
Jyothish Varma1, Chao Wang1, Frank Mueller1,
Christian Engelmann2, Stephen L. Scott2

1North Carolina State University, Department of Computer Science
2Oak Ridge National Laboratory, Computer Science and Mathematics Division

Scalable, Fault-Tolerant Membership for
MPI Tasks on HPC Systems

fastos.org/molar

2

Process Group Membership for MPI

! Objective: To tolerate faults in an MPI job in a scalable fashion
! Group Membership

� Domain where members can join / leave
� Associate ID w/ every member in domain

! Group Membership Service
� Tracks active tasks (processes/nodes)

� Tasks communicate, coordinate execution & termination
� Inform group members of

� departure of failed nodes
� arrival of new/revived nodes

� View := Set of active and connected processes
� Used by application layer that relies on this service

3

Our Approach

! Implemented group membership within runtime layer as service
� Why ?

� Modification to application is minimal
� Application layer can be captured adequately

! Integrating Membership Service w/ BLCR
(Berkeley Lab Checkpoint/Restart Mechanism)

� Benefit: Node failure now handled w/o restarting MPI job
! Membership service maintains a consistent view of system.
! Communication only b/w processes that share same view

4

Assumptions and Fault Handling

! Assumptions
� Execution Integrity
� Message Uniqueness
� Delivery Integrity
� Same view delivery

! Fault Detection
� External detection mechanism

� Hardware health monitoring (e.g., IPMI)
� Software health monitoring (e.g., heartbeat/timeouts)

! Our fault detection model
� Fault detector based on time out mechanism

� Link failure handled like a node failure

5

Group Membership Implementation

! Application Layer
� applications communicate through simple message exchange
� application may be MPI layer application

! Service Layer
� Keeps group members up to date when view changes
� Installs new view when view change message arrives
� Protocols are pluggable

! Implementation details
� Utilizes radix tree, default view on startup
" Configurable
" Extremely scalable
" Fully decentralized

1

5342

6 181410 8 201612 9 2117137 191511

1

5342

6 181410 8 201612 9 2117137 191511

Application Layer

Group Membership Service

Implementation Framework

1

532

6 181410 8 201612 9 2117137 191511

Application Layer

4
I�m fine!

I�m fine!

How are you ?

Node 11 detects failure

1

532

6 181410 8 201612 9 2117137 191511

Application Layer

4

NO
D

E_FAILUR
E (4)

1

532

6 181410 8 201612 9 2117137 191511

Application Layer

4

FAILURE_DET_AC
K

1

532

6 181410 8 201612 9 2117137 191511

Group Membership Service

4

FAILED NODE (4) FAILED NODE (4)

root sends FAILED_NODE(X) to children nodes
recalculate_tree_structure(X,node)

1

53

6 181410 8 201612 9 2117137 191511

Group Membership Service

FAILED NODE (4)

FAILED NODE (4)

child nodes send FAILED_NODE(X) to its children nodes
recalculate_tree_structure(X,node)

2

FAILURE_ACK

1

53

6 181410 8 201612 9 2117137 191511

Group Membership Service

child nodes send FAILURE_ACK
to its root node

FAILURE_ACK

FA
IL

UR
E_

AC
K

2

1

532

6 181410 8 201612 9 2117137 191511

Group Membership Service

child nodes send FAILURE_ACK
to root node

FAILURE_ACK
FAILURE_ACK

1

532

6 181410 8 201612 9 2117137 191511

Group Membership Service System restores to stable state when
number of FAILURE_ACK received
by each root node = number of its children

parent (x) = 2
root (x) = 1

parent (x) = 1
root (x) = 1

parent (x) = 3
root (x) = 1

parent (x) = 5
root (x) = 1

532

6 181410 8 201612 9 2117137 191511

Group Membership Service

1
What if root node fails ?
Assume that 7 has detected failure.

parent (x) = 2
root (x) = 1

parent (x) = 1
root (x) = 1

parent (x) = 3
root (x) = 1

parent (x) = 5
root (x) = 1

532

6 181410 8 201612 9 2117137 191511

Group Membership Service

1

7 sends ROOT_FAILURE message
to the next highest node in the system

ROOT_FAILURE

parent (x) = 2
root (x) = 1

parent (x) = 1
root (x) = 1

parent (x) = 3
root (x) = 1

parent (x) = 5
root (x) = 1

532

6 181410 8 201612 9 2117137 191511

Group Membership Service

FAILURE_DET_ACK

1

parent (x) = 2
root (x) = 1

parent (x) = 1
root (x) = 1

parent (x) = 3
root (x) = 1

parent (x) = 5
root (x) = 1

Root failure is acknowledge by the new root
recalc_tree_structure(X,root)

53

2

6 181410 8 201612 9 2117137 191511

Group Membership Service

parent (x) = 2
root (x) = 2

parent (x) = 2
root (x) = 2

parent (x) = 3
root (x) = 2

parent (x) = 5
root (x) = 2

what if node 4 joins back
to the system ?

4

INFORM_NODE_ALIVE (4
)

tim
esout

53

2

6 181410 8 201612 9 2117137 191511

Group Membership Service

parent (x) = 2
root (x) = 2

parent (x) = 2
root (x) = 2

parent (x) = 3
root (x) = 2

parent (x) = 5
root (x) = 2

4

1

INFORM_NODE_ALIVE (4)

53

2

6 181410 8 201612 9 2117137 191511

Group Membership Service

parent (x) = 2
root (x) = 2

parent (x) = 2
root (x) = 2

parent (x) = 3
root (x) = 2

parent (x) = 5
root (x) = 2

4

53

2

6 181410 8 201612 9 2117137 191511

Group Membership Service

parent (x) = 2
root (x) = 2

parent (x) = 4
root (x) = 2

parent (x) = 3
root (x) = 2

parent (x) = 5
root (x) = 2

4

4

JOIN_ACK

JOIN_DET_ACK

53

2

6 181410 8 201612 9 2117137 191511

Group Membership Service

parent (x) = 2
root (x) = 2

parent (x) = 4
root (x) = 2

parent (x) = 3
root (x) = 2

parent (x) = 5
root (x) = 2

4

Stable tree structure

23

More failures !

! Multiple Node Failures in parallel (before new view established)
� Root node

1. recalculating tree locally
2. sends list of failed nodes

� Steps may be repeated up to H-1 times, H=height of tree
! If a node fails at each level of tree structure #

� H-1 initial tree stabilization phases for tree to stabilize
� Lower height # lower complexity

� increase branching factor �a�
� but extremely low height reduces performance
� trade-off

24

Experimental Framework

! Experiments conducted on
� BlueGene/L

� Two midplanes, each with 512 nodes nodes
� 3D torus interconnect on each midplane

� XTORC
� 64 2 GHz P4 nodes (only 47 were available)
� 1 Gb/s Ethernet

� OS Cluster
� 16 node dual processor AMD Athlon XP 1800+ machines
� FastEther switch utilized through TCP/IP, MPICH over

Myrinet GM
! Entire code written in C

25

Performance Modeling (Base Model)

! Total time for tree stabilization
� Ts = Ocm + Ocp x H

! Communication overhead.
� Ocm = 2 x L x (H-1)

� L = point-to-point latency
! Computational overhead in each node

� Ocp = 2.3 micro seconds

26

Performance Modeling (Distance Model)

! Distance model considers max. latency (L) b/w
adjacent nodes (all parent/child pairs) at each level

! Computational overhead in each node
� Ocp = 2 micro seconds

! Total time for tree stabilization
� Ts = Ocm + Ocp * H

)1()]leveleach at pairs ldparent/chi b/w hops(max2 −×××= ∑ HLOcm
levels

27

Ts over MPI for a=2 on BG/L

0

50

100

150

200

250

300

350

400

4 8 16 32 64 128 256 512 1024
Number of Nodes (Log Scale)

Ti
m

e
fo

r S
ta

bi
liz

at
io

n
[m

ic
ro

se
c] Base Model

Experimental Results
Distance Model

1. Base model diverges from experimental results
� Because of point to point communication topology in BG/L

2. Distance model matches observed results
3. Point-to-point latency = 4.6 micro sec
4. MPI tasks mapped to nodes # adjacent nodes in tree communicate over varying

number of hop counts

28

Ts over MPI for a=4 on BG/L

0

50

100

150

200

250

300

350

4 8 16 32 64 128 256 512 1024
Number of Nodes (Log Scale)

Ti
m

e
fo

r S
ta

bi
liz

at
io

n
[m

ic
ro

se
cs

]
Experimental Results

Distance Model

Base Model

1. Model approximates observed performance w/ distance model
2. We have not considered system activity
3. Trend demonstrates scalability

29

Performance Modeling (Contention Model)

! Communication model similar to base model
� Ocm = 2 x L(n) x (H-1)
� where L(n) = latency as a function of # of nodes

! Computational overhead in each node
� Ocp = 2.3 micro seconds

! Total time for tree stabilization
� Ts = Ocm + Ocp * H

30

Ts over TCP for a=2 on XTORC

0.0

250.0

500.0

750.0

1000.0

1250.0

1500.0

1750.0

2000.0

2250.0

3 5 7 11 15 19 23 27 31 35 39 43 47
Number of Nodes

Ti
m

e
fo

r S
ta

bi
liz

at
io

n
[m

ic
ro

se
cs

] Experimental Results

Contention Model

Base Model

1. Base model shows step curve with increase in stabilization time
2. Contention model accurately reflects increased contention for large number of nodes
3. Close resemblance with experiments # extrapolate for large number of nodes

31

Ts over TCP for a=4 on XTORC

0.0

250.0

500.0

750.0

1000.0

1250.0

1500.0

1750.0

2000.0

2250.0

3 7 11 15 19 23 27 31 35 39 43 47
Number of Nodes

Ti
m

e
fo

r S
ta

bi
liz

at
io

n
[m

ic
ro

se
cs

Experimental Results

Contention Model

Base Model

1. The model approximates the observed performance for a fully formed tree
2. Trend demonstrates scalability

32

Conclusion

Contributions:
! Scalable approach to reconfigure communication infrastructure
! Decentralized (peer-to-peer) protocol that maintains constant

view of active nodes in the presence of faults
! Response time in order of hundreds of micro seconds and single-

digit milliseconds over MPI on BG/L and TCP on Gigabit Ether,
respectively.

Future Work:
� Performance evaluation for root/multiple node failure
� How to maintain a balanced tree even after a node failure?
� Integration into OpenMPI, LAM/MPI with BLCR to continue

job execution in the presence of faults.

33

Questions or Comments?

fastos.org/molar

	Jyothish Varma1, Chao Wang1, Frank Mueller1,�Christian Engelmann2, Stephen L. Scott2��1North Carolina State University, Depart
	Process Group Membership for MPI
	Our Approach
	Assumptions and Fault Handling
	Group Membership Implementation
	More failures !
	Experimental Framework
	Performance Modeling (Base Model)
	Performance Modeling (Distance Model)
	Ts over MPI for a=2 on BG/L
	Ts over MPI for a=4 on BG/L
	Performance Modeling (Contention Model)
	Ts over TCP for a=2 on XTORC
	Ts over TCP for a=4 on XTORC
	Conclusion

