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Premise: 
Investigate the use of virtual machines for a real-
world scientific application.

Goals: 
1. Provide some insight for scientists interested in 

employing virtualization in their research.

2. Increase our understanding of application 
performance on VMs, and the associated tools 
currently available.
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Background

• Prior work looking at Hydrolight
– Summer project to aid running on cluster
– Reduce wall-clock time with low investment

• HydroHPCC tools
– Tools developed to support Hydrolight use on cluster
– Decrease overhead in simulation input preparation
– Add tools to help automation/batch-parallel execution

• Leverage C3 with SSH to run simulations
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Application Overview

• Hydrolight (Sequoia Scientific, Inc.)
– Radiative-transfer numerical model
– Determines radiance distribution within/leaving a 

water body
• Ex. parameters: water depth, wavelength, wind speed, etc.

• Variety of uses
– Underwater visibility studies
– Remote-sensing mission planning & algorithm 

evaluation
– Enhancing understanding of physical processes
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Hydrolight Simulation Properties
• Simulations 

– Each is single execution for given set of model parameters
– Binary name: maincode.exe
– Parameters: 2 input files

• "Iroot.txt" & "root.for“
– HydroHPCC manages job startup, compile/re-link, execution & output

• Previous work performed 2,600 simulations on a small cluster
– Generate training data for ANN (artificial neural network)
– Wall-clock time: ~3.5 hrs (natively without profiling)
– Time breakdown: ~50% with time > 9min

• Simplification for Experimentation
– Simulation times consistent across executions
– Select single experiment (input parms) from 10min group
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Outline

• Discuss methodology & experimentation
• Observations & future work
• Summary
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Methodology

• Simulations / Profiling
– Select single experiment from 2,600 set 

• ~10min wall-clock native
– OProfile for both native & Xen platforms

• Timing Note
– Profiling focused on Hydrolight
– Wall-clock timings for HydoHPCC

• startup, linking/execution, data processing
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Experimental Environment
• XTORC Cluster

– 2Ghz Pentium IV    [<64 nodes]
– 768MB memory
– 100Mb FastEthernet
– Fedora Core 5 (FC5)
– Linux 2.6.16.33  (both native & para-virtualized) 
– Xen 3.0.4
– OProfile 0.9.1

• Simulations*
– GNU Fortran G77 3.2.3   (FFLAGS=-O3)
– Bottom type: Red Algae
– Depth: 10.0 m
– Chl. concentration: 10.0 mg m^-3

* Note, refer to paper citation #4 for complete parameter details.
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Profiler Settings
• Profiler

– OProfile 0.9.1
– Xenoprof

• OProfile user-level patch 
• Xen 3.0.4 includes other aspects

• Run Parameters:
opcontrol --start --separate=kernel \

--event=GLOBAL_POWER_EVENTS:100000:1:1:1 \
--event=ITLB_REFERENCE:100000:2:1:1 \
--event=INSTR_RETIRED:100000:1:1:1 \
--event=MACHINE_CLEAR:100000:1:1:1 \
--vmlinux=/opt/vmlinux_location/vmlinux
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Profiler Settings (2)
Example:

“--start”    start data collection

“--separate=kernel “     separate shared library profiles per-application plus kernel profiles

“--event=GLOBAL_POWER_EVENTS:100000:1:1:1 “
event: GLOBAL_POWER_EVENTS
reset counter: 100000reset counter: 100000
h/wh/w unitmaskunitmask: 1: 1
profile kernel: 1 (true)profile kernel: 1 (true)
profile profile userspaceuserspace: 1 (true): 1 (true)

“--vmlinux=/opt/vmlinux_location/vmlinux “        un-stripped kernel image 

* Note, we focused on GLOBAL_POWER_EVENTS & ITBL_REFERENCE in order to
focus on the actual time spent by the application and its relationship 
with the ITLB miss rate.
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OProfile Events
• GLOBAL_POWER_EVENTS: time during which processor is not stopped

• ITLB_REFERENCE: translations using the instruction translation
lookaside buffer; 0x02 ITLB miss

• INSTR_RETIRE: retired instructions; 0x01 count non-bogus
instructions which are not tagged

• MACHINE_CLEAR: cycles with entire machine pipeline cleared;
0x01 count a portion of cycles the machine is 
cleared for any cause
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Experiments

• Ran application on 3 platforms
– Native
– HostOS (dom0)
– VM (domU)

• Focus on user (Tusr) & system (Tsys)
– Samples pertaining to app image=maincode.exe
– Compare Native to Virtual
– NOTE: VM values for Tsys are incomplete

• Runs on HostOS (dom0) are complete
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OProfile sampling

• Register NMI
• Generate interrupt & record context
• Dereference symbols from context
• Example:
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Gathering Data

• Add OProfile calls to HydroHPCC
• For each platform (native, hostOS, VM)

1. Run single simulation on multiple nodes
2. Gather results/output
3. Run post-processing scripts
4. Record stats

• Post-processing scripts
– Extract data specific to “maincode.exe”
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Post-processing heuristics

user

system
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Platform avgerages 20 runs
CPU (GLOBAL_POWER_EVENTS) ITLB miss (ITLB_REFERENCES)
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CPU time
• CPU time

– Majority of time in user code (Native & VM)
– Tusr roughly equiv. for Native & Virtual 
– VM has ~7K more system code samples than 

Native
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ITLB miss
• ITLB miss

– Virtual spends approx. 2x more in user code
– N:V user vs system: 

• Native ~43x  usr/sys   (3,007 / 69)
• Virtual ~0.20 usr/sys   (1299 / 6,340)

– Virtual user/system code, system ~5K more samples
– VM has ~6.3K more system code samples than Native
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Observations: Native vs Virtual

• All: CPU - approx. same time in app code
– Confirms virtualization not hurt (cpu) user code

• Native: lower number of samples
– Both user & system code

• Except: Higher ITLB miss for user code on native
• Note, Higher ITLB miss for system on virtual.
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Observations: Native vs Virtual (2)

• Native: App wall-clock times more consistent
– min/max: 690/697sec vs VM 763/790sec (Table 4)

• Wall-clock on virtual environment 
– w/o profile instrumentation    ~8%   >  native
– w/   profile instrumentation  ~11%   >  native

• Note: Profile only 1 event, drops to ~8% > native
• Note: VM missing some system samples!

• Overall time to solution for 2,600 simulations
– Virtual is roughly  8%  higher than native 
– 36 nodes: Native: 2h 40m ; VM: 2h 55m
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Observations: Native vs Virtual (3)

• Native: higher std. on system code 
– Both CPU & ITLB misses
– Comment: Possibly an accounting / node issue?

• 2-3 nodes report “ide_outsw” associated w/ 
differerent app image, so excluded by our method.

– App name: “vmlinux” instead of “maincode.exe”
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OProfile Observations

• OProfile differences
– Sampling for multiple events simultaneously

• Native not noticeable effect
• Virtual greatly increased the overhead (interference)
• See future work

– Lack full “context” in virtual
• domU/dom0 – “maincode.exe” in domU context only
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Related Work
• HPC benchmarks & network apps/IO

– Original Xenoprof developers [Menon:vee05]
– Para-virt for HPC systems [Wolski:xhpc06]
– VMM I/O bypass [Panda:ics06]
– Xen & UML for HPC [Stanzione:cluster06]

• Some looked at real-world apps
– Mainly systems perspective / developers

• Profiler tools
– VIVA (UCSB) project’s VIProf for JVM
– Address issue of dynamic symbols (profiling context)
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Future work

• Look into OProfile/Xenoprof
– Single vs. Multi event samples
– Guest context

• Investigate system side
– Identify root causes

• Revise methodology
– Improve VM system portions



25

Summary

• Analyzed scientific application & virtual env.
– Hypspectral radiative transfer code (Hydrolight)
– Wall-clock on virtual environment (4 events)

• w/o profile instrumentation    ~8%   >  native
• w/   profile instrumentation  ~11%   >  native

– Profile only 1 event, drops to ~8% > native

• Tools for virtual environments
– Still somewhat immature
– Performance isolation issues 

• ex. OProfile sampling  4  vs. 1 event



26

Thank you

Questions?
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Backup slides
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CPU: Native / HostOS / VM

VMNative

HostOS
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ITLB miss: Native / HostOS / VM

Native

HostOS

VM
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Average & STD 20 runs, 4 events
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CPU time          ITLB miss

• Average of one experiment, 20 runs
• N=native,  V=VM   
• (Tsys on VM only domU)



32

Application Overview (2)

• Hydrolight execution characteristics
– Sequential, deterministic, CPU-bound
– I/O: initial input params, configurable output

• Output file settings: KBs up to  MBs
– Majority of time in single user-space routine*

• e.g., rhotau()

* Note: Based on the set of parameters/tests we performed.
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