
Effects of Virtualization on a Scientific Application
Running a Hyperspectral Radiative Transfer Code on Virtual Machines

Anand Tikotekar, Geoffroy Vallée, Thomas Naughton,
Hong Ong, Christian Engelmann & Stephen L. Scott

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA

Anthony M. Filippi

Department of Geography
Texas A&M University

College Station, TX, USA

March 31, 2008 HPCVirt’08 Glasgow, Scotland

2

Premise:
Investigate the use of virtual machines for a real-
world scientific application.

Goals:
1. Provide some insight for scientists interested in

employing virtualization in their research.

2. Increase our understanding of application
performance on VMs, and the associated tools
currently available.

3

Background

• Prior work looking at Hydrolight
– Summer project to aid running on cluster
– Reduce wall-clock time with low investment

• HydroHPCC tools
– Tools developed to support Hydrolight use on cluster
– Decrease overhead in simulation input preparation
– Add tools to help automation/batch-parallel execution

• Leverage C3 with SSH to run simulations

4

Application Overview

• Hydrolight (Sequoia Scientific, Inc.)
– Radiative-transfer numerical model
– Determines radiance distribution within/leaving a

water body
• Ex. parameters: water depth, wavelength, wind speed, etc.

• Variety of uses
– Underwater visibility studies
– Remote-sensing mission planning & algorithm

evaluation
– Enhancing understanding of physical processes

5

Hydrolight Simulation Properties
• Simulations

– Each is single execution for given set of model parameters
– Binary name: maincode.exe
– Parameters: 2 input files

• "Iroot.txt" & "root.for“
– HydroHPCC manages job startup, compile/re-link, execution & output

• Previous work performed 2,600 simulations on a small cluster
– Generate training data for ANN (artificial neural network)
– Wall-clock time: ~3.5 hrs (natively without profiling)
– Time breakdown: ~50% with time > 9min

• Simplification for Experimentation
– Simulation times consistent across executions
– Select single experiment (input parms) from 10min group

6

Outline

• Discuss methodology & experimentation
• Observations & future work
• Summary

7

Methodology

• Simulations / Profiling
– Select single experiment from 2,600 set

• ~10min wall-clock native
– OProfile for both native & Xen platforms

• Timing Note
– Profiling focused on Hydrolight
– Wall-clock timings for HydoHPCC

• startup, linking/execution, data processing

8

Experimental Environment
• XTORC Cluster

– 2Ghz Pentium IV [<64 nodes]
– 768MB memory
– 100Mb FastEthernet
– Fedora Core 5 (FC5)
– Linux 2.6.16.33 (both native & para-virtualized)
– Xen 3.0.4
– OProfile 0.9.1

• Simulations*
– GNU Fortran G77 3.2.3 (FFLAGS=-O3)
– Bottom type: Red Algae
– Depth: 10.0 m
– Chl. concentration: 10.0 mg m^-3

* Note, refer to paper citation #4 for complete parameter details.

9

Profiler Settings
• Profiler

– OProfile 0.9.1
– Xenoprof

• OProfile user-level patch
• Xen 3.0.4 includes other aspects

• Run Parameters:
opcontrol --start --separate=kernel \

--event=GLOBAL_POWER_EVENTS:100000:1:1:1 \
--event=ITLB_REFERENCE:100000:2:1:1 \
--event=INSTR_RETIRED:100000:1:1:1 \
--event=MACHINE_CLEAR:100000:1:1:1 \
--vmlinux=/opt/vmlinux_location/vmlinux

10

Profiler Settings (2)
Example:

“--start” start data collection

“--separate=kernel “ separate shared library profiles per-application plus kernel profiles

“--event=GLOBAL_POWER_EVENTS:100000:1:1:1 “
event: GLOBAL_POWER_EVENTS
reset counter: 100000reset counter: 100000
h/wh/w unitmaskunitmask: 1: 1
profile kernel: 1 (true)profile kernel: 1 (true)
profile profile userspaceuserspace: 1 (true): 1 (true)

“--vmlinux=/opt/vmlinux_location/vmlinux “ un-stripped kernel image

* Note, we focused on GLOBAL_POWER_EVENTS & ITBL_REFERENCE in order to
focus on the actual time spent by the application and its relationship
with the ITLB miss rate.

11

OProfile Events
• GLOBAL_POWER_EVENTS: time during which processor is not stopped

• ITLB_REFERENCE: translations using the instruction translation
lookaside buffer; 0x02 ITLB miss

• INSTR_RETIRE: retired instructions; 0x01 count non-bogus
instructions which are not tagged

• MACHINE_CLEAR: cycles with entire machine pipeline cleared;
0x01 count a portion of cycles the machine is
cleared for any cause

12

Experiments

• Ran application on 3 platforms
– Native
– HostOS (dom0)
– VM (domU)

• Focus on user (Tusr) & system (Tsys)
– Samples pertaining to app image=maincode.exe
– Compare Native to Virtual
– NOTE: VM values for Tsys are incomplete

• Runs on HostOS (dom0) are complete

13

OProfile sampling

• Register NMI
• Generate interrupt & record context
• Dereference symbols from context
• Example:

14

Gathering Data

• Add OProfile calls to HydroHPCC
• For each platform (native, hostOS, VM)

1. Run single simulation on multiple nodes
2. Gather results/output
3. Run post-processing scripts
4. Record stats

• Post-processing scripts
– Extract data specific to “maincode.exe”

15

Post-processing heuristics

user

system

16

Platform avgerages 20 runs
CPU (GLOBAL_POWER_EVENTS) ITLB miss (ITLB_REFERENCES)

17

CPU time
• CPU time

– Majority of time in user code (Native & VM)
– Tusr roughly equiv. for Native & Virtual
– VM has ~7K more system code samples than

Native

18

ITLB miss
• ITLB miss

– Virtual spends approx. 2x more in user code
– N:V user vs system:

• Native ~43x usr/sys (3,007 / 69)
• Virtual ~0.20 usr/sys (1299 / 6,340)

– Virtual user/system code, system ~5K more samples
– VM has ~6.3K more system code samples than Native

19

Observations: Native vs Virtual

• All: CPU - approx. same time in app code
– Confirms virtualization not hurt (cpu) user code

• Native: lower number of samples
– Both user & system code

• Except: Higher ITLB miss for user code on native
• Note, Higher ITLB miss for system on virtual.

20

Observations: Native vs Virtual (2)

• Native: App wall-clock times more consistent
– min/max: 690/697sec vs VM 763/790sec (Table 4)

• Wall-clock on virtual environment
– w/o profile instrumentation ~8% > native
– w/ profile instrumentation ~11% > native

• Note: Profile only 1 event, drops to ~8% > native
• Note: VM missing some system samples!

• Overall time to solution for 2,600 simulations
– Virtual is roughly 8% higher than native
– 36 nodes: Native: 2h 40m ; VM: 2h 55m

21

Observations: Native vs Virtual (3)

• Native: higher std. on system code
– Both CPU & ITLB misses
– Comment: Possibly an accounting / node issue?

• 2-3 nodes report “ide_outsw” associated w/
differerent app image, so excluded by our method.

– App name: “vmlinux” instead of “maincode.exe”

22

OProfile Observations

• OProfile differences
– Sampling for multiple events simultaneously

• Native not noticeable effect
• Virtual greatly increased the overhead (interference)
• See future work

– Lack full “context” in virtual
• domU/dom0 – “maincode.exe” in domU context only

23

Related Work
• HPC benchmarks & network apps/IO

– Original Xenoprof developers [Menon:vee05]
– Para-virt for HPC systems [Wolski:xhpc06]
– VMM I/O bypass [Panda:ics06]
– Xen & UML for HPC [Stanzione:cluster06]

• Some looked at real-world apps
– Mainly systems perspective / developers

• Profiler tools
– VIVA (UCSB) project’s VIProf for JVM
– Address issue of dynamic symbols (profiling context)

24

Future work

• Look into OProfile/Xenoprof
– Single vs. Multi event samples
– Guest context

• Investigate system side
– Identify root causes

• Revise methodology
– Improve VM system portions

25

Summary

• Analyzed scientific application & virtual env.
– Hypspectral radiative transfer code (Hydrolight)
– Wall-clock on virtual environment (4 events)

• w/o profile instrumentation ~8% > native
• w/ profile instrumentation ~11% > native

– Profile only 1 event, drops to ~8% > native

• Tools for virtual environments
– Still somewhat immature
– Performance isolation issues

• ex. OProfile sampling 4 vs. 1 event

26

Thank you

Questions?

Acknowledgements
This research was supported by the Mathematics, Information and Computational Sciences Office, Office of
Advanced Scientific Computing Research, Office of Science, U. S. Department of Energy, under contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC.

A. M. Filippi: This research was supported in part by an appointment to the U.S. Department of Energy (DOE)
Higher Education Research Experiences (HERE) for Faculty at the Oak Ridge National Laboratory (ORNL)
administered by the Oak Ridge Institute for Science and Education. A.M. Filippi also thanks Budhendra L. Bhaduri
and Eddie A. Bright, Computational Sciences & Engineering Division, ORNL, for their support.

27

Backup slides

28

CPU: Native / HostOS / VM

VMNative

HostOS

29

ITLB miss: Native / HostOS / VM

Native

HostOS

VM

30

Average & STD 20 runs, 4 events

31

CPU time ITLB miss

• Average of one experiment, 20 runs
• N=native, V=VM
• (Tsys on VM only domU)

32

Application Overview (2)

• Hydrolight execution characteristics
– Sequential, deterministic, CPU-bound
– I/O: initial input params, configurable output

• Output file settings: KBs up to MBs
– Majority of time in single user-space routine*

• e.g., rhotau()

* Note: Based on the set of parameters/tests we performed.

	Effects of Virtualization on a Scientific Application�Running a Hyperspectral Radiative Transfer Code on Virtual Machines
	Background
	Application Overview
	Hydrolight Simulation Properties
	Outline
	Methodology
	Experimental Environment
	Profiler Settings
	Profiler Settings (2)
	OProfile Events
	Experiments
	OProfile sampling
	Gathering Data
	Post-processing heuristics
	Platform avgerages 20 runs
	CPU time
	ITLB miss
	Observations: Native vs Virtual
	Observations: Native vs Virtual (2)
	Observations: Native vs Virtual (3)
	OProfile Observations
	Related Work
	Future work
	Summary
	Thank you
	Backup slides
	CPU: Native / HostOS / VM
	ITLB miss: Native / HostOS / VM
	Average & STD 20 runs, 4 events
	 CPU time ITLB miss
	Application Overview (2)

