
Self-stabilizing  
Connected Components

Piyush Sao1,  Christian Engelmann1, Srinivas Eswar2, Oded Green2,3, Richard Vuduc2

1Computer Science & Mathematics Division, ORNL


2 School of Computational Science and Engineering, Georgia Tech


3 Nvidia Research

!1



Graph Connected-Components

!2

!  



Label Propagation (LP) Algorithm

!3



Label Propagation (LP) Algorithm

!4



Label Propagation (LP) Algorithm

!5



Label Propagation (LP) Algorithm

!6



Impact of Faults in LP Algorithm

!7



Impact of Faults in LP Algorithm

!8



Self-stabilizing Connected-Components

!9Arbitrary State (valid or invalid) Guaranteed Valid State



0. Label-Propagation for Graph 
Connected-components Problem 

1. Self-correcting Connected Components  
                                                       — Sao, Green, Jain, Vuduc (FTXS’16)  
                                                        

!10

2. Self-stabilizing Connected Components  
                                                       — Sao, Engalmann, Eswar, Green, Vuduc (FTXS’19)  
                                                        



2

4

5

3

8

9 6

2

4

5

3

8

9 6

2

2

2
22

2

2

Label Propagation (LP) Algorithm-0



LP-Initialization

!

"

#

$

%

& '

!

"

#'

&

%

$
1 FTXS-2019 Equation

L 0(v) !!! v (1)

L i +1 (v) !!! min
u! N (u)

min
u! N (u)

min
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(3)

1



LP-Update
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LP-Termination
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1 FTXS-2019 Equation

L 0(v) !!! v (1)

L i +1 (v) !!! min
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(3)
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Terminates when there are no more label Changes
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Theorem 1. Valid States: The label arrayL is in a valid state
that, given a fault-free execution from the current state onwards, the
following is true for all vertices:L ! [v] ! L [v] ! v [33].

2) Self-correcting label propagation algorithm:The problem with
theorem 1 is that it deÞnes the validity of the state based on the
correct output. Therefore, it cannot be used to verify the validity of
current state. In our previous work, we presented the following set
of conditions that can be used to check the validity of the current
state [33]. That check must be performed synchronously, where each
vertex maintains two label ids: one for the current iteration and one
from the previous iteration.

Theorem 2. Given a valid state for the previous iteration,L i " 1 , the
current label arrayL i is valid if for all verticesv, L i satisÞes these
conditions:

1) L i [v] ! v;
2) L i [v] = L i " 1 [P (v)]; and
3) P (v) " N (v).

The conditions of theorem 2 can be veriÞed inO (1) time for any
vertexv [33]. Thus, we can check validity for all vertices inO (V )
time. We can cheaply recompute the labels for the vertices that do
not satisfy theorem 2 using the valid previous stateL i " 1 [v].

theorem 2 assumes and can only work correctly when the previous
stateL i " 1 is valid. In theself-correctinglabel propagation algorithm,
we detect and correct invalid labels in every iteration by using
theorem 2 to ensure that the algorithm is in a valid state.

3) Limitations of Self-correcting label propagation algorithm:The
self-correctingalgorithm can only work when we have the copy of
previous valid labelsL i " 1 . Thus, theself-correctinglabel propagation
algorithm will not work with asynchronous-LP formutation.

In some cases, such as dynamic graphs, we would like to start
the algorithm from a previously calculated state. For such states,
we do not know whether they are valid for the changed graph. The
self-correctingalgorithm cannot work in such cases either.

IV. SELF-STABILIZING LABEL PROPAGATION ALGORITHM

In this section, we show a set of conditions that are sufÞcient to
verify the validity of a state, theorem 3. Theorem 3 is an extension
of theorem 2, however, it does not require a previous valid state,
i.e. L i " 1 [v] in theorem 2, to check the validity of the state. Using
theorem 3 we construct a correction step described in Section IV that
we use to bring the algorithm to a valid state.

A. Self-stabilizing Validity Conditions

Given an arbitrary stateS = { L, P } , can we determine whether it
is valid or not? To answer this, we present an extended version of
theorem 2 that does not assume anything about prior iterations.

The key idea here is, that information about past iterations are
already present inS = { L, P } . To put it concretely, we present
following properties of the parent arrayP .

1) Relationship betweenL [v] and L [P (v)]: In the fault-free
execution of label propagation algorithm, label of a vertexL [v] is
always greater than or equal to its parentÕs labelL [P (v)]. Consider
the state of the label propagation algorithm during iterationi . A
vertex v acquires its label from its parentP (v) in some iteration
j ! i . So the current label of vertexv is L i [v] = L j [P (v)]. In the
label propagation algorithm, labels of any vertex can only decrease
as the iteration progresses. Thus,P (v)Õs current labelL i [P (v)]
must be smaller than or equal to its earlier valueL j [P (v)]. So,
L i [v] = L j [P (v)] # L i [P (v)].

(a) Input graphG (b) Propagation graphH

Figure 3: An input graph and its propagation graph.

L [v] # L [P (v)]. (2)

2) L [v] = v if and only if P (v) = v.: If any vertex is the parent
of itself, i.e.P (v) = v thenL [v] = v. In Algorithm 1, all the vertices
are initialized withP (v) = v andL [v] = v. If a vertex never changes
its label during label propagation iterations, then it will keep its parent
and label. Conversely, if a vertex has changed its value thenL [v] < v
and P (v) $= v. Moreover, a changedP (v) $= v will never revert
back to P (v) = v as P (v) only changes whenL [v] is changed.
So P (v) = v implies v obtained a label from itself, which is not
possible. So, in the fault-free execution of Algorithm 1 we must have
the following for all verticesv:

L [v] = v %& P (v) = v. (3)

DeÞnition 1. Propagation Graph H : For a given stateS = { L, P }
of execution of Algorithm 1 with inputG = { V, E} , Propagation
Graph H is the directed graph deÞned byH = { V, EH } where the
edge setEH consists of directed edgesv ' P (v) for all v " V .

3) Structure of the Propagation GraphH : In the fault-free
execution of Algorithm 1, the propagation graphH does not contain
any cycles besides self-loops. Thus,H consists of many trees. When
the algorithm is converged,H has one tree for each component in the
graph. A path from any vertex to the root of its tree is also the path by
which rootÕs label propagated to that vertex, albeit in reverse. Fig. 3
shows an example of the propogation graph generated for a particular
input.

Now we can formally state and prove the following set of conditions,
which are sufÞcient to assert validity of any arbitrary stateS.

Theorem 3. Starting from stateS = { L, P } , Algorithm 1 will
converge to correct solution in subsequent fault-free execution, if
S satisÞes the following conditions.

1 L [v] ! v for all v " V ;
2 P (v) " N (v) for all v " V ;
3 L [P (v)] ! L [v] for all v " V ;
4 L [v] = v %& P (v) = v for all v " V ; and
5 Ignoring self-loops propagation graphH is a forest.

We use the theorem 1 to prove theorem 3. Following notation is
helpful for remaining discussion.

R (v) := the root of tree containingv

We already haveL [v] ! v from Condition 1. We proveL [v] #
L ! [v] in following three parts:

L [v] # L [R (v)];
L [R (v)] # L ! [R (v)]; and

L ! [R (v)] = L ! [v].

Self-correcting Connected Components1 FTXS-2019 Equations

L 0(v) !!! v (1)

L i +1 (v) !!! min
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d e f

L " (v) """ L (v)L (v)L (v) """ v #v $ V#v $ V#v $ V

Given a valid state for the previous iteration, L i # 1, the current label array L i

is valid if for all vertices v, L i satisÞes these conditions:

L i [v] """ v; (7)

L i [v] === L i # 1[P(v)] (8)

P(v) $$$ N (v) (9)

(10)
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Verifying this requires O(V+E) 
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Can be verified in O(V) 
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v acquired its current label 
from  P(v)



0. Label-Propagation for Graph Connected-
components Problem 

1. Self-correcting Connected-Components  
                                                    — Sao, Green, Jain, Vuduc (FTXS’16)  
                                                        

!20

2. Self-stabilizing Connected-components 
                                                   — Sao, Engalmann, Eswar, Green, Vuduc (FTXS’19) 
                                                        

This Work 



Propagation Graph (H)
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L i [v] !!! v; (11)

P(v) """ N (v) (12)

L i [v] ### L i [P(v)] (13)

L i [v] = v $%$%$% P(v) = v (14)

(15)

H === { V, EH } ; (16)

EH === { v & P(v), ' v " V } (17)

(18)
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Properties of LP state
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Example-1

L
i [v] !!! v; (11)

P (v) """ N (v) (12)
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i [v] ### L
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Example-2

L
i [v] !!! v; (11)

P (v) """ N (v) (12)
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i [v] ### L
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i [v] = v $%$%$% P (v) = v (14)

(15)
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Example-3
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Example-4

L
i [v] !!! v; (11)

P (v) """ N (v) (12)

L
i [v] ### L

i [P (v)] (13)

L
i [v] = v $%$%$% P (v) = v (14)

(15)
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Valid States
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L i [v] !!! v; (11)

P(v) """ N (v) (12)

L i [v] ### L i [P(v)] (13)

L i [v] = v $%$%$% P(v) = v (14)

#cycles#cycles#cycles(H ) === & (15)

(16)

H === { V, EH } ; (17)

EH === { v ' P(v), ( v " V } (18)

(19)

2

S={L,P} is valid when: 



Detecting Cycles
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L i [v] !!! v; (11)

P(v) """ N (v) (12)

L i [v] ### L i [P(v)] (13)

L i [v] = v $%$%$% P(v) = v (14)

#cycles#cycles#cycles(H ) === & (15)

(16)

H === { V, EH } ; (17)

EH === { v ' P(v), ( v " V } (18)

(19)

2

S={L,P} is valid when: 

(a) (b) (c) (d) (e)

Figure 4: Different Corruption Scenarios: For the component shown in Fig. 2, we show a few possible cases of state corruption. The Fig. 4c shows a situation
that can occur when the vertex-3 incorrectly reads its adjacency list and acquire a label, from a vertex thatÕs not its neighbor. Such cases can be detected by
verifying P (v) ! N (v). In Figs. 4a and 4b, we show a case where the label of the vertex three is corrupted. In the case of Fig. 4a, it will get corrected
automatically, therefore requires no detection or correction. While in the case of Fig. 4b, this corruption will propagate to all vertices in the component. The
corruption of this type can be detected by verifyingL [v] " L [P (v)] . In Fig. 4d, the label of the root of the tree is corrupted. We can detect this corruption
from the 4th condition. Finally, Fig. 4e shows the case when there is a cycle in the in the propagation graphH . We can only detect such corruptions by
checking if there are any cycles in the propagation graphH .

Proof: From Condition 5, ifH is a forest, then each tree in
H will have a root nodeR (v). R (v) is the limit of the sequence
{ P(v), P 2(v), . . . , } , therefore

R (v) = P ! (v) (4)

will hold for all vertex v.

1) Condition 3 implies label of any vertexv is greater than or
equal to its parentÕs label. We can apply this condition on the
parent itself to getL [P (v)] ! L [P 2(v)]. Applying Condition 3
repeatedly, we get that the label of vertexv is greater than or
equal to label of all its ancestors. SpeciÞcally, we are interested
in the P ! (v) = R (v). Therefore,

L [v] ! L [R (v)] (5)

2) Since the root of the treeR (v) is the parent of itself:R (v) =
P(R (v)) . Condition 4 implies that the label of the rootL [R (v)]
is root itself:

L [R (v)] = R (v) (6)

Furthermore, for any vertexv ! L ! [v]. Applying it to R (v),
we get

R (v) ! L ! [R (v)]. (7)

3) Condition 2 impliesv and P(v) are in the same component.
Similarily, P (v) andP 2(v) are in the same component. Verily,
v andR (v) are in the same component inG and will have same
Þnal label. Thus we have:

L ! [v] = L ! [R (v)] (8)

So if all conditions of theorem 3 hold then we must have

L ! [v] " L [v] " v #v $ V. (9)

Hence, from theorem 1 we conclude that if all conditions of
theorem 3 hold for a stateS = { L, P } , thenS is valid.

Now we describe how we use theorem 3 to verify whether a state
is valid in parallel. Conditions 1-4 theorem 3, may be veriÞedlocally
and in parallel. By local we mean using only information to which
a vertex has immediate access. However, Condition 5 requires cycle
detection, which need global information.

The traditional algorithms for Þnding a cycle in a directed graph are
not well suited for vertex-centric programming. In the sequential case,
one can use TarjanÕs strongly connected component algorithm [38],
or breadth-Þrst search (BFS), or depth-Þrst search (DFS). These
algorithm run atO (V + E ) cost. In the graphH , the number of
edges and vertices are equal:V = E . So the cost of these algorithms

will be O (V ). Since the other checks of theorem 3 costO (V ), the
O (V ) cost of cycle detection is, in theory, acceptable. However, due
to the limited available parallelism or inability to express these cycle
detectors easily in the vertex-centric model, we prefer not to use them
to verify the condition 5.

B. Parallel Cycle Detection

(a) (b)

Figure 5: We show how the corruption shown in Fig. 4e is detected. In Fig. 5,
we show theA (v) for all the vertices. Since,A (v) = v for v = 2 , we detect
a cycle whichv = 2 is the minimum element. Therefore,v resets its parent
to itself and other members update their label withL [v] = min { v, A (v)}
(Fig. 5b).

We present a new algorithm for detecting cycles in the directed
graph where each vertex has degree one such asH . The fundamental
idea of our algorithm is that, if there are no cycles in the graphH ,
then a non-root vertexv cannot be an ancestor of itself.

Consider the following sequenceP(v) of ancestors of a non-root
vertexv

P(v) =
!

P (v), P 2(v), . . .
"

. (10)

If there are no cycles inH , thenP(v) will converge to root of the tree
that v belongs to. But ifv is a part of a cycle, thenP(v) will become
periodic and cycle through all the vertex in the cycle indeÞnitely. So
the calculation ofP (v) may not be used for detecting cycles inH .

Instead ofP (v), we consider the minimum vertex-id among all the
vertex that are ancestors of vertexv. We denote it asA (v):

A (v) = min P(v) = min
!

P (v), P 2(v), . . .
"

. (11)

In the fault-free case, bothA (v) andP(v) will converge to the root
of the tree. But unlikeP(v), the calculation ofA (v) will converge
even if there is a cycle inH .

1) Cycle Detection usingA (v): If there are no cycles inH , then
a non-root vertexv cannot be equal toA (v). Thus, if we Þnd a
non-root vertex such thatv = A (v) then following two condition
holds:

(a) (b) (c) (d) (e)

Figure 4: Different Corruption Scenarios: For the component shown in Fig. 2, we show a few possible cases of state corruption. The Fig. 4c shows a situation
that can occur when the vertex-3 incorrectly reads its adjacency list and acquire a label, from a vertex thatÕs not its neighbor. Such cases can be detected by
verifying P (v) ! N (v). In Figs. 4a and 4b, we show a case where the label of the vertex three is corrupted. In the case of Fig. 4a, it will get corrected
automatically, therefore requires no detection or correction. While in the case of Fig. 4b, this corruption will propagate to all vertices in the component. The
corruption of this type can be detected by verifyingL [v] " L [P (v)] . In Fig. 4d, the label of the root of the tree is corrupted. We can detect this corruption
from the 4th condition. Finally, Fig. 4e shows the case when there is a cycle in the in the propagation graphH . We can only detect such corruptions by
checking if there are any cycles in the propagation graphH .

Proof: From Condition 5, ifH is a forest, then each tree in
H will have a root nodeR (v). R (v) is the limit of the sequence
{ P(v), P 2(v), . . . , } , therefore

R (v) = P ! (v) (4)

will hold for all vertex v.

1) Condition 3 implies label of any vertexv is greater than or
equal to its parentÕs label. We can apply this condition on the
parent itself to getL [P (v)] ! L [P 2(v)]. Applying Condition 3
repeatedly, we get that the label of vertexv is greater than or
equal to label of all its ancestors. SpeciÞcally, we are interested
in the P ! (v) = R (v). Therefore,

L [v] ! L [R (v)] (5)

2) Since the root of the treeR (v) is the parent of itself:R (v) =
P(R (v)) . Condition 4 implies that the label of the rootL [R (v)]
is root itself:

L [R (v)] = R (v) (6)

Furthermore, for any vertexv ! L ! [v]. Applying it to R (v),
we get

R (v) ! L ! [R (v)]. (7)

3) Condition 2 impliesv and P(v) are in the same component.
Similarily, P (v) andP 2(v) are in the same component. Verily,
v andR (v) are in the same component inG and will have same
Þnal label. Thus we have:

L ! [v] = L ! [R (v)] (8)

So if all conditions of theorem 3 hold then we must have

L ! [v] " L [v] " v #v $ V. (9)

Hence, from theorem 1 we conclude that if all conditions of
theorem 3 hold for a stateS = { L, P } , thenS is valid.

Now we describe how we use theorem 3 to verify whether a state
is valid in parallel. Conditions 1-4 theorem 3, may be veriÞedlocally
and in parallel. By local we mean using only information to which
a vertex has immediate access. However, Condition 5 requires cycle
detection, which need global information.

The traditional algorithms for Þnding a cycle in a directed graph are
not well suited for vertex-centric programming. In the sequential case,
one can use TarjanÕs strongly connected component algorithm [38],
or breadth-Þrst search (BFS), or depth-Þrst search (DFS). These
algorithm run atO (V + E ) cost. In the graphH , the number of
edges and vertices are equal:V = E . So the cost of these algorithms

will be O (V ). Since the other checks of theorem 3 costO (V ), the
O (V ) cost of cycle detection is, in theory, acceptable. However, due
to the limited available parallelism or inability to express these cycle
detectors easily in the vertex-centric model, we prefer not to use them
to verify the condition 5.

B. Parallel Cycle Detection

(a) (b)

Figure 5: We show how the corruption shown in Fig. 4e is detected. In Fig. 5,
we show theA (v) for all the vertices. Since,A (v) = v for v = 2 , we detect
a cycle whichv = 2 is the minimum element. Therefore,v resets its parent
to itself and other members update their label withL [v] = min { v, A (v)}
(Fig. 5b).

We present a new algorithm for detecting cycles in the directed
graph where each vertex has degree one such asH . The fundamental
idea of our algorithm is that, if there are no cycles in the graphH ,
then a non-root vertexv cannot be an ancestor of itself.

Consider the following sequenceP(v) of ancestors of a non-root
vertexv

P(v) =
!

P (v), P 2(v), . . .
"

. (10)

If there are no cycles inH , thenP(v) will converge to root of the tree
that v belongs to. But ifv is a part of a cycle, thenP(v) will become
periodic and cycle through all the vertex in the cycle indeÞnitely. So
the calculation ofP (v) may not be used for detecting cycles inH .

Instead ofP (v), we consider the minimum vertex-id among all the
vertex that are ancestors of vertexv. We denote it asA (v):

A (v) = min P(v) = min
!

P (v), P 2(v), . . .
"

. (11)

In the fault-free case, bothA (v) andP(v) will converge to the root
of the tree. But unlikeP(v), the calculation ofA (v) will converge
even if there is a cycle inH .

1) Cycle Detection usingA (v): If there are no cycles inH , then
a non-root vertexv cannot be equal toA (v). Thus, if we Þnd a
non-root vertex such thatv = A (v) then following two condition
holds:

If

Then
1) v is a vertex in a cycle inH ; and
2) v has the smallest vertex-id in the cycle.

Algorithm 2 Cycle Detection Algorithm

1: function LOOPDETECT(G = {V, E}, S = {L, P })
2: Nc ! 1
3: A(v) ! P (v) ! Initialization
4: while Nc > 0 do
5: for all vertexv " V do
6: if A(v) #= min {A(v),A (P (v))} then
7: A(v) ! min {A(v),A (P (v))}
8: Nc ! Nc + 1
9: P (v) ! P (P (v)) ! Contraction

10: if v = A(v) then
11: Report Cycle
12: P (v) ! v ! Break cycle

13: return {A, S}

2) CalculatingA(v): The calculation ofA(v) is equivalent to
Ômin-preÞxÕ operation, and can be done in parallel using pointer
jumping techniques such as WyllieÕs list ranking algorithm [40].
We show the pseudocode in Algorithm 2. We initializeA(v)
for each vertex byP (v). In every iteration, we updateA(v) as
A(v) = min (A(v), A(P (v)), and update theP (v) ! P 2(v).

C. Self-stabilizing Label-propagation Algorithm

We have not yet described how do we correct a state if the
veriÞcation of theorem 3 fails. Before doing so, we consider two
questions: a) in which order should we verify the conditions of
theorem 3? and b) how frequently should we verify these conditions?

CorrectingP : For each vertexv, we verify if P (v) " N (v). If
P (v) #"N (v), then we reset the parent of the vertexv by setting
P (v) = v. This step ensures that the propagation graphH is valid.
In other words, if any two verticesv andu are connected inH , then
they are connected inG as well.

Correcting L : For each vertexv, we calculateA(v) using
Algorithm 2. Now we calculate new labels for each vertex as follows

L [v] = min(v,A(v))

Additionally, if there are any cycles, i.e.v = A(v), we reset the
parents of those vertices:P (v) = v.

Convergence detection:We can show that after correctingL and
P, the algorithm is in a valid state. We reliably run one iteration of
the label-propagation algorithm to check if the algorithm is converged.
If the algorithm is not converged then we restart the algorithm with
the calculated valid state.

We show the complete self-stabilizing algorithm in Algorithm 3.
Note that unlike Algorithm 1, Algorithm 3 can start with any arbitrary
stateS. Optionally, we can introduce an additional parameter, which
is the period of self-stabilization,F . (Therefore, the frequency of
self-stabilization is1/F ). The Algorithm 3 has two loops that we
denote by the outer and the inner-loop. The outer loop is responsible
for bringing the algorithm to a valid state. The rest of outer-loop
beyond the inner-loop executes either when the inner-loop reports
convergences (i.e.,Nc = 0) or when the iteration indexi has reached
a multiple of periodF . When that happens, then we execute the
self-stabilization step to bring the algorithm to a valid state, and using
this valid state, we verify the convergence again. The self-stabilization
step consists of three parts:

¥ verifying P (v) " N (v);

Algorithm 3 Self-stabilizing Label Propagation Algorithm

Require: Input graphG = (V, E)
Require: Input stateS = (L, P )
Require: Frequency of self-stabilizationF

1: Nc ! |V |, i ! 0, Converged= 0
2: while Converged= 0 do ! Outer Loop
3: while Nc > 0 and i #$0 mod F do; ! Inner Loop
4: {S, Nc} ! LABEL PROPAGATIONSWEEP(G, S)
5: i ! i + 1

Verifying State Validity
6: for eachv " V do
7: if P (v) /" N (v) then
8: P (v) ! v

9: {A, S} ! LOOPDETECT(G, S)
10: for eachv " V do
11: L [v] ! min(v,A(v)) ! Update label

Check Convergence
12: {S, Nc} ! LABEL PROPAGATIONSWEEP(G, S)
13: if Nc = 0 then
14: converged= 1

15: return S = {L, P }

¥ calculatingA to detect and break cycles; and
¥ update label byL [v] = min(v,A(v)).
Once it has reached a valid state, we Þnally execute one label-

propagation iteration to detect the convergence. The inner loop is
the same as Algorithm 1. Typically the inner-loop forms the bulk of
the computation. In the selective reliability model, we execute the
inner-loop in unreliable mode and the self-stabilization step and Þnal
convergence detection in the reliable mode.

D. Asympotic Correction Cost

The costs of various corrections steps are as follows.
¥ In [33], we have shown thatP (v) " N (v) can be veriÞed in
O (V ) .

¥ Cycle detection via Algorithm 2 converges inO (log h) steps
and each step performsO ( V ) operations. Hereh is the height
of the propagation graph. Ideally we would expecth to be equal
to the diameter of the graph like in the fault-free case. But in
the worst case,h may be as large asO (V ). Therefore, the
cycle detection using Algorithm 2 can costO (V logV ). One
may replace Algorithm 2 with work-optimal algorithms such
as [2] which bring the worst-case cost down toO (V ). Yet,
despite being asymptotically worse, for our specifc case, we
found Algorithm 2 to be faster than [2]

¥ L [v] is updated in constant time for each vertex resulting in
O (V ) cost.

Therefore the cost of a self-stabilizing step isO (V logV ) but
can theoretically be as low asO (V ). The total cost of the label
propagation algorithm isO ((V + E ) log d). So veriÞcation at every
step is computationally prohibitive. Therefore we only verify if a label
propagation algorithmÕs state is valid whenever it reports convergence.

E. Online Corrections

Verifying if the algorithm is in a valid state only when the algorithm
is converged will be inefÞcient in cases where fault propagates to other
vertices very quickly. But verifying all the conditions of theorem 3
after every iteration is computationally expensive. We overcome this
issue by performing checking only a subset of conditions of theorem 3
every iteration instead of all conditions and correct them as soon as
they are detected so it stops its propagation.

O(V log V)



Self-stabilizing Connected Components

!29

L i [v] !!! v; (11)

P(v) """ N (v) (12)

L i [v] ### L i [P(v)] (13)

L i [v] = v $%$%$% P(v) = v (14)

#cycles#cycles#cycles(H ) === & (15)

(16)

H === { V, EH } ; (17)

EH === { v ' P(v), ( v " V } (18)

(19)

2

S={L,P} is valid when: 
Perform state check after the algorithm

 reports convergence

SsSV 

Perform local checks after every 
iteration and full state check after the 
algorithm reports convergence

SsHSV 



Overhead of Self-stabilization



Success Rate vs Additional Iterations
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To sum up..
Conclusion 
• Self-stabilization property of stationary iterations may not hold for graph 

algorithms (or semi-ring equivalent algorithms)

• Nevertheless, self-stabilization formulations may exists

• Efficiency of self-stabilization depends on the data structure 

Future work 
• Techniques used here are applicable to several other graph algorithms, 

e.g. BFS, Bellmen-Ford

• Self-stabilization could have practical use case in incremental/streaming  

graph processing


