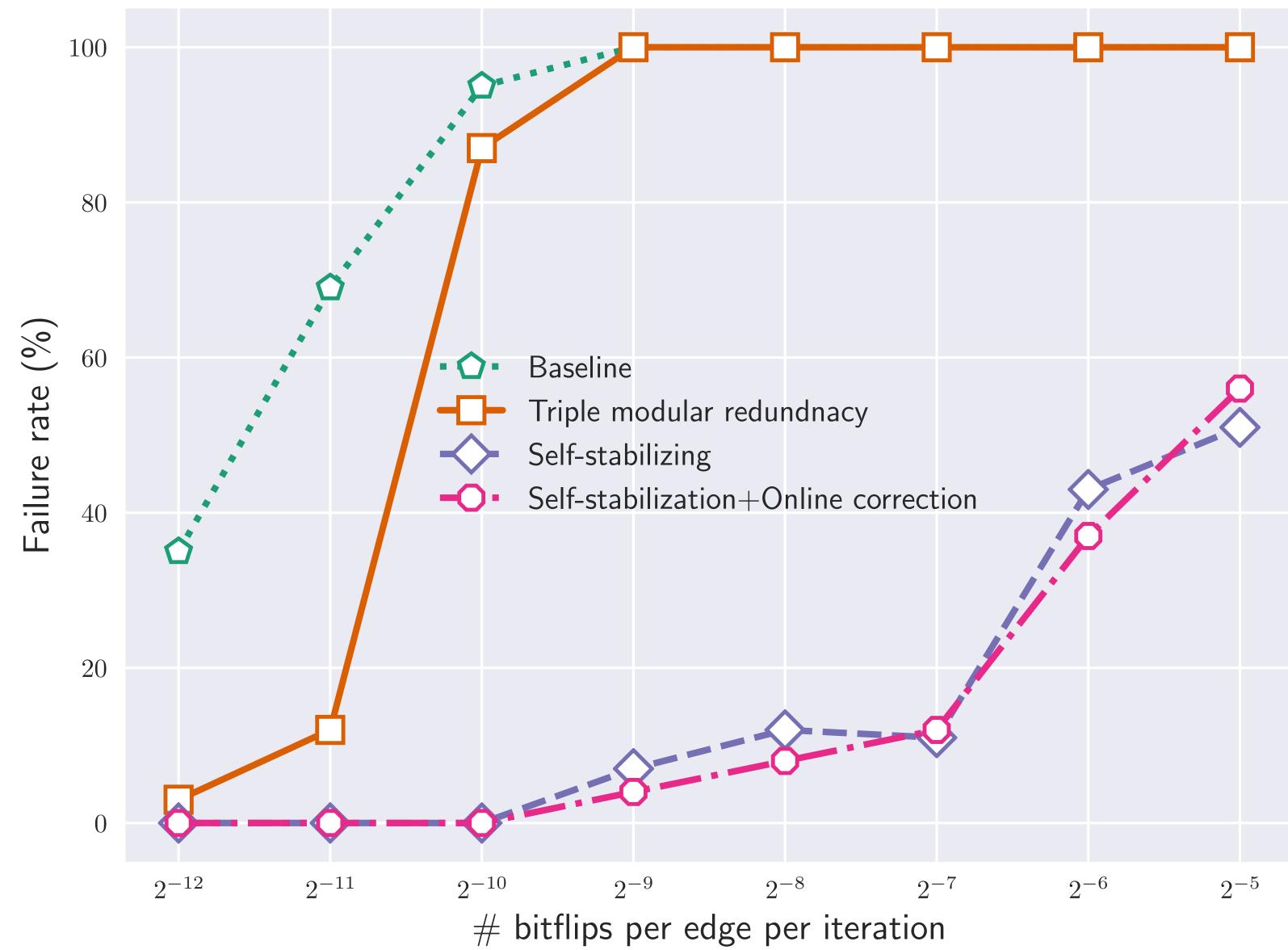
Overhead of Self-stabilization in Fault-free execution



Success Rate vs Additional Iterations



Failure Rate w.r.t. Fault Injection Rate



To sum up..

Conclusion

- Self-stabilization property of stationary iterations may not hold for graph algorithms (or semi-ring equivalent algorithms)
- Nevertheless, self-stabilization formulations may exists
- Efficiency of self-stabilization depends on the data structure

Future work

- Techniques used here are applicable to several other graph algorithms, e.g. BFS, Bellmen-Ford
- Self-stabilization could have practical use case in incremental/streaming graph processing