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ABSTRACT

Reliability is increasingly becoming a challenge for high-

performance computing (HPC) systems with thousands ofsjode

such as IBM's Blue Gene/L. A shorter mean-time-to-failuae be
addressed by adding fault tolerance to reconfigure workodgs
to ensure that communication and computation can progrss-
ever, existing approaches fall short in providing scaigbind
small reconfiguration overhead within the fault-toleraaydr.

This paper contributes a scalable approach to reconfigerecim-
munication infrastructure after node failures. We propasge-
centralized (peer-to-peer) protocol that maintains aisterst view
of active nodes in the presence of faults. Our protocol shaws
sponse times in the order of hundreds of microseconds agtésin
digit milliseconds for reconfiguration using MPI over Bluex/L
and TCP over Gigabit, respectively. The protocol can be tediap
to match the network topology to further increase perforcean
We also verify experimental results against a performanadaty
which demonstrates the scalability of the approach. Hetiee,
membership service is suitable for deployment in the comoaun
tion layer of MPI runtime systems, and we have integrateckaly e
version into LAM/MPI.

Categories and Subject Descriptors

D.4.5 [Operating System$. Reliability—Fault-tolerance D.4.8
[Operating System$: Performance-Measurements,Modeling
and prediction

General Terms
Measurement, Performance, Reliability
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1. INTRODUCTION

As contemporary high-performance computing (HPC) systaras
increasing in size to thousands of processors, such as |IBM&-
Gene/L (BGI/L), high availability is becoming a challengd.[4
While the reliability of a single node is often remarkablyglhj

a job’s chance to complete execution prior day failures de-
creases as the number of nodes to parallelize the job iregeas
For the BG/L at Livermore with 130k processors, a dual-pssoe
compute card is currently failing every other day forcingC24-
processor midplane to be temporarily shut down to replaeedind
[29].

In such large-scale environments, high-performance egbns
commonly employ a checkpoint-and-restart methodologyleert

ate failures. When a node fails, the current job is genenally
linquished in favor of a new job whose nodes restart from the
last checkpoint saved on stable storage [41, 11, 12, 3].
application-side fault tolerance imposes the burden optbgram-
mer to explicitly and non-portably address the robustnéshie
code for large HPC systems.

Different approaches to provide programmers with suppoifieiult
tolerance have been studied in the context of high-perfocma
systems, ranging from application-level [25] over comneatibn-
level [40, 39, 22, 10] to network-level [6]. While applicati-side
techniques require significant modifications to prograiney {po-
tentially reduce the amount of state that needs to be saveth-T
niques at the network layer provide reliability within theessage
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layer provides a compromise in that modifications to theiappl
tion are minimal and application state can be captured adetyu
Our work is aimed at an integration into the communicatioreta
of MPI runtime systems, specifically that of LAM/MPI and Open
MPI [40, 27].

Efforts in group communication have focused on providinygises

to a dynamically growing and shrinking set of members (oras)d
[26, 5, 30, 34, 8]. These services are often Internet sesuise
ing high-level communication abstractions. Implemenotagirange
from client-server approaches to the peer-to-peer paradigth
hybrids of both in the middle. These approaches generaily ut
lize an all-to-all communication paradigm, which is inhahg un-

Such



scalable. More recent work on group membership proposés ful
decentralized or hybrid approaches, but the resultinguetstring
overhead is still in the order of seconds [33, 46].

In this work, we contribute a scalable approach to recondighe
communication infrastructure after node failures withiire trun-
time system of the communication layer. Building on our past
perience of scalable communication frameworks [19, 20,24],
we propose a decentralized (peer-to-peer) protocol thattaias
membership of MPI tasks in the presence of faults. Our pobtoc
is primarily tailored to local area networks, specificallyditated
clusters, instead of wide area networks or Grid frameworks.

However, while existing approaches provide either schtalor
small reconfiguration overhead, our protocol combinesettiea-
tures. Instead of seconds for reconfiguration, our proteholvs
overheads in the order of hundreds of microseconds andesingl
digit milliseconds over MPI on BG/L and TCP on Gigabit Ether,
respectively. Our protocol can be configured to match thevort
topology to increase communication throughput. We utitadix
trees to implicitly encode routing information into nodesl@nd
additionally represent the tree structure as an array (dicaly
resized upon node joins/failures) to provide access todteestruc-
ture of individual nodes in constant time. We also verify exjperi-
mental results against a performance model to assess tabitita

of the approach and allow extrapolation for larger numberaafes.

Overall, our membership service for MPI tasks combines &gt b
of both worlds, the scalability of a decentralized membigrgino-
tocol and the performance of existing fault-tolerant medisras
within high-performance runtime systems. Having impletadn
the protocol in the low-level communication layer of LAM/MP
we are currently assessing the protocol’s suitability fepldyment
within the MPI Component Architecture (MCA), specificallg a
an add-on to the Point-to-point Management Layer (PML) inith
Open MPI [27, 7, 43, 44]. Nonetheless, our approach is mane ge

hasa children, wheres is constrained to be a power of two for
reasons given below.

2.1 Assumptions and Safety Properties
We make the following assumptions about the overall franmkwo

Execution Integrity: We assume that no event occurs at a process
between its crash and recovery. After a crash, the process-is
sumed to remember its unique IB.¢, derived from the IP address
or the host name), but not necessarily the view since a view ma
change any time. The new view is obtained from the currertt roo
on recovery.

Message uniquenessfEach message contains a message type, the
sender and the receiver information. The underlying conicaun
tion stack guarantees reliable messagireg, neither will there be
any duplications nor losses of messages. Given messageetniq
ness, our protocol ensures that any message be sent exaw|yoo

a given destination.

The protocol should meet the following safety propertiesah-
munication and multicast services (see [14, 18glf Inclusion:
The membership algorithm satisfies the self inclusion pttgpiee.,

if a process p establishes a view V, then p is a member @féev.
livery Integrity: For every receive, there is a preceding seNd.
duplication: At any process, two receive events can neither origi-
nate from the same send event, nor can they have identicabges
content. Same view delivery: If two processes p and ( receive
message m, they receive it in the same view.

The membership algorithm relies on the detection of faujtau-
other layer of the software architecture. We specificallgctdo
processor failures (crashes) and recoveries.

eral and can be applied for any membership service or in other 2.2  Fault Detection in the Execution Environ-

frameworks that require scalable group communicatior) sisef-
ficient multicast service®.g, in MRNet [38].

2. HIGH-LEVEL ASSUMPTIONS AND DE-

SIGN
To tolerate faults for an MPI job, the set of individual MPtka
represent a group within which they may communicate and-coor
dinate execution and termination. Within the runtime syst®PI
tasks have a consistemiew about who is a member in such an
abstract communication domain [28, 9, 14]. Fault toleraree
guires a dynamic domain in which members can join and leave.
The latter may be due to faults while the former may occur upon
recovery from faults or when additional compute resourcesex
quired. Group communication, such as multicasting, candsed
on membership properties within a domain.

Membership within a domain is implemented within a runtime-
level membership service layer and used by an applicatiper la
that relies on this service. Thiéewof the system is the set of cur-
rently active and connected (unpartitioned) processe® apipli-
cation layer interacts with the membership service for comica-
tion andview changeactions. The membership service maintains
a consistent view of the system. It ensures that communicati
takes place only between processes that share the same Iniew.
our model, every process starts witldefault view This view is
internally represented as a tree. In the absence of faalth, mode

ment
Faults are detected by an external detection mechanisritsEan
be identified by hardware health monitoring, such as IPMId&}
tection of link failures or any other mechanism. The details
beyond the scope of this paper.

For the experiments in Section 7, we employ a fault detecset

on a timeout mechanism. Excessive delay in response from any
process to a message request leads to the assumption tipabthe
cess has failed. Such a process is removed from the set of uiew
theview changevent triggered by the above timeout. Link failures
are handled similarly to node failures in this scenarim, different
causes of failure need not be distinguished. The describ&d-p

col handles only single-path routing. An extension coulddie
multi-path routing through NACKs.

2.3 Processor Failure and Recovery

Within our execution environment, a fault-injecting ajgpliion in-
quires the state of every other process randomly. This eatjin
is a micro-benchmark resembling the communication portbn
real applications communicatinga MPI over a runtime-supported
membership service. A process failure should not causeritire e
application to fail. Instead, each remaining node will updits
membership view to obtain a new, consistent view in resptmse
message triggered within the tree structure, excludingdaiodes.



3. SCALABLE, LOW-LATENCY MEM-
BERSHIP SERVICE

In the following, the operational details of the membershligo-
rithm, based on a radix tree, are detailed. The objectiveett-
gorithm is to provide a new, consistent view of active nodesrf-

bers) in a scalable manner at very low overhead. The prodess o

establishing a new view is callédbe stabilizatiorin the following.

3.1 Radix Tree Representation

Nodes participating in the membership service are intgrmap-
resented in two data structures: a radix tree and a lineay arfr
nodes. The former provides an efficient representation dec-
tive communication while the latter supports point-tosgaiom-
munication.

The radix tree provides a hierarchical representation ithptic-
itly encodes routing information in the node ID, which redsi¢he
overhead of algorithms that exploit the membership servidee

radix encoding of a node ID can be used to determine the igutin

path of messages from the root to this node or to determipesis
tion in the tree structure. To allow an efficient decodingamiting
information, the number of children in the radix tree has ¢oab
power of two. Hence, for a binary tree, the routing decisiamf
one node to the next lower level is determined by a singlenbit i
cating that one should follow the left (0) or right (1) child.a tree
with four children, such as in Figure 1, two bits indicate @¥hiink
to follow to determine the location of a child in the tree.

In addition to the radix tree, an array of nodes provides sxte
arbitrary nodes at constant time, which can be utilized fain
to-point messages in a message-passing framework. Tihig iarr
dynamically resized upon node joins and failures to acelyat-
flect view changes in a consistent manner.

3.2 Initialization
At the initialization phase, every node in the system is @i

to have knowledge of the number of children and the total num-

other nodes). At startup, all nodes have the same initiav. vie-
terwards, any two nodes in the application layer may comoatei
at any time. This approach still allows for node failuresinigr
start-up, as discussed later. Overall, the system is deatiie to
the fully decentralized initialization since no messagehaxge is
required to form the hierarchy. The tree structure with afigen
urable number of children furthermore ensures that theesysan
be adapted to reflect a given network topology.

3.3 Fault Handling

A node is considered to have failed if indicated by the failde-
tector. For the experiments in Section 7, we detect a faillren a
node does not respond within a timeout window to a query/agess
from another node. A node failure can be one of the followBig-
gle node failure, multiple node failure, root failure andkifailure.
Upon detecting a failure, the root is informed of the failedle and
initiates a view change (see Figure 3(a)).

A link failure is handled implicitly as if a node (and its suix
consisting of immediate children and their children etcs) un-
reachable. Notice that partitions (subtrees) reorgamziorm a
new view (succinct from the view with the prior root). Apitons
may elect to continue or abort upon network partitioniagy, de-
pending on their ability to communicate with I/O nodes (sashn
the BG/L model [4]).

3.4 Single Node Failure
This failure is the easiest to handle and requires very lowrna-
nication bandwidth during the tree stabilization phase.e Tiee

is assumed to be stabilized once the root receives an acknowl

edgment from all of its children affirming a stabilized treethe
lower layers, as depicted in Figure 3(a) and described betow
ery failure detection message to the root will be acknowdeidigy

a FAILURE_DET_ACK message. When multiple nodes si-
multaneously detect the same failure, the root acknowkedgeh
failure detection message but disregards all but the fiilstréade-
tection message.

ber of nodes. Each node has a unique ID. These assumptions are

consistent with MPI runtime environments. Communicati@ b

tween nodes is not required during the initialization phasece

For simulation purposes, our application scenario letseadd-
quire the state of other nodes in the system at random if$gerva

the knowledge of the number of children and the total numlier o Which we used for fair testing and benchmarking. (As longhes t

nodes is sufficient for nodes to locally form a hierarchitaicure.

The hierarchical structurée., the radix tree, is organized such that

application has regular communication, the protocol wélgup-
ported.) Assume that node 11 has seff@W _ARE_Y OU mes-
sage to a failed node 4 in Figure 1. On failure detection, rilse

the node with lowest ID is the root. Each node has a fixed number a NODE_FAILURE message to the root (assuming the failed
of children. The ID of each child of a node is determined as a node is not the root and all the nodes haye_a consistent \_/@WE)-
function of the height of the node in the tree and the maximum root recalculates its tree structure by eliminating théetainode

number of children, as depicted in Figure 1. This is a congtare
operation due to the routing information encoded into tkéxraee.

Figure 1: Stabilized Tree Structure

The radix tree is duplicated on each node and kept up-tovite
respect to a global view in a decentralized manner (comgigtih

from its list of nodes and updates corresponding links taliis
dren in the tree, as depicted in Figure 2. The root node fedithe
next step of the algorithm by sendingfkgAILED_NODE mes-
sage to its children. Each child propagates the message thawn
tree after recalculating its local view (tree).

Figure 2: Tree Structure after node elimination



(a)Handling a node failure

On failure of a node (ID)
if ID ==root) )
new.root = find.next highest (ID);
sendROOT_FAILU RE (ID, self) message
to newroot;

se
sendNODE_FAILURE (ID, self) to root;

On receiving NODE_FAILURE(failed_node, detector)
by root

sendFAILURE_DET_ACK to detector;

Regroup (failednode, flag);

llflag € {0,1}, 0 = node failure, 1 = root failure

Regroup(failed_node, flag)

recalctreestructure(failednode);

locate my children; ) )

sendFAILED_NO D E(failed_node) message to children;

On receiving FAILED_NODE(failed_node) Message
in a child
if(self # leafnode)
Regroup(failednode, flag);
locate my children; .
sendF"AILED_NO D E(failed-node) message
to children;

else
Regroup(failednode, flag);

(b)Handling a root failure

On receiving ROOT_FAILURE(ID, detector)
by new_root
sendFFAILURE_DET_ACK to detector,;
Regroup(ID, flag);
llflag € {2, 3}, 2 = recovery process, 3 = new node join
Regroup(failed_node, flag)

recalctreestructure(failednode);
locate my children; )
sendROOT_DEAD message to children;

(c)Handling a node join
On receiving NEW_NODE(ID) by root
sReer?(;LC}lg} ?\tfajug%:ijg,jacg};( to new.node;
Regroup(new_node, flag)
recalctree structure(newnode);

locate %y children; .
sendV EW_NODE_JOIN message to children;

On receiving NODE_ALIVE(ID) by root
Regroui>§alivenode, ﬂag}; )
sendALIVE_NODE_JOIN_DET_ACK to alivenode;

Regroup(alive_node, flag)
recalctreestructure(alivenode);
locate my children; .
sendALIVE_NODE_JOIN message to children;

Figure 3: Pseudocode of the Membership Algorithm

The local tree recalculation procedure is as follows. Debe the
failed node, P(D) be its parent and C(D) the set of its childre
Then, the new view is calculated by (1) assigning the parént o
C(D) as P(D), (2) removing D from the list of children of P(I03)
merging the list of children of D with the list of children o{[P)
and (4) removing the list of children from D.

acknowledgment from the dead node informs the root through a
NODE_FAILURE(Y) message. Then, the root propagates a
list of failed nodes to its children. If a node failure has weed

at each level of the tree, it will takél — 1 initial tree stabilization
phases for the tree to stabilize, whéfeis the tree height. A lower
height can be achieved by choosing a larger number of chiloee
node to speed up tree stabilization during multiple nodeirfas.

The tree structure will be consistent after each node has ac-However, extremely low heighe(g, a “flat” tree with just two lev-

knowledged to its parent a stable structure for the respecti
subtree. Once &'AILED_NODE message reaches a leaf
node, the stabilization phase starts.

els) reduces performance as upper nodes become bottlenkeeks
propagating messages. Depending on the number of childrgn (

Leaves respond with apower of two is legal), the height needs to be chosen acagigdin

FAILURE_ACK message to parents. Higher nodes acknowl- i.e,, by modeling stabilization time for different configurai®

edge with aF AILU RE_ACK to their parent once they have re-
ceived the acknowledgments from their children. Failunetzive
aFAILURE_ACK message will invoke another instance of the
failure detector, as discussed in Section 3.5. The treerbessta-
ble once the root receivesBAI LU RE_ACK from all children.

3.5 Multiple Node Failures

This case is handled similarly to a single node failure.
If multiple nodes fail simultaneously, the root receives a
NODE_FAILURE(X) message from the detector process
while the first phase of tree stabilization is in progresse fidot ac-
knowledges each failure detection message, and, if maltiptes
detect a failure of the same node, all but the first messagdisre
regarded (although acknowledged). For multiple, distiaded
nodes, the root sends a list of dead nodes after recaloy értree
locally. To facilitate the presentation, the list is omitte Figure
3(a); it simply extends thkai | ed_node parameter to a set.

3.6 Root Failure

Should the root fail, the detecting node sends a
ROOT_FAILURE message to the next live node in the
linear list (see Figure 3(b))i.e., a sequential scan suffices to
designate a new root assuming the new root is alive. Theitiigor
proceeds in accordance with the single node failure regover
procedure explained above with following additions:

e The new root sends ROOT _DEAD message to its chil-
dren who transitively send it to their children.

e During the tree recalculation phase, each node also has to
update its root to the new root.

The tree becomes stable after the new root has receivedwkekno
edgments from all of its children.

Consider the case where a root failure coincides with meltipde

Example: Assume failures for nodes 4 and 5, and 11 has ddtecte failures. To distinguish this case for a single root failuaaiffer-

the failure of 4. The root sendsAILED_NODE(X) to its chil-

ent messageROOT_AND_NODE_FAILURE, will be prop-

dren and waits for an acknowledgment during the first tree sta agated down the tree indicating the new root and the set lefdfai

bilization phase. Since it does not receive an acknowledgme

nodes, followed by acknowledgments upwards. This new ngessa

from node 5, it times out assuming that node 5 is dead. If this allows children of the failed nodes that may be engaged ialvec

happens at lower layers of the tree, the node that fails taget

culations due to a prior failure to identify its proper parand ac-



quire a consistent overall view. Due to the similarity to tiamg
FAILED_NODE messages, this detail is omitted in Figure 3.

3.7 Node Join

A new node may join a domain (the set of MPI tasks) by sending
aNEW_NODE(ID) message to the root (see Figure 3(c)). The
root adds it as a leaf to the bottom of the tree. This message th
propagates in the same way as for a node failure. The roatdssu
aNEW_NODE_JOIN(ID) message to its children, which is
propagated further down the tree by its children. The trearass

a stabilized structure once each node in the hierarchy lvas/esl
NEW_NODE_JOIN_ACK (ID) from all of its children. The
leaves will eventually send an acknowledgment to theireetype
parent, and this message is propagated upwards to the root.

An implicit node join may occur when a node recovers from h fai
ure. Recovered nodes may re-join with their original ID byimra
taining an association between the host name and the IDlefifai
nodes. This mapping is maintained by all the nodes in theesyst
The recovered process issueN&@DFE_ALIV E(ID) message to
the root, and the stabilization routine follows the samecedure
as for a join of a new node.

Once the tree is stabilized, the root sentt®IN_DET_ACK

per message,e., to propagate a node failure down and another to
receive a response. L&l be the height of the tree. Then, there
areH — 1 levels for communication between parents and children.
Thus,

Oecm=2x L x (H—1) 1)

The total tree stabilization overhedfls, is based on the overall
communication overhead and the delay due to computativest o
head within each level of the tree structure. Hence,

Ts=0Ocm+ Ocpx H (2)

We next turn to experimental results to assess the perfarenah
our protocol. The model is used as a reference to allow projec
tions into larger number of processors if it fits the obsemgslilts.
While found to be valid in principle, several refinements loé t
model were necessary due to machine-specific impacts omthe |
tency, as discussed in the following. These refinements gorioke
other models, such as LogP or its extensions [17].

5. EXPERIMENTAL FRAMEWORK

To assess the performance of our protocol, various tests eger-
ducted on a number of test beds. We report the results for two
of them in the following: a BlueGene/L (BG/L) machine and the

message to the recovered process or the new node welcominggXtreme TORC (XTORC) cluster at Oak Ridge National Labora-

it to the system. A failure to get dOIN_DET_ACK from

tory(ORNL). On BGI/L, all executables run on the compute rsode

the root triggers the new node or a recovered process to send zAtop a light, UNIX-like proprietary kernel, the compute eoker-

NEW_NODE(ID)or NODE_ALIV E(ID) message, respec-
tively, to the next node in its sequential list of nodes. Tiheetto
join the system might increase if a considerable number of pr

nel (CNK) [2]. There are two midplanes (each with 512 nodes
or 1024 embedded PowerPC processors), and each midplaae has
three-dimensional (3D) torus interconnect for point-tirp mes-

cesses have failed in the top of the hierarchy and a node with aSades besides other interconnects for selected collexivenuni-

lower ID has assumed the status of the root. If a node join oc-
curs when a system recovers from a failure, the root nodessend
list of failed and (prior) joined nodes. The tree recaldolatoc-
curs locally. One message suffices for establishing a &tabitree
structure. The joiner has to find the current root througmedr
scan of the list. Other schemes, such as random requestiseio ot
nodes to inquire about the root, are also possible. If theejohap-
pens to be the new root, every node agrees on this duringdae tr
recalculation phase.

4. PERFORMANCE MODELING

In addition to the protocol design and implementation ¢&owe
attempted to model the performance of our protocol with aréte
ical model. Initial efforts to measure the overtithe for stabiliza-
tion, T's, in the presence of a single node failure within network
simulators, such as theetwork simulator ZNs-2) [35], were con-
sidered inappropriate since such simulators generallyot@lfow
computational overhead to be reflected in their models. \We al
observed practical challenges on clusters, as explainduifol-
lowing, that cannot be accurately represented by simulatio

We derived a rudimentary performance model baseda@nmu-
nication overheadOcm) andcomputation overhea@Ocp). Ocp
captures the time for updating the tree structure on a laudé mnd
can simply be measured in wall-clock time on a target archite.
Ocm is based on the latenéyof point-to-point connections of ad-
jacent nodes in the tree.

Ourbase modehssumes a single-hop connection between adjacent
nodes with uniform latency measured as half the round-irig tn

a ping-pong experiment. To measure Ocm for the entire tvee, t
times the latency is being considered between each node dene

cation. When the partition is smaller than a midplane, theraon-

nect is a 3D mesh, hence, we ensured that an entire midplase wa
allocated to our jobs. XTORC has 64 2Ghz Pentium 4 compute
nodes connected by 1Gb/s Ethernet running RedHat 9.0 (Linux
kernel-2.4.20-8). Of the 64 nodes, only 47 nodes were laifar
testing. The entire test environment was written in C in @lsin
threaded manner since we observed high variations fordhrgan

prior implementations.

The memory requirement of the scheme is small and incresses |
early per node. On each node, the tree has a space compléxity o
O(N), where N is the number of nodes in the tree structure. For
BlueGene/L, each compute node has slightly less than 512MB o
physical memory available for user programs. A tree stmectioat

has 1024 nodes (using both midplanes of BlueGene/L) usss les
than one MB of memory leaving ample memory space for the run-
ning applications. XTORC provides 768MB of physical memory
and the memory requirement of our protocol was only a few-kilo
bytes for less than 64 nodes. We are currently assessingamtvar
of our protocol with localized views of the overall tree tmlt the
memory requirements to a constant size and, thereby, Sugaif

ing into tens of thousands of nodes and beyond.

On BlueGene/L, MPISend and MPIrecv primitives implement
the communication of the protocol. The reason for using non-
blocking receive calls was to eliminate threading sincét{@ading

is not supported on BG/L and (b) threading was shown to ré@sult
high overhead and variance in performance on Linux. Theémpl
mentation on XTORC relies on TCP sockets.



6. FUNCTIONALITY TESTING

The implementation of the protocol was subjected to extensi
functionality tests with single node failures, multiplensiltane-
ous failures, single root and chained, simultaneous rodttap
node failures, the last of which requires linear selectibthe next
root node. Failures were injected to the testing envirortnaed
resemble non-responsiveness of nodes as commonly detscted
timeouts during communicatichThe protocol proved to be robust
to allow functioning nodes to survive failures of other nedaeéhile
still retaining the capability to communicate and track et of
operational nodes.

We further implemented the protocol as part of LAM/MPI at the
LAM daemon level as a new service module. Extensive tests sho
that the protocol can sustain injected faults and recordig@b-
served measurements are similar to the results discusked foe
TCP on a Linux cluster, albeit with a 10%-20% higher overhead
due to integration into the costly process model of the level
LAM infrastructure, and will be omitted due to space corigts&a
We have integrated our approach with the Berkeley Labs Gheck
point/Restart (BLCR) [22] facility such that one does novéo
restart an MPI job when a node fails if (a) a failed node is veco
ered or (b) a spare node exists to assign the failed work trgusi
the old MPI rank. We are also integrating transparent (ndi-app
cation modifications, no manual state re-distribution) pedodic,

yet coordinated checkpointing. LAM/MPI lacks these calitids;

it requires a cold restart of the entire MPI job, which can bstly
considering that most nodes still contain the process image

it results in long response times for users that could bedawbif
spare nodes were available.

7. PERFORMANCE EVALUATION

We assessed the performance of our protocol in terms of riine ti
for stabilization,T's, after a single node failure, which is the most
common type of failure since, as will be showiis is in the order
of hundreds of microseconds or single-digit milliseconad,dhus,
orders of magnitude smaller than the mean-time-to-failimMETF)

in even the largest systems.

7.1 MPI on BlueGene/L

Figure 4 depicts the experimental results for assessingttis-
lization time,T's, on BlueGene/L over MPI for increasing numbers
of nodes. A binary tree configuration was chosen with two-chil
dren (a=2). Notice that the x-axis is on a log scale, whichwsho
that our protocol scales logarithmically with increasingnber of
nodes. Furthermords is in the order of microseconds up to 1024
nodes. If we interpolate these results, this trend is likelyontinue
into the tens of thousands of processors on BG/L. The resgits
obtained from five samples with a confidence intervatSius to
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of Ocp = 2us on BG/L. The resulting base model diverges sig-
nificantly from the experimentally obtained results. Thisde
attributed to the point-to-point communication topologyBas/L.

We conducted our experiments on two midplanes with each mid-
plane consisting of 512 processors, which have a 8x8x8 3stor
interconnect. When MPI tasks are mapped to nodes, adjacdasn

in the tree may have to communicate over varying number of hop
counts (distances) within the torus. Each hop thereby ieptise
cost of the base latendy. To consider this overhead, we refined
our base model to account for the communication overh@ad,
using a distance-aware latency to derivdistance model Here,

the overall number of hops contributing to the latency isshm
over all levels in the tree of the maximum distance in hopsaahe
level. Thus,

Ocm = 2 x [2 maxz(hops b/wnodes at level)] X L x (H — 1)

levels

This model considers the maximum latency between adjacent
nodes (all parent/child pairs) at each level (in both dioes) and
aggregates the respective maximum for all levels in the tfde

hop count is determined as the sum of differences betweem eac
pair of X, y and z coordinates of nodes in the 3D-torus thatdre
jacent in the tree structure. As the results in Figure 4 shbis,
distance model closely matches the observed results. Tdisru
lines the benefits of simplicity and scalability of our prodbwhile
delivering performance.

Figure 5 shows the stabilization time for a tree configuratigth
four children per parent (a=4). Again, the experimentaliltss
show that the protocol scales logarithmically with the nembf
nodes. The absolute overhead s is slightly smaller than for
the binary tree configuration (a=2), which can be attributethe
reduction of height in the tree. But the impact of hop couets r
duces this benefit to some extent. The results were obtained f

+16us for smaller and larger node numbers, respectively, at a 99% fje samples with a confidence interval #.5us to +£12us for

confidence level.

We also assessed the validity of our base model for a single ho
point-to-point latency of. = 4.6us and a computational overhead

When a node times out but has not failed, it will still be tezhas

if it has failed since progress is hindered by this node. Byuaing
this node from further communication, other nodes can moaea
timely mannerg.g, by electing a replacement node within the MPI
runtime system. Any messages from the excluded nodes miedai
to the old job are henceforth ignored by other nodes. If theeno
is fully responsive again, it may join the set of running nedad
can be assigned any work at that time, same as or differemttfre
original work.

smaller and larger node numbers, respectively, at a 99%cdmnde
level.

The base model shows an interesting behavior in that itreltes
between slight increases and no changes (flat line) in pedoce.

A flat line occurs when the number of nodes is increased but the
height of the tree remains unchangeée,, the height of the tree
changes only for powers of four. Once we consider the distanc
model that includes the hop counts for point-to-point commu
cation in the tree, the model closely approximates the ebser
performance for each measurement point that is a power of fou
(or exceeds the height of the previous tree). In betweenghery
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performance is underestimated. This artifact remains ulbyt €x-

plained, but we have eliminated system activity as a souve.
will discuss network contention as a potential source irseghent
results. Nonetheless, the overall trends demonstratectiiatslity

of the protocol with a matching model for powers of four.

Notice that the protocol could alternatively have been enpnted
over the hardware tree interconnect utilized by some citec
communications on BG/L, which would have resulted in shorte
response times. However, the objective of this work was sess
the scalability of the protocol for large numbers of nodesuas
ing commodity interconnect topologies without special-tmall
support in hardware.

7.2 TCP over Ethernet

Figure 6 depicts the stabilization time observed in expenits on
a dedicated Linux cluster (no background activity) with agée
Gigabit switch using a TCP implementation of our protocal &
binary tree (a=2). Notice that the x-axis is on a linear scalee
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Figure 6: Ts over TCP for a=2 on Linux
experimental results show a step-curve of increasing ltation

time. Upon closer analysis, we observe that the protocatas s
able for TCP as welli.e,, that its time complexity increases loga-

rithmically with the number of nodes The results were obtained
from five samples with a confidence intervalbd s to+86us for
smaller and larger node numbers, respectively, at a 99%cdmorde
level.

We also observe th&ts increases linearly between any power-of-
two node counts. This behavior is consistent with the expenk

tal results in Figure 5. We further observe that the base mode
(with a TCP latency ofL. = 118us and a computation overhead
of Ocm = 2us) does not resemble the experimental results. The
hop count is not a factor as a single full-duplex switch aici-

rect communication between any pair of nodes without cditen

at the network fabric. The switch itself, however, may daa
packet processing.

The hypothesis of packet serialization within the switclswan-
firmed in a series of experiments where an increasing number o
neighboring nodes communicated along a localized strectig-

ure 7 presents the experimentally determined latency ucoler
tention for these configurations of (a) pairs of nodes, (baueept
with two children and (c) a parent with four children communi
cating with one another, as depicted in order of increasitgncy.

We observe that point-to-point communication of pairs ofle®
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Figure 7: Contention-based Latency over TCP

is handled well by the switch up to twelve nodes, after whiah t
latency linearly rises with the number of nodes added. Mage s
nificantly, a more complex internal structure, such as argitrae,
inflicts higher switch contention for the same number of sodige
to serialized communication with multiple nodes at the par€he
Iaten?f:y increases even more significantly for a tree with &dnil-
dren:

The results obtained as contention latency in Figure 7 webe s
sequently used to substitute the base latency in Equatiofthl. w
the contention latency in the figure corresponding to thpeetive
number of nodes. The resulting contention-based modebjurEié
resembles the the experimental results very closely. Mereave
argue that contention latencies can be extrapolated fgedarode

2A plot on a logarithmic x-axis for results & — 1 nodes illus-
trates this behavior. The linear x-axis here is intentignased to
motivate the following analysis.

3Notice that these results could not be accurately be modsled
other models, such as LogP [16] with its account of sendiirece
overhead and the gap, since a linear increase with incigeasim-
ber of nodes of any of the base parameters is not considered.



numbers, due to the near-linear behavior in single switct\égen
switches are hierarchically combined, contention latesof each
single switch can be aggregated in a manner reflecting thierswi
topology. This is subject of future investigation.

Figure 8 depicts the results for TCP over a tree with fourdrki
per parent. The overall results indicate scalability ofnatocol in

2250.0 q

-+- Experimental Results
2000.0

-X= Contention Model

B'1750.0

2 =X-Base Model

o

51500.0 |

E /X/X
= X —X .
51250.0 | i P
=] +

= +/+/

Z1000.0 { —

T /

@ =X

S5 750.0 N

Lo —— KK X—X—X
g

£ 5000

250.0

0.0

15 19 31 35 39 43 47

23 27
Number of Nodes
Figure 8: Ts over TCP for a=4 on Linux

terms of its logarithmic complexity. The results were obéal from
five samples with a confidence interval &fl2us to £98us for
smaller and larger node numbers, respectively, at a 99%dmorde
level.

The base model shows the typical step curve with increasgsiin
bilization time when the number of nodes increases suchtltigat
tree height increases by one (above 5 and 21 nodes), but ke ba
model does not resemble the actual measurements. Whemlconsi
ering the latencies of Figure 7, the contention model resesrthe
experimental results just before the tree height is ine@aMore
significantly, the contention model more accurately refi¢ice in-
creased contention for larger number of nodes. The facttheat
contention model tends to overestimate the experimersaltseis

not fully understood but we observed that larger overegiona
also tend to coincide with larger confidence intervals.

Overall, the experimental results confirm the scalabilftgur pro-
tocol and the refined models show a close resemblance ofiexper
ments, which should qualify them for the task of extrapotagifor
larger number of nodes.

8. RELATED WORK

Chockleret al. provide a set of rigorous specifications for the group
membership service and discuss various systems whereeditffe
properties are satisfied [14]. Most of the existing systessga

a view identifier for each new view installed in the system,[26
5, 31]. Our model does not require maintenance of a list of dif
ferent views (.e., a view set with unique IDs per view) since the
system stabilizes once the root node receives all acknowiedts
from its children. Our approach of each process decidingvits
view without exchange of any message with any other nodesds al
found in Transis [34] and Consul [36]. We do not allow mukipl
disjoint views to exist concurrently. This property of pam com-
ponent membership is implemented elsewhere as well [9,%]2, 1
A solution to the view-oriented partitionable membershipkem

is provided by R. Khazan [32, 33]. His approach is a hybridesf d

centralized clients and more powerful servers with a leati@ny
given point in timej.e,, it is not a fully decentralized (peer-to-peer
only) model due to practical network connectivity issues.

The Coyote system [8] provides a group membership servieecda
on a token-passing paradigm and uses 25 micro-protocol®o i
plement each group membership property. Our algorithm skeep
the interaction among different nodes simple, and stasilthe hi-
erarchical structure after each node receives just oneage$som

its immediate parent node.

A topology-aware membership service for cluster-baseer et
services is proposed by Zhou, Chu and Yang [45, 46]. It uses
Time-To-Live in the IP packet header to form hierarchicalugps
that resemble the network topology. The reported time & sta-
bilization for this model does not account for network lagrgap

and over heads involved for sending and receiving data.i$rptio-
tocol, the view convergence time is measured as the sumlofdai
detection time and the time to propagate the informationgtbe
hierarchical tree. The paper does not provide the treeliztation
time. Hence, we cannot make a fair comparison with our work.

Other prior work includes support for fault tolerance to tuen-
munication layer of MPI run time systems. Sankaedral. [39]
discuss a LAM/MPI checkpoint/restart framework where Mp a
plications can be check-pointed to disk and restarted [atezy use
the (Lawrence) Berkeley Labs Checkpoint/Restart (BLCRgmae
nism [22, 23] to implement a lightweight and modular compuane
based architecture. It requires each MPI process to caatedimith
other processes to reach a consistent global state in wieckiPI
job can be check-pointed. Bosileaal. propose an uncoordinated
checkpoint mechanism by saving the computation and communi
cation contexts independently [10]. Each node stores theution
contexts in remote checkpoint servers and uses dedicatdgsno
(Channel Memory) to store in-transit messages. Chaknaebidl.
[13] extended the runtime layer of Adaptive MPI (AMPI) betiea
Charm++ to migrate objects in a proactive fault-tolerannhne.
Collective communication structures, such as trees, webals
anced after node failures. In contrast, our work is more ggne
(any group communication structure), and their quantigatésults
include migration overheade., no direct comparison can be given.

Prior work on distributed locking explored the scalabildf/tree
structures [21]. This prior work focused on mutual exclaswo-
tocols and reader/writer locks in the context of middlewsweh
as CORBA. A fault-tolerant extension of such a locking peaofo
is developed as a ring-based topology, which limits itseaduiity
[37]. Our membership algorithm, in contrast, provides cstest
views among nodes in the presence of faults in a scalable enann
Furthermore, the approach is reconfigurable for a variaihatrer
of children (as a power of 2), natively encodes routing infation
due to its use of a radix tree, and it provides constant timesscto
the data structure for individual nodes.

9. CONCLUSION

This work presents a novel membership algorithm that coashin
scalability with low recalculation overhead in the ordertafn-
dreds of micro-seconds and single-digit milliseconds fétlver
BG/L and TCP over Linux, respectively. The protocol support
reconfiguration in terms of the communication structure, the
data structures can be adapted to match the network toptdogy
further increase performance. The protocol utilizes axrddie
representation to implicitly encode routing informationia node



IDs and additionally represent the tree structure as ary &orgro-
vide access to the data structure of individual nodes inteoihs
time. The protocol builds on prior experience of designingls
able communication frameworks by utilizing a fully decetized
protocol that maintains a coherent membership view of MBkga
in the presence of faults. Experiments demonstrate higfoper
mance and scalability of our protocol over TCP on GigabiteEth
and over MPI on BG/L. Experimental results were also vaéidat
against a closely matching performance model to allow priea
tions to larger number of nodes. The membership service s b
deployed in the communication layer of the LAM/MPI runtinyss
tem, and we are currently pursuing its integration into Ot
and, independently, into LAM/MPI with BLCR to continue jok-e
ecution in the presence of faults.
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