
Scalable, Fault-Tolerant Membership for MPI Tasks on HPC
Systems ∗

Jyothish Varma1, Chao Wang1, Frank Mueller1, Christian Engelmann2, Stephen L. Scott2

1 Department of Computer Science 2 Computer Science and Mathematics Division
North Carolina State University Oak Ridge National Laboratory

Raleigh, NC 27695-7534 Oak Ridge, TN 37831-6016
e-mail: mueller@cs.ncsu.edu

ABSTRACT
Reliability is increasingly becoming a challenge for high-
performance computing (HPC) systems with thousands of nodes,
such as IBM’s Blue Gene/L. A shorter mean-time-to-failure can be
addressed by adding fault tolerance to reconfigure working nodes
to ensure that communication and computation can progress.How-
ever, existing approaches fall short in providing scalability and
small reconfiguration overhead within the fault-tolerant layer.

This paper contributes a scalable approach to reconfigure the com-
munication infrastructure after node failures. We proposea de-
centralized (peer-to-peer) protocol that maintains a consistent view
of active nodes in the presence of faults. Our protocol showsre-
sponse times in the order of hundreds of microseconds and single-
digit milliseconds for reconfiguration using MPI over BlueGene/L
and TCP over Gigabit, respectively. The protocol can be adapted
to match the network topology to further increase performance.
We also verify experimental results against a performance model,
which demonstrates the scalability of the approach. Hence,the
membership service is suitable for deployment in the communica-
tion layer of MPI runtime systems, and we have integrated an early
version into LAM/MPI.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Fault-tolerance; D.4.8
[Operating Systems]: Performance—Measurements,Modeling
and prediction

General Terms
Measurement, Performance, Reliability

∗The work at NC State University was supported in part by
DOE grant DE-FG02-05ER25664 and NSF grants CAREER CCR-
0237570 and CCF-0429653. The research at ORNL was supported
by the Mathematics, Information and Computational Sciences Of-
fice, Office of Advanced Scientific Computing Research, Office
of Science, U. S. Department of Energy, under contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS06, June 28-30, Cairns, Queensland, Australia.
Copyright©2006 ACM 1-59593-282-8/06/0006...$5.00

Keywords
Reliability, high-performance computing, node failure, message
passing, group communication, scalability

1. INTRODUCTION
As contemporary high-performance computing (HPC) systemsare
increasing in size to thousands of processors, such as IBM’sBlue-
Gene/L (BG/L), high availability is becoming a challenge [4].
While the reliability of a single node is often remarkably high,
a job’s chance to complete execution prior toany failures de-
creases as the number of nodes to parallelize the job increases.
For the BG/L at Livermore with 130k processors, a dual-processor
compute card is currently failing every other day forcing a 1024-
processor midplane to be temporarily shut down to replace the card
[29].

In such large-scale environments, high-performance applications
commonly employ a checkpoint-and-restart methodology to toler-
ate failures. When a node fails, the current job is generallyre-
linquished in favor of a new job whose nodes restart from the
last checkpoint saved on stable storage [41, 11, 12, 3]. Such
application-side fault tolerance imposes the burden on theprogram-
mer to explicitly and non-portably address the robustness of the
code for large HPC systems.

Different approaches to provide programmers with support for fault
tolerance have been studied in the context of high-performance
systems, ranging from application-level [25] over communication-
level [40, 39, 22, 10] to network-level [6]. While application-side
techniques require significant modifications to programs, they po-
tentially reduce the amount of state that needs to be saved. Tech-
niques at the network layer provide reliability within the message
layer and need to be complemented by additional techniques at
higher abstraction levels. An implementation at the communication
layer provides a compromise in that modifications to the applica-
tion are minimal and application state can be captured adequately.
Our work is aimed at an integration into the communication layer
of MPI runtime systems, specifically that of LAM/MPI and Open
MPI [40, 27].

Efforts in group communication have focused on providing services
to a dynamically growing and shrinking set of members (or nodes)
[26, 5, 30, 34, 8]. These services are often Internet services us-
ing high-level communication abstractions. Implementations range
from client-server approaches to the peer-to-peer paradigm with
hybrids of both in the middle. These approaches generally uti-
lize an all-to-all communication paradigm, which is inherently un-

scalable. More recent work on group membership proposes fully
decentralized or hybrid approaches, but the resulting restructuring
overhead is still in the order of seconds [33, 46].

In this work, we contribute a scalable approach to reconfigure the
communication infrastructure after node failures within the run-
time system of the communication layer. Building on our pastex-
perience of scalable communication frameworks [19, 20, 21,24],
we propose a decentralized (peer-to-peer) protocol that maintains
membership of MPI tasks in the presence of faults. Our protocol
is primarily tailored to local area networks, specifically dedicated
clusters, instead of wide area networks or Grid frameworks.

However, while existing approaches provide either scalability or
small reconfiguration overhead, our protocol combines these fea-
tures. Instead of seconds for reconfiguration, our protocolshows
overheads in the order of hundreds of microseconds and single-
digit milliseconds over MPI on BG/L and TCP on Gigabit Ether,
respectively. Our protocol can be configured to match the network
topology to increase communication throughput. We utilizeradix
trees to implicitly encode routing information into node IDs and
additionally represent the tree structure as an array (dynamically
resized upon node joins/failures) to provide access to the data struc-
ture of individual nodes in constant time. We also verify ourexperi-
mental results against a performance model to assess the scalability
of the approach and allow extrapolation for larger number ofnodes.

Overall, our membership service for MPI tasks combines the best
of both worlds, the scalability of a decentralized membership pro-
tocol and the performance of existing fault-tolerant mechanisms
within high-performance runtime systems. Having implemented
the protocol in the low-level communication layer of LAM/MPI,
we are currently assessing the protocol’s suitability for deployment
within the MPI Component Architecture (MCA), specifically as
an add-on to the Point-to-point Management Layer (PML) within
Open MPI [27, 7, 43, 44]. Nonetheless, our approach is more gen-
eral and can be applied for any membership service or in other
frameworks that require scalable group communication, such as ef-
ficient multicast services,e.g., in MRNet [38].

2. HIGH-LEVEL ASSUMPTIONS AND DE-
SIGN

To tolerate faults for an MPI job, the set of individual MPI tasks
represent a group within which they may communicate and coor-
dinate execution and termination. Within the runtime system, MPI
tasks have a consistentview about who is a member in such an
abstract communication domain [28, 9, 14]. Fault tolerancere-
quires a dynamic domain in which members can join and leave.
The latter may be due to faults while the former may occur upon
recovery from faults or when additional compute resources are re-
quired. Group communication, such as multicasting, can be based
on membership properties within a domain.

Membership within a domain is implemented within a runtime-
level membership service layer and used by an application layer
that relies on this service. Theviewof the system is the set of cur-
rently active and connected (unpartitioned) processes. The appli-
cation layer interacts with the membership service for communica-
tion andview changeactions. The membership service maintains
a consistent view of the system. It ensures that communication
takes place only between processes that share the same view.In
our model, every process starts with adefault view. This view is
internally represented as a tree. In the absence of faults, each node

hasa children, wherea is constrained to be a power of two for
reasons given below.

2.1 Assumptions and Safety Properties
We make the following assumptions about the overall framework:

Execution Integrity: We assume that no event occurs at a process
between its crash and recovery. After a crash, the process isas-
sumed to remember its unique ID (e.g., derived from the IP address
or the host name), but not necessarily the view since a view may
change any time. The new view is obtained from the current root
on recovery.

Message uniqueness:Each message contains a message type, the
sender and the receiver information. The underlying communica-
tion stack guarantees reliable messaging,i.e., neither will there be
any duplications nor losses of messages. Given message unique-
ness, our protocol ensures that any message be sent exactly once to
a given destination.

The protocol should meet the following safety properties ofcom-
munication and multicast services (see [14, 18]):Self Inclusion:
The membership algorithm satisfies the self inclusion property, i.e.,
if a process p establishes a view V, then p is a member of V.De-
livery Integrity: For every receive, there is a preceding send.No
duplication: At any process, two receive events can neither origi-
nate from the same send event, nor can they have identical message
content. Same view delivery: If two processes p and q receive
message m, they receive it in the same view.

The membership algorithm relies on the detection of faults by an-
other layer of the software architecture. We specifically react to
processor failures (crashes) and recoveries.

2.2 Fault Detection in the Execution Environ-
ment

Faults are detected by an external detection mechanism. Faults can
be identified by hardware health monitoring, such as IPMI [1], de-
tection of link failures or any other mechanism. The detailsare
beyond the scope of this paper.

For the experiments in Section 7, we employ a fault detector based
on a timeout mechanism. Excessive delay in response from any
process to a message request leads to the assumption that thepro-
cess has failed. Such a process is removed from the set of views in
theview changeevent triggered by the above timeout. Link failures
are handled similarly to node failures in this scenario,i.e., different
causes of failure need not be distinguished. The described proto-
col handles only single-path routing. An extension could handle
multi-path routing through NACKs.

2.3 Processor Failure and Recovery
Within our execution environment, a fault-injecting application in-
quires the state of every other process randomly. This application
is a micro-benchmark resembling the communication portionof
real applications communicatingvia MPI over a runtime-supported
membership service. A process failure should not cause the entire
application to fail. Instead, each remaining node will update its
membership view to obtain a new, consistent view in responseto a
message triggered within the tree structure, excluding failed nodes.

3. SCALABLE, LOW-LATENCY MEM-
BERSHIP SERVICE

In the following, the operational details of the membershipalgo-
rithm, based on a radix tree, are detailed. The objective of the al-
gorithm is to provide a new, consistent view of active nodes (mem-
bers) in a scalable manner at very low overhead. The process of
establishing a new view is calledtree stabilizationin the following.

3.1 Radix Tree Representation
Nodes participating in the membership service are internally rep-
resented in two data structures: a radix tree and a linear array of
nodes. The former provides an efficient representation for collec-
tive communication while the latter supports point-to-point com-
munication.

The radix tree provides a hierarchical representation thatimplic-
itly encodes routing information in the node ID, which reduces the
overhead of algorithms that exploit the membership service. The
radix encoding of a node ID can be used to determine the routing
path of messages from the root to this node or to determine itsposi-
tion in the tree structure. To allow an efficient decoding of routing
information, the number of children in the radix tree has to be a
power of two. Hence, for a binary tree, the routing decision from
one node to the next lower level is determined by a single bit indi-
cating that one should follow the left (0) or right (1) child.In a tree
with four children, such as in Figure 1, two bits indicate which link
to follow to determine the location of a child in the tree.

In addition to the radix tree, an array of nodes provides access to
arbitrary nodes at constant time, which can be utilized for point-
to-point messages in a message-passing framework. This array is
dynamically resized upon node joins and failures to accurately re-
flect view changes in a consistent manner.

3.2 Initialization
At the initialization phase, every node in the system is assumed
to have knowledge of the number of children and the total num-
ber of nodes. Each node has a unique ID. These assumptions are
consistent with MPI runtime environments. Communication be-
tween nodes is not required during the initialization phase, since
the knowledge of the number of children and the total number of
nodes is sufficient for nodes to locally form a hierarchical structure.

The hierarchical structure,i.e., the radix tree, is organized such that
the node with lowest ID is the root. Each node has a fixed number
of children. The ID of each child of a node is determined as a
function of the height of the node in the tree and the maximum
number of children, as depicted in Figure 1. This is a constant-time
operation due to the routing information encoded into the radix tree.

6 10 18 8 12 16 20 7 11 15 19 9 13 17 2114

2 4

1

3 5

Figure 1: Stabilized Tree Structure

The radix tree is duplicated on each node and kept up-to-datewith
respect to a global view in a decentralized manner (consistent with

other nodes). At startup, all nodes have the same initial view. Af-
terwards, any two nodes in the application layer may communicate
at any time. This approach still allows for node failures during
start-up, as discussed later. Overall, the system is scalable due to
the fully decentralized initialization since no message exchange is
required to form the hierarchy. The tree structure with a config-
urable number of children furthermore ensures that the system can
be adapted to reflect a given network topology.

3.3 Fault Handling
A node is considered to have failed if indicated by the failure de-
tector. For the experiments in Section 7, we detect a failurewhen a
node does not respond within a timeout window to a query/message
from another node. A node failure can be one of the following:Sin-
gle node failure, multiple node failure, root failure and link failure.
Upon detecting a failure, the root is informed of the failed node and
initiates a view change (see Figure 3(a)).

A link failure is handled implicitly as if a node (and its subtree
consisting of immediate children and their children etc.) is un-
reachable. Notice that partitions (subtrees) reorganize to form a
new view (succinct from the view with the prior root). Applications
may elect to continue or abort upon network partitioning,e.g., de-
pending on their ability to communicate with I/O nodes (suchas in
the BG/L model [4]).

3.4 Single Node Failure
This failure is the easiest to handle and requires very low commu-
nication bandwidth during the tree stabilization phase. The tree
is assumed to be stabilized once the root receives an acknowl-
edgment from all of its children affirming a stabilized tree in the
lower layers, as depicted in Figure 3(a) and described below. Ev-
ery failure detection message to the root will be acknowledged by
a FAILURE DET ACK message. When multiple nodes si-
multaneously detect the same failure, the root acknowledges each
failure detection message but disregards all but the first failure de-
tection message.

For simulation purposes, our application scenario lets nodes in-
quire the state of other nodes in the system at random intervals,
which we used for fair testing and benchmarking. (As long as the
application has regular communication, the protocol will be sup-
ported.) Assume that node 11 has sent aHOW ARE Y OU mes-
sage to a failed node 4 in Figure 1. On failure detection, it sends
a NODE FAILURE message to the root (assuming the failed
node is not the root and all the nodes have a consistent view).The
root recalculates its tree structure by eliminating the failed node
from its list of nodes and updates corresponding links to itschil-
dren in the tree, as depicted in Figure 2. The root node initiates the
next step of the algorithm by sending aFAILED NODE mes-
sage to its children. Each child propagates the message downthe
tree after recalculating its local view (tree).

6 10 18 8 12 16 20 7 11 15 19 9 13 17 2114

2

1

3 5

Figure 2: Tree Structure after node elimination

(a)Handling a node failure

On failure of a node (ID)
if (ID == root)

new root = find next highest (ID);
sendROOT FAILURE (ID, self) message
to new root;

else
sendNODE FAILURE (ID, self) to root;

On receiving NODE FAILURE(failed node, detector)
by root

sendFAILURE DET ACK to detector;
Regroup (failednode, flag);

//flag ∈ {0, 1}, 0 = node failure, 1 = root failure
Regroup(failed node, flag)

recalctree structure(failednode);
locate my children;
sendFAILED NODE(failed node) message to children;

On receiving FAILED NODE(failed node) Message
in a child

if(self 6= leafnode)
Regroup(failednode, flag);
locate my children;
sendFAILED NODE(failed node) message
to children;

else
Regroup(failednode, flag);

(b)Handling a root failure

On receiving ROOT FAILURE(ID, detector)
by new root

sendFAILURE DET ACK to detector;
Regroup(ID, flag);

//flag ∈ {2, 3}, 2 = recovery process, 3 = new node join
Regroup(failed node, flag)

recalctree structure(failednode);
locate my children;
sendROOT DEAD message to children;

(c)Handling a node join

On receiving NEW NODE(ID) by root
Regroup(newnode, flag);
sendJOIN DET ACK to new node;

Regroup(new node, flag)
recalctree structure(newnode);
locate my children;
sendNEW NODE JOIN message to children;

On receiving NODE ALIVE(ID) by root
Regroup(alivenode, flag);
sendALIV E NODE JOIN DET ACK to alive node;

Regroup(alive node, flag)
recalctree structure(alivenode);
locate my children;
sendALIV E NODE JOIN message to children;

Figure 3: Pseudocode of the Membership Algorithm

The local tree recalculation procedure is as follows. LetD be the
failed node, P(D) be its parent and C(D) the set of its children.
Then, the new view is calculated by (1) assigning the parent of
C(D) as P(D), (2) removing D from the list of children of P(D),(3)
merging the list of children of D with the list of children of P(D)
and (4) removing the list of children from D.

The tree structure will be consistent after each node has ac-
knowledged to its parent a stable structure for the respective
subtree. Once aFAILED NODE message reaches a leaf
node, the stabilization phase starts. Leaves respond with a
FAILURE ACK message to parents. Higher nodes acknowl-
edge with aFAILURE ACK to their parent once they have re-
ceived the acknowledgments from their children. Failure toreceive
a FAILURE ACK message will invoke another instance of the
failure detector, as discussed in Section 3.5. The tree becomes sta-
ble once the root receives aFAILURE ACK from all children.

3.5 Multiple Node Failures
This case is handled similarly to a single node failure.
If multiple nodes fail simultaneously, the root receives a
NODE FAILURE(X) message from the detector process
while the first phase of tree stabilization is in progress. The root ac-
knowledges each failure detection message, and, if multiple nodes
detect a failure of the same node, all but the first message aredis-
regarded (although acknowledged). For multiple, distinctfailed
nodes, the root sends a list of dead nodes after recalculating the tree
locally. To facilitate the presentation, the list is omitted in Figure
3(a); it simply extends thefailed node parameter to a set.

Example: Assume failures for nodes 4 and 5, and 11 has detected
the failure of 4. The root sendsFAILED NODE(X) to its chil-
dren and waits for an acknowledgment during the first tree sta-
bilization phase. Since it does not receive an acknowledgment
from node 5, it times out assuming that node 5 is dead. If this
happens at lower layers of the tree, the node that fails to getan

acknowledgment from the dead node informs the root through a
NODE FAILURE(Y) message. Then, the root propagates a
list of failed nodes to its children. If a node failure has occurred
at each level of the tree, it will takeH − 1 initial tree stabilization
phases for the tree to stabilize, whereH is the tree height. A lower
height can be achieved by choosing a larger number of children per
node to speed up tree stabilization during multiple node failures.
However, extremely low height (e.g., a “flat” tree with just two lev-
els) reduces performance as upper nodes become bottleneckswhen
propagating messages. Depending on the number of children (any
power of two is legal), the height needs to be chosen accordingly,
i.e., by modeling stabilization time for different configurations.

3.6 Root Failure
Should the root fail, the detecting node sends a
ROOT FAILURE message to the next live node in the
linear list (see Figure 3(b)),i.e., a sequential scan suffices to
designate a new root assuming the new root is alive. The algorithm
proceeds in accordance with the single node failure recovery
procedure explained above with following additions:

• The new root sends aROOT DEAD message to its chil-
dren who transitively send it to their children.

• During the tree recalculation phase, each node also has to
update its root to the new root.

The tree becomes stable after the new root has received acknowl-
edgments from all of its children.

Consider the case where a root failure coincides with multiple node
failures. To distinguish this case for a single root failure, a differ-
ent message,ROOT AND NODE FAILURE, will be prop-
agated down the tree indicating the new root and the set of failed
nodes, followed by acknowledgments upwards. This new message
allows children of the failed nodes that may be engaged in recal-
culations due to a prior failure to identify its proper parent and ac-

quire a consistent overall view. Due to the similarity to handling
FAILED NODE messages, this detail is omitted in Figure 3.

3.7 Node Join
A new node may join a domain (the set of MPI tasks) by sending
a NEW NODE(ID) message to the root (see Figure 3(c)). The
root adds it as a leaf to the bottom of the tree. This message then
propagates in the same way as for a node failure. The root issues
a NEW NODE JOIN(ID) message to its children, which is
propagated further down the tree by its children. The tree assumes
a stabilized structure once each node in the hierarchy has received
NEW NODE JOIN ACK(ID) from all of its children. The
leaves will eventually send an acknowledgment to their respective
parent, and this message is propagated upwards to the root.

An implicit node join may occur when a node recovers from a fail-
ure. Recovered nodes may re-join with their original ID by main-
taining an association between the host name and the ID of failed
nodes. This mapping is maintained by all the nodes in the system.
The recovered process issues aNODE ALIV E(ID) message to
the root, and the stabilization routine follows the same procedure
as for a join of a new node.

Once the tree is stabilized, the root sendsJOIN DET ACK
message to the recovered process or the new node welcoming
it to the system. A failure to get aJOIN DET ACK from
the root triggers the new node or a recovered process to send a
NEW NODE(ID) orNODE ALIV E(ID) message, respec-
tively, to the next node in its sequential list of nodes. The time to
join the system might increase if a considerable number of pro-
cesses have failed in the top of the hierarchy and a node with a
lower ID has assumed the status of the root. If a node join oc-
curs when a system recovers from a failure, the root node sends a
list of failed and (prior) joined nodes. The tree recalculation oc-
curs locally. One message suffices for establishing a stabilized tree
structure. The joiner has to find the current root through a linear
scan of the list. Other schemes, such as random requests to other
nodes to inquire about the root, are also possible. If the joiner hap-
pens to be the new root, every node agrees on this during the tree
recalculation phase.

4. PERFORMANCE MODELING
In addition to the protocol design and implementation efforts, we
attempted to model the performance of our protocol with a theoret-
ical model. Initial efforts to measure the overalltime for stabiliza-
tion, Ts, in the presence of a single node failure within network
simulators, such as thenetwork simulator 2(Ns-2) [35], were con-
sidered inappropriate since such simulators generally do not allow
computational overhead to be reflected in their models. We also
observed practical challenges on clusters, as explained inthe fol-
lowing, that cannot be accurately represented by simulation.

We derived a rudimentary performance model based oncommu-
nication overhead(Ocm) andcomputation overhead(Ocp). Ocp
captures the time for updating the tree structure on a local node and
can simply be measured in wall-clock time on a target architecture.
Ocm is based on the latencyL of point-to-point connections of ad-
jacent nodes in the tree.

Ourbase modelassumes a single-hop connection between adjacent
nodes with uniform latency measured as half the round-trip time in
a ping-pong experiment. To measure Ocm for the entire tree, two
times the latency is being considered between each node level, one

per message,i.e., to propagate a node failure down and another to
receive a response. LetH be the height of the tree. Then, there
areH − 1 levels for communication between parents and children.
Thus,

Ocm = 2 × L × (H − 1) (1)

The total tree stabilization overhead,Ts, is based on the overall
communication overhead and the delay due to computational over-
head within each level of the tree structure. Hence,

Ts = Ocm + Ocp ∗ H (2)

We next turn to experimental results to assess the performance of
our protocol. The model is used as a reference to allow projec-
tions into larger number of processors if it fits the observedresults.
While found to be valid in principle, several refinements of the
model were necessary due to machine-specific impacts on the la-
tency, as discussed in the following. These refinements go beyond
other models, such as LogP or its extensions [17].

5. EXPERIMENTAL FRAMEWORK
To assess the performance of our protocol, various tests were con-
ducted on a number of test beds. We report the results for two
of them in the following: a BlueGene/L (BG/L) machine and the
eXtreme TORC (XTORC) cluster at Oak Ridge National Labora-
tory(ORNL). On BG/L, all executables run on the compute nodes
atop a light, UNIX-like proprietary kernel, the compute node ker-
nel (CNK) [2]. There are two midplanes (each with 512 nodes
or 1024 embedded PowerPC processors), and each midplane hasa
three-dimensional (3D) torus interconnect for point-to-point mes-
sages besides other interconnects for selected collectivecommuni-
cation. When the partition is smaller than a midplane, the intercon-
nect is a 3D mesh, hence, we ensured that an entire midplane was
allocated to our jobs. XTORC has 64 2Ghz Pentium 4 compute
nodes connected by 1Gb/s Ethernet running RedHat 9.0 (Linux
kernel-2.4.20-8). Of the 64 nodes, only 47 nodes were available for
testing. The entire test environment was written in C in a single-
threaded manner since we observed high variations for threading in
prior implementations.

The memory requirement of the scheme is small and increases lin-
early per node. On each node, the tree has a space complexity of
O(N), where N is the number of nodes in the tree structure. For
BlueGene/L, each compute node has slightly less than 512MB of
physical memory available for user programs. A tree structure that
has 1024 nodes (using both midplanes of BlueGene/L) uses less
than one MB of memory leaving ample memory space for the run-
ning applications. XTORC provides 768MB of physical memory,
and the memory requirement of our protocol was only a few kilo-
bytes for less than 64 nodes. We are currently assessing a variant
of our protocol with localized views of the overall tree to limit the
memory requirements to a constant size and, thereby, support scal-
ing into tens of thousands of nodes and beyond.

On BlueGene/L, MPISend and MPIIrecv primitives implement
the communication of the protocol. The reason for using non-
blocking receive calls was to eliminate threading since (a)threading
is not supported on BG/L and (b) threading was shown to resultin
high overhead and variance in performance on Linux. The imple-
mentation on XTORC relies on TCP sockets.

6. FUNCTIONALITY TESTING
The implementation of the protocol was subjected to extensive
functionality tests with single node failures, multiple simultane-
ous failures, single root and chained, simultaneous root and top
node failures, the last of which requires linear selection of the next
root node. Failures were injected to the testing environment and
resemble non-responsiveness of nodes as commonly detectedby
timeouts during communication.1 The protocol proved to be robust
to allow functioning nodes to survive failures of other nodes while
still retaining the capability to communicate and track theset of
operational nodes.

We further implemented the protocol as part of LAM/MPI at the
LAM daemon level as a new service module. Extensive tests show
that the protocol can sustain injected faults and reconfigure. Ob-
served measurements are similar to the results discussed below for
TCP on a Linux cluster, albeit with a 10%-20% higher overhead
due to integration into the costly process model of the low-level
LAM infrastructure, and will be omitted due to space constraints.
We have integrated our approach with the Berkeley Labs Check-
point/Restart (BLCR) [22] facility such that one does not have to
restart an MPI job when a node fails if (a) a failed node is recov-
ered or (b) a spare node exists to assign the failed work to using
the old MPI rank. We are also integrating transparent (no appli-
cation modifications, no manual state re-distribution) andperiodic,
yet coordinated checkpointing. LAM/MPI lacks these capabilities;
it requires a cold restart of the entire MPI job, which can be costly
considering that most nodes still contain the process image, and
it results in long response times for users that could be avoided if
spare nodes were available.

7. PERFORMANCE EVALUATION
We assessed the performance of our protocol in terms of the time
for stabilization,Ts, after a single node failure, which is the most
common type of failure since, as will be shown,Ts is in the order
of hundreds of microseconds or single-digit milliseconds and, thus,
orders of magnitude smaller than the mean-time-to-failure(MTTF)
in even the largest systems.

7.1 MPI on BlueGene/L
Figure 4 depicts the experimental results for assessing thestabi-
lization time,Ts, on BlueGene/L over MPI for increasing numbers
of nodes. A binary tree configuration was chosen with two chil-
dren (a=2). Notice that the x-axis is on a log scale, which shows
that our protocol scales logarithmically with increasing number of
nodes. Furthermore,Ts is in the order of microseconds up to 1024
nodes. If we interpolate these results, this trend is likelyto continue
into the tens of thousands of processors on BG/L. The resultswere
obtained from five samples with a confidence interval of±3µs to
±16µs for smaller and larger node numbers, respectively, at a 99%
confidence level.

We also assessed the validity of our base model for a single hop,
point-to-point latency ofL = 4.6µs and a computational overhead

1When a node times out but has not failed, it will still be treated as
if it has failed since progress is hindered by this node. By excluding
this node from further communication, other nodes can proceed in a
timely manner,e.g., by electing a replacement node within the MPI
runtime system. Any messages from the excluded nodes pertaining
to the old job are henceforth ignored by other nodes. If the node
is fully responsive again, it may join the set of running nodes and
can be assigned any work at that time, same as or different from the
original work.

������
���������
���������

����������������������	
������������������������� !"#$�%�&#"��'
(��) �*�)+,-./012/3456/789/:;-3</.=3;.>8.;-:?/012/3

Figure 4: Ts over MPI for a=2 on BG/L

of Ocp = 2µs on BG/L. The resulting base model diverges sig-
nificantly from the experimentally obtained results. This can be
attributed to the point-to-point communication topology of BG/L.
We conducted our experiments on two midplanes with each mid-
plane consisting of 512 processors, which have a 8x8x8 3D torus
interconnect. When MPI tasks are mapped to nodes, adjacent nodes
in the tree may have to communicate over varying number of hop
counts (distances) within the torus. Each hop thereby imposes the
cost of the base latencyL. To consider this overhead, we refined
our base model to account for the communication overhead,Ocm,
using a distance-aware latency to derive adistance model. Here,
the overall number of hops contributing to the latency is thesum
over all levels in the tree of the maximum distance in hops at each
level. Thus,

Ocm = 2 × [Σ
levels

max(hops b/w nodes at level)] × L × (H − 1)

This model considers the maximum latency between adjacent
nodes (all parent/child pairs) at each level (in both directions) and
aggregates the respective maximum for all levels in the tree. The
hop count is determined as the sum of differences between each
pair of x, y and z coordinates of nodes in the 3D-torus that aread-
jacent in the tree structure. As the results in Figure 4 show,this
distance model closely matches the observed results. This under-
lines the benefits of simplicity and scalability of our protocol while
delivering performance.

Figure 5 shows the stabilization time for a tree configuration with
four children per parent (a=4). Again, the experimental results
show that the protocol scales logarithmically with the number of
nodes. The absolute overhead forTs is slightly smaller than for
the binary tree configuration (a=2), which can be attributedto the
reduction of height in the tree. But the impact of hop counts re-
duces this benefit to some extent. The results were obtained from
five samples with a confidence interval of±0.5µs to±12µs for
smaller and larger node numbers, respectively, at a 99% confidence
level.

The base model shows an interesting behavior in that it alternates
between slight increases and no changes (flat line) in performance.
A flat line occurs when the number of nodes is increased but the
height of the tree remains unchanged,i.e., the height of the tree
changes only for powers of four. Once we consider the distance
model that includes the hop counts for point-to-point communi-
cation in the tree, the model closely approximates the observed
performance for each measurement point that is a power of four
(or exceeds the height of the previous tree). In between, however,

@A@B@@
BA@C@@CA@
D@@DA@

EFBGDCGEBCFCAGABCB@CEHIJKLMNOHNPLQRSNTUVWXLYZ[\]̂_̀abcd[e[fcb[_
gh\[ì_j]ijk
lmnopqrostuvwoxyvtxzqxtus{o|}~ov�uxo|}~ov

Figure 5: Ts over MPI for a=4 on BG/L

performance is underestimated. This artifact remains not fully ex-
plained, but we have eliminated system activity as a source.We
will discuss network contention as a potential source in subsequent
results. Nonetheless, the overall trends demonstrate the scalability
of the protocol with a matching model for powers of four.

Notice that the protocol could alternatively have been implemented
over the hardware tree interconnect utilized by some collective
communications on BG/L, which would have resulted in shorter
response times. However, the objective of this work was to assess
the scalability of the protocol for large numbers of nodes assum-
ing commodity interconnect topologies without special one-to-all
support in hardware.

7.2 TCP over Ethernet
Figure 6 depicts the stabilization time observed in experiments on
a dedicated Linux cluster (no background activity) with a single
Gigabit switch using a TCP implementation of our protocol for a
binary tree (a=2). Notice that the x-axis is on a linear scale. The

�������������
�����������������
������������������
������

���
 ¡��¢��£�¢£¤
¥¦§��̈��©ª«¬���¬ª�®�©ª�©ª̈�©̄���¬°«��̄���¬

Figure 6: Ts over TCP for a=2 on Linux

experimental results show a step-curve of increasing stabilization
time. Upon closer analysis, we observe that the protocol is scal-
able for TCP as well,i.e., that its time complexity increases loga-

rithmically with the number of nodes.2 The results were obtained
from five samples with a confidence interval of±4µs to±86µs for
smaller and larger node numbers, respectively, at a 99% confidence
level.

We also observe thatTs increases linearly between any power-of-
two node counts. This behavior is consistent with the experimen-
tal results in Figure 5. We further observe that the base model
(with a TCP latency ofL = 118µs and a computation overhead
of Ocm = 2µs) does not resemble the experimental results. The
hop count is not a factor as a single full-duplex switch allows di-
rect communication between any pair of nodes without contention
at the network fabric. The switch itself, however, may serialize
packet processing.

The hypothesis of packet serialization within the switch was con-
firmed in a series of experiments where an increasing number of
neighboring nodes communicated along a localized structure. Fig-
ure 7 presents the experimentally determined latency undercon-
tention for these configurations of (a) pairs of nodes, (b) a parent
with two children and (c) a parent with four children communi-
cating with one another, as depicted in order of increasing latency.
We observe that point-to-point communication of pairs of nodes

±²²³²±́µ³²
±µ²³²±¶µ³²́
²²³²́́µ³²́
µ²³²

²µ±²±µ́²́µ·²·µ̧²̧µµ²¹º»¼½¾¿ÀÁ¿Â½Ã
ÄÅÆÇÈÉÊËÌÍÉÎÏÐÇÉÐÑ
ÒÓÔ¾ÕÖ¾½½×ÔØÒÙ¼ÚÁÔ¾ÕÖ¾½½×ÔØÛÙÜ¿ÚÁÖÓÖ¿ÓÜ¿ÚÁÖ

Figure 7: Contention-based Latency over TCP

is handled well by the switch up to twelve nodes, after which the
latency linearly rises with the number of nodes added. More sig-
nificantly, a more complex internal structure, such as a binary tree,
inflicts higher switch contention for the same number of nodes due
to serialized communication with multiple nodes at the parent. The
latency increases even more significantly for a tree with four chil-
dren.3

The results obtained as contention latency in Figure 7 were sub-
sequently used to substitute the base latency in Equation 1 with
the contention latency in the figure corresponding to the respective
number of nodes. The resulting contention-based model in Figure 6
resembles the the experimental results very closely. Moreover, we
argue that contention latencies can be extrapolated for larger node

2A plot on a logarithmic x-axis for results of2n
− 1 nodes illus-

trates this behavior. The linear x-axis here is intentionally used to
motivate the following analysis.
3Notice that these results could not be accurately be modeledby
other models, such as LogP [16] with its account of send/receive
overhead and the gap, since a linear increase with increasing num-
ber of nodes of any of the base parameters is not considered.

numbers, due to the near-linear behavior in single switches. When
switches are hierarchically combined, contention latencies of each
single switch can be aggregated in a manner reflecting the switch
topology. This is subject of future investigation.

Figure 8 depicts the results for TCP over a tree with four children
per parent. The overall results indicate scalability of ourprotocol in

ÝÞÝßàÝÞÝàÝÝÞÝ
áàÝÞÝâÝÝÝÞÝâßàÝÞÝ
âàÝÝÞÝâáàÝÞÝßÝÝÝÞÝ
ßßàÝÞÝ

ãáâââàâäßãßáãâãàãäåãåáæçèéêëìíæìîêïðñòóôõö÷øùúñûñüùøñõ
ýþòñÿöõ�óÿ��
���êë�èê���	
êïç	�ï�ì��ê���ì��ìîê	�ïê�ìîê	

Figure 8: Ts over TCP for a=4 on Linux

terms of its logarithmic complexity. The results were obtained from
five samples with a confidence interval of±12µs to ±98µs for
smaller and larger node numbers, respectively, at a 99% confidence
level.

The base model shows the typical step curve with increases insta-
bilization time when the number of nodes increases such thatthe
tree height increases by one (above 5 and 21 nodes), but the base
model does not resemble the actual measurements. When consid-
ering the latencies of Figure 7, the contention model resembles the
experimental results just before the tree height is increased. More
significantly, the contention model more accurately reflects the in-
creased contention for larger number of nodes. The fact thatthe
contention model tends to overestimate the experimental results is
not fully understood but we observed that larger overestimations
also tend to coincide with larger confidence intervals.

Overall, the experimental results confirm the scalability of our pro-
tocol and the refined models show a close resemblance of experi-
ments, which should qualify them for the task of extrapolations for
larger number of nodes.

8. RELATED WORK
Chockleret al. provide a set of rigorous specifications for the group
membership service and discuss various systems where different
properties are satisfied [14]. Most of the existing systems assign
a view identifier for each new view installed in the system [26,
5, 31]. Our model does not require maintenance of a list of dif-
ferent views (i.e., a view set with unique IDs per view) since the
system stabilizes once the root node receives all acknowledgments
from its children. Our approach of each process deciding itsown
view without exchange of any message with any other node is also
found in Transis [34] and Consul [36]. We do not allow multiple
disjoint views to exist concurrently. This property of primary com-
ponent membership is implemented elsewhere as well [9, 42, 15].
A solution to the view-oriented partitionable membership problem
is provided by R. Khazan [32, 33]. His approach is a hybrid of de-

centralized clients and more powerful servers with a leaderat any
given point in time,i.e., it is not a fully decentralized (peer-to-peer
only) model due to practical network connectivity issues.

The Coyote system [8] provides a group membership service based
on a token-passing paradigm and uses 25 micro-protocols to im-
plement each group membership property. Our algorithm keeps
the interaction among different nodes simple, and stabilizes the hi-
erarchical structure after each node receives just one message from
its immediate parent node.

A topology-aware membership service for cluster-based Internet
services is proposed by Zhou, Chu and Yang [45, 46]. It uses
Time-To-Live in the IP packet header to form hierarchical groups
that resemble the network topology. The reported time for tree sta-
bilization for this model does not account for network latency, gap
and over heads involved for sending and receiving data. In this pro-
tocol, the view convergence time is measured as the sum of failure
detection time and the time to propagate the information along the
hierarchical tree. The paper does not provide the tree stabilization
time. Hence, we cannot make a fair comparison with our work.

Other prior work includes support for fault tolerance to thecom-
munication layer of MPI run time systems. Sankaranet al. [39]
discuss a LAM/MPI checkpoint/restart framework where MPI ap-
plications can be check-pointed to disk and restarted later. They use
the (Lawrence) Berkeley Labs Checkpoint/Restart (BLCR) mecha-
nism [22, 23] to implement a lightweight and modular component-
based architecture. It requires each MPI process to coordinate with
other processes to reach a consistent global state in which the MPI
job can be check-pointed. Bosilcaet al. propose an uncoordinated
checkpoint mechanism by saving the computation and communi-
cation contexts independently [10]. Each node stores the execution
contexts in remote checkpoint servers and uses dedicated nodes
(Channel Memory) to store in-transit messages. Chakravorty et al.
[13] extended the runtime layer of Adaptive MPI (AMPI) beneath
Charm++ to migrate objects in a proactive fault-tolerant manner.
Collective communication structures, such as trees, were rebal-
anced after node failures. In contrast, our work is more general
(any group communication structure), and their quantitative results
include migration overhead,i.e., no direct comparison can be given.

Prior work on distributed locking explored the scalabilityof tree
structures [21]. This prior work focused on mutual exclusion pro-
tocols and reader/writer locks in the context of middlewaresuch
as CORBA. A fault-tolerant extension of such a locking protocol
is developed as a ring-based topology, which limits its scalability
[37]. Our membership algorithm, in contrast, provides consistent
views among nodes in the presence of faults in a scalable manner.
Furthermore, the approach is reconfigurable for a variable number
of children (as a power of 2), natively encodes routing information
due to its use of a radix tree, and it provides constant time access to
the data structure for individual nodes.

9. CONCLUSION
This work presents a novel membership algorithm that combines
scalability with low recalculation overhead in the order ofhun-
dreds of micro-seconds and single-digit milliseconds for MPI over
BG/L and TCP over Linux, respectively. The protocol supports
reconfiguration in terms of the communication structure,i.e., the
data structures can be adapted to match the network topologyto
further increase performance. The protocol utilizes a radix tree
representation to implicitly encode routing information into node

IDs and additionally represent the tree structure as an array to pro-
vide access to the data structure of individual nodes in constant
time. The protocol builds on prior experience of designing scal-
able communication frameworks by utilizing a fully decentralized
protocol that maintains a coherent membership view of MPI tasks
in the presence of faults. Experiments demonstrate high perfor-
mance and scalability of our protocol over TCP on Gigabit Ether
and over MPI on BG/L. Experimental results were also validated
against a closely matching performance model to allow extrapola-
tions to larger number of nodes. The membership service has been
deployed in the communication layer of the LAM/MPI runtime sys-
tem, and we are currently pursuing its integration into OpenMPI
and, independently, into LAM/MPI with BLCR to continue job ex-
ecution in the presence of faults.

10. REFERENCES
[1] http://www.intel.com/design/servers/ipmi/index.htm.

[2] http://www.redbooks.ibm.com/redbooks/pdfs/sg246686.pdf.

[3] The ASCI purple benchmarks.
http://www.llnl.gov/asci/purple/benchmarks, 2002.

[4] N. Adiga and et al. An overview of the BlueGene/L
supercomputer. InSupercomputing, Nov. 2002.

[5] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
and P. Ciarfella. The Totem single-ring ordering and
membership protocol.ACM Transactions on Computer
Systems, 13(4):311–342, Nov. 1995.

[6] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.
Risinger, M. A. Taylor, T. S. Woodall, and M. W. Sukalski.
Architecture of LA-MPI, a network-fault-tolerant MPI. In
International Parallel and Distributed Processing
Symposium, 2004.

[7] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and
G. Bosilca. Analysis of the component architecture overhead
in Open MPI. InProceedings, 12th European PVM/MPI
Users’ Group Meeting, Sorrento, Italy, September 2005.

[8] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu.
Coyote: a system for constructing fine-grain configurable
communication services.ACM Trans. Comput. Syst.,
16(4):321–366, 1998.

[9] K. P. Birman and R. Van Renesse, editors.Reliable
distributed computing using the Isis Toolkit. IEEE Computer
Society Press, 1994.

[10] G. Bosilca, A. Boutellier, and F. Cappello. MPICH-V:
Toward a scalable fault tolerant MPI for volatile nodes. In
Supercomputing, Nov. 2002.

[11] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Automated application-level checkpointing of MPI
programs. InACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, June 2003.

[12] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Collective operations in an application-level fault tolerant
MPI system. InInternational Conference on
Supercomputing, June 2003.

[13] S. Chakravorty, C. Mendes, and L. Kale. Proactive fault
tolerance in large systems. InHPCRI: 1st Workshop on High
Performance Computing Reliability Issues, in Proceedingsof
the 11th International Symposium on High Performance
Computer Architecture (HPCA-11). IEEE Computer Society,
2005.

[14] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study,
Apr. 23 2001.

[15] F. Cristian. Reaching agreement on processor group
membership in synchronous distributed systems, June 12
1991.

[16] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, and T. von Eicken. LogP: A
practical model of parallel computation.Communications of
the ACM, 39(11):78–85, Nov. 1996.

[17] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a realistic model of parallel computation. In
Proc. 4th Symp. Principles and Practice of Parallel
Programming, pages 1–12. ACM, 1993.

[18] X. Defago, A. Schiper, and P. Urban. Total order broadcast
and multicast algorithms: Taxonomy and survey.ACM
Computing Surveys, 36(4):372–421, 2004.

[19] N. Desai and F. Mueller. A log(n) multi-mode locking
protocol for distributed systems. InInternational Parallel
and Distributed Processing Symposium, Apr. 2003.

[20] N. Desai and F. Mueller. Scalable distributed conucrrency
services for hierarchical locking. InInternational Conference
on Distributed Computing Systems, pages 530–537, May
2003.

[21] N. Desai and F. Mueller. Scalable hierarchical lockingfor
distributed systems.Journal of Parallel Distributed
Computing, 64(6):708–724, June 2004.

[22] J. Duell. The design and implementation of berkeley lab’s
linux checkpoint/restart. Tr, Lawrence Berkeley National
Laboratory, 2000.

[23] J. Duell, P. H. Hargrove, and E. S. Roman. Requirements for
linux checkpoint/restart, May 20 2002.

[24] C. Engelmann, S. Scott, and G. Geist. Distributed
peer-to-peer control in Harness. InInternational Conference
on Computational Science, volume 2330, pages 720–728,
2002.

[25] G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI,
supporting dynamic applications in a dynamic world. InEuro
PVM/MPI User’s Group Meeting, Lecture Notes in
Computer Science, volume 1908, pages 346–353, 2000.

[26] R. Friedman and R. van Renesse. Strong and weak virtual
synchrony in horus. Technical Report TR95-1537, Cornell
University, Computer Science Department, Aug. 24, 1995.

[27] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall. Open MPI: Goals, concept, and design of

a next generation MPI implementation. InProceedings, 11th
European PVM/MPI Users’ Group Meeting, pages 97–104,
Budapest, Hungary, September 2004.

[28] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the MPI
message passing interface standard.Parallel Computing,
22(6):789–828, Sept. 1996.

[29] IBM T.J. Watson. Personal communications. July 2005.

[30] I. Keidar. Group communication, June 12 2000.

[31] I. Keidar, J. B. Sussman, K. Marzullo, and D. Dolev. A
client-server oriented algorithm for virtually synchronous
group membership in WANs. InInternational Conference on
Distributed Computing Systems (ICDCS), 2000.

[32] R. Khazan. Group membership: A novel approach and the
first single-round algorithm. InPODC: 23th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, 2004.

[33] R. Khazan and S. Yuditskaya. Using leader-based
communication to improve the scalability of single-round
group membership algorithms. InInternational Parallel and
Distributed Processing Symposium, 2005.

[34] D. Malki, D. Dolev, and R. Strong. A framework for
partitionable membership service, Aug. 19 1995.

[35] S. McCanne and S. Floyd. VINT Network Simulator - ns
(version 2).http://www-mash.CS.Berkeley.EDU/ns/, Apr.
1999.

[36] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: a
communication substrate for fault-tolerant distributed
programs.Distributed Systems Engineering, 1(2):87–103,
Dec. 1993.

[37] F. Mueller. Fault tolerance for token-based synchronization
protocols. InWorkshop on Fault-Tolerant Parallel and
Distributed Systems, Apr. 2001.

[38] P. C. Roth, D. C. Arnold, and B. P. Miller. Mrnet: A
software-based multicast/reduction network for scalable
tools. InSupercomputing, pages 21–36, Washington, DC,
USA, 2003. IEEE Computer Society.

[39] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine,
J. Duell, P. Hargrove, and E. Roman. The LAM/MPI
checkpoint/restart framework: System-initiated
checkpointing. InProceedings, LACSI Symposium, Sante Fe,
New Mexico, USA, October 2003.

[40] J. M. Squyres and A. Lumsdaine. A Component Architecture
for LAM/MPI. In Proceedings, 10th European PVM/MPI
Users’ Group Meeting, number 2840 in Lecture Notes in
Computer Science, pages 379–387, Venice, Italy, September
/ October 2003. Springer-Verlag.

[41] G. Stellner. CoCheck: checkpointing and process migration
for MPI. In IEEE, editor,Proceedings of IPPS ’96. The 10th
International Parallel Processing Symposium: Honolulu, HI,
USA, 15–19 April 1996, pages 526–531, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1996. IEEE
Computer Society Press.

[42] S. Toueg and T. D. Chandra. Unreliable failure detectors for
reliable distributed systems, June 18 1996.

[43] T. Woodall, R. Graham, R. Castain, D. Daniel, M. Sukalski,
G. Fagg, E. Gabriel, G. Bosilca, T. Angskun, J. Dongarra,
J. Squyres, V. Sahay, P. Kambadur, B. Barrett, and
A. Lumsdaine. Open MPI’s TEG point-to-point
communications methodology: Comparison to existing
implementations. InProceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 105–111, Budapest, Hungary,
September 2004.

[44] T. Woodall, R. Graham, R. Castain, D. Daniel, M. Sukalski,
G. Fagg, E. Gabriel, G. Bosilca, T. Angskun, J. Dongarra,
J. Squyres, V. Sahay, P. Kambadur, B. Barrett, and
A. Lumsdaine. TEG: A high-performance, scalable,
multi-network point-to-point communications methodology.
In Proceedings, 11th European PVM/MPI Users’ Group
Meeting, pages 303–310, Budapest, Hungary, September
2004.

[45] T. Yang, J. Zhou, and L. Chu. An efficient topology-adaptive
membership protocol for large-scale network services.
Technical report, University of California, Santa Barbara,
Computer Science, June 2004.

[46] J. Zhou, L. Chu, and T. Yang. An efficient topology-adaptive
membership protocol for large-scale cluster-based services.
In International Parallel and Distributed Processing
Symposium, 2005.

