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Research and development goals

Efficient redundancy strategies for head and service nodes in HPC
systems to provide high availability as well as high performance of
critical infrastructure services

Reactive fault tolerance for HPC compute nodes utilizing the job pause
approach as well as checkpoint interval and placement adaptation to
actual and predicted system health threats

Proactive fault tolerance using é_ystem-level virtualization in HPC
environments for preemptive migration of computation away from
compute nodes that are about to fail

Reliability analysis for identifying pre-fault indicators, predicting failures,
and modeling and monitoring of individual component and overall HPC
system reliability

Holistic fault tolerance technology through combination of adaptive
proactive and reactive fault tolerance mechanisms in conjunction with
system health monitoring and reliability analysis

Reactive vs. proactive fault tolerance for compute
nodes

Reactive fault tolerance:

- State saving during failure-free operation

— State recovery after failure

— Assured quality of service, but limited scalability
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Te Proactive fault tolerance:
System health monitoring and online reliability modeling

Failure anticipation and prevention through prediction and
reconfiguration before failure

Highly scalable, but not all failures can be anticipated

. Ideal solution: Matching combination of both

Proactive fault tolerance using Xen virtualization
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Simulation framework for HPC fault
tolerance policies

Evaluation of fault tolerance policies
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Symmetric active/active redundancy for head and

service nodes

‘ Active/Active Head Nodes

Many active head nodes
Work load distribution

Symmetric replication
between head nodes

Continuous service
Always up to date

No fail-over necessary

No restore-over necessary
Virtual synchrony model

Complex algorithms

== Prototypes for PBS Torque

Compute Nodes

and Parallel Virtual File
System metadata server

Enhanced reactive fault tolerance with
LAM/MPI+BLCR job pause mechanism
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failed node * Operational nodes: Pause

- BLCR reuses existing
processes

- LAM/MPI reuses existing
connections

— Restore partial process state
from checkpoint

* Failed nodes: Migrate

— Restart process on new node
from checkpoint
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Pause utility calls ioctl(),
unblocks callback thread
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and enter kernel
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their states
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100%

95%

90%

B5%

80%

75%

Throughput in Requests/Second

0% -

Number of Metadata Clents

ce

Metadata Service Latency

——1 PVFS MDS —=— 1 Symmetric Activelactive PVFS MDS
—— 2 Symmetric Activelfctive PVES MDS —— 4 Symmetric Active/Active PYFS MDS

160%

Latency in Milliseconds

Mumber of Metadata Clients

Metadata Service Read Throughput

——1PVYFS MDS —=— 1 Symmetric Activelfctive PVFS MDS
—— 2 Symmetric Activelfctive PVFS MDS —— 4 Symmetric Active/Active PVYFS MDS

400%
350%
300%
250%
200%

150%

Throughput in Queries/Second

100% -

Mumber of Metadata Clients

LAM/MPI+BLCR job pause performance
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Proactive fault tolerance daemon

Runs in privileged domain (host)

Initialization
— Read safe threshold from config file
— Init connection with IPMI controller
— Obtain/filter set of available sensors

Health monitoring
— Read sensors from |IPMI controller
— Periodically sample data

— Trigger load balancing if exceeding
sensor threshold

VM migration
— Select target based on load
— Invoke Xen live migration for VM

' PFT Daemon

Raise Alarm /
Maintenance
of the System

Combination of proactive and reactive fault
tolerance: Simulation example 1
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Number of processes 125

checkpoint interval 16-32 hours

Active nodes / Spare nodes | 125/ 12

Better than only proactive or only reactive

Results for higher prediction accuracies
and verz low checkpoint intervals are
worse than only proactive or only reactive
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Checkpoint overhead 50 min/checkpoint

Migration overhead 1 min/migration

Simulation based on ASCI White system logs
(nodes 1 — 125 and 500-512)

VM migration performance impact

Single Node Failure

— No LAM reboot overhead
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H_l;} * 3.4% overhead over job restart, but * No requeue penalty

* Less staging overhead

— Transparent continuation of execution

HPC reliability analysis
prediction and anticipat

Double Node Failure

and modeling for
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* Programming paradigm and system scale impact reliability
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* Single node failure: 0.5-5% additional cost over total wall clock time

* Double node failure: 2-8% additional cost over total wall clock time
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* Reliability analysis:
— Estimate mean time to failure

(MTTF)

— Obtain failure distribution: Exponential, Weibull, Gamma, ...

* Feedback into fault tolerance schemes for adaptation

negative likelihood value
exponencial| 2653.3

System reliability (MTTF) for k-of-n AND Survivability (k=n) Parallel
Execution model
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Combination of proactive and reactive fault
tolerance: Simulation example 2
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A holistic resiliency framework for
high-performance computing

and Guidance

Virtualization Scope:
Application, Run Time Environment, OS and/or Micro OS

Customization Detection Recovery and

Prevention
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— 8% gain over reactive only  Checkpoint overhead
- 24% gain in over proactive only Migration overhead

* 80% and 32 hours:
- 10% gain over reactive only
—~ 3% loss over proactive only
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Simulation based on ASCI White system logs
(nodes 126 — 250 and 500-512)

50 min/checkpoint : Multiple. Fully Analysis and Decision Making
1 min/migration -

Coordinated Global Policy-Based ::) Event !_ Users, Administrator,

Distribution System Services

Redundant
Service Nodes
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Highly Available RAS Engine
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