System-level Virtualization for High-Performance Computing

Stephen L. Scott, Geoffroy R. Vallée, Thomas Naughton, Anand Tikotekar, Christian Engelmann, Hong H. Ong (Oak Ridge National Laboratory)

Research and development areas

- Efficient hypervisor technology for limiting interferences with scientific applications in high-performance computing systems
- Minimal host operating system for reduced system footprint of system-level virtualization solutions in high-performance computing
- System management tools for supporting virtualized and standard HPC systems in disk-full and disk-less scenarios with various virtualization
- Performance characterization of scientific applications running in virtual
- Configurable virtual system environments for adaptation of high-performance computing system properties to scientific application

Motivation: Portability

- HPC system hardware upgrades or new HPC system installations have become annual or even semi-annual events for many HPC
- Similarly, HPC system software upgrades have become monthly or even semi-monthly events
- There is a constant need to port the same set of scientific applications to new or upgraded systems
- Annual or semi-annual HPC system upgrades or new installations incur the highest porting overhead

Motivation: Configurability

- There is no one-size-fits-all HPC OS solution
- Some HPC applications just need a scalable light-weight OS solution, like Catamount, and MPI
- Other HPC applications need the advanced features provided by a heavy-weight OS, such as Linux
- Vendors and the HPC OS community offer hybrid solutions with limited Linux functionality at scale
- On-demand OS deployment on HPC systems is needed to fit scientific application needs

Motivation: Testbeds

- New or enhanced system software solutions need to be tested at scale without corrupting the existing system software deployed on a HPC system
- New or enhanced scientific applications need to be tested at scale without the need of performing a full-scale production-type run
- Large-scale testbeds are needed for HPC system software and scientific application development

Virtualized System Environment (VSE)

- Hypervisors can provide a configurable 'sandbox' environment for system software and scientific application development and deployment
- System-level virtualization on development systems (desktops and small HPC systems) and productiontype systems (large HPC systems) can provide:
 - Simplified application porting through virtualization
 - On-demand OS deployment on virtualized HPC systems
 - On-demand deployment of virtual testbeds isolated from the real systems and from each other via a hypervisor
- Hardware Type I Virtualization

Host OS VM VM

VMM

RTE(s) Guest OS VM Compute Nodes VMM Hardware Development Nodes

Application RTE(s) Guest OS VM VMM Hardware

VSE Management

VSE Life Cycle

- System management tools allow for virtual system environment configuration:
 - Description
 - Creation

Destruction

- Deployment Cleanup
- Adaptation of existing VM management tools to system resource management and software development tools.

V2M Architecture

Applications

based on

libv3m

Front-end

Back-ends

VSE Configuration Management

- Hierarchical configuration scheme enables users to: - Override
- Remove - Add
- configuration options.
- Vendor and/or system operator configuration descriptions can be used as base configuration

VSE Use Case Scenarios

VSE System Architecture

Hypervisor on development

and compute nodes

Virtual machines run the

customized virtualized

Customization is based on:

Application needs

System capabilities

Resource allocation

environment

- Application and system software developers can deploy virtualized system environments based on their actual needs to:
 - Desktops
- Small-scale HPC systems Large-scale HPC systems
- for software development and deployment activities.

instead of logging into a remote HPC

system development environment server!

OSCAR-V: System Management with Virtualization Support

- Extension of Open Source Cluster Application Resources (OSCAR) Linux cluster installation and management suite
- Includes system-level virtualization support:
- Capability to switch between virtual and standard cluster computing environments Abstracts underlying virtualization solution:
- Generic virtual machine management (V2M) layer Capability to switch between different virtualization solution
- VSE configuration consists of a set of OSCAR packages
- Support for various Linux distributions: SUSE, RedHat, Debian, ...

Virtual Machine Management Command Line Interface High-Level Interface boot vm, create image from cdrom install_vm_with_oscar, migrate_vm, pause_vm, unpause_vm Virtualization Abstraction

VMWare

Performance Characterization & Analysis

- Goal: Understanding the impact of system-level virtualization on scientific applications in detail
- Experiment: Hyperspectral Radiative Transfer Code
 - 2GHz Pentium IV, 768 MB of memory, Xen 3.0.4 Comparison of native, virtual machine, and host OS for:
 - CPU consumption
 - ITLB misses DTLB misses

Breakdown for CPU time 1.3e+07 1.2e+07 1.2e+07 1.1e+07 1.15e+07 1.05e+07 9e+06 9e+06 8.5e+06 7.5e+06 7.5e+06 6.5e+06 5.5e+06 5.5e+06 Application Libaray other linux-os Hypervisor User code (Application) dominates More time for Hypervisor than Guest/Host CPU time - Native vs. Virtual User code: Slightly faster on Native System code: Twice as fast on Native System code: Variability higher on * VM values only reflect domU samples (dom0 portion omitted) Breakdown for ITLB samples Fewer misses for Hypervisor than Guest/ Host kernel

Breakdown for Page table walks for DTLB miss samples User code: Native vs. Virtual

- Page-walks caused by DTLB misses is higher on Native
- System code: Native vs Virtual Page-walks caused by DTLB misses is much less compared to User code
 - Native is 14X less than virtual Observed higher standard deviation on Native for system code

Ongoing Studies

Decrease the size of the host OS and VMs

