Proactive Process-Level Live Migration In
HPC Environments

Chao Wang, Frank Mueller
North Carolina State University

Christian Engelmann, Stephen L. Scott
Oak Ridge National Laboratory OAK

RIDGE

National Laboratory

SC’'08 Nov. 20 Austin, Texas

Qutline

e Problem vs. Our Solution

e Overview of LAM/MPI and BLCR (Berkeley Lab Checkpoint/Restart)
e Our Design and Implementation

e Experimental Framework

e Performance Evaluation

e Conclusion and Future Work

e Related Work

Problem Statement

Trends in HPC: high end systems with > 100,000 processors

— MTBF/I becomes shorter
MPT widely accepted in scientific computing

— But no fault recovery method in MPI standard
Transparent C/R: — Coordinated: LAM/MPI w/ BLCR [LACSI 03]
(Checkpoint/Restart) __ () -oordinated, Log based: MPICH-V [5C 2002]
Non-fransparent C/R: Explicit invocation of checkpoint routines

- LA-MPTI [IPDPS 2004] / FT-MPTI [EuroPVM-MPI 2000]
Frequently deployed C/R helps but...

— 60% overhead on C/R [LPhijp HPCRI05] ::[::F:‘:
—100 hrs job -> 251 hrs

— Must restart all job tasks Y ‘g, \L
- Inefficient if only one (few) node(s) fails
- Staging overhead "ﬂp"' '"Jf’

— Requeuing penalty T dd

Our Solution — Proactive Live Migration

e High failure prediction accuracy with a prior warning window:
— up to 70% reported [Gu et. Al, ICDCS'08] [R.Sahoo et.al KDD ‘03]
— Active research field

— Premise for live migration
e Processes on live nodes remain active

e Only processes on "unhealthy” nodes are lively migrated to spares

..... I New approach
ambootech---b--d---1.. ® Hence, avoid:

""" I i e — High overhead on C/R

| failypre — Restart of all job tasks

T predlc.md @ = '>@ igration - Staging overhead

j failure — Job requeue penalty

..... e — Lam RTE reboot
Yy v v

Proactive FT Complements Reactive FT

Tr_" = \/ 2 bt TS b T f [J.W.Young Commun. ACM 74]

Tc: time interval between checkpoints

Ts: time to save checkpoint information (mean Ts for
BT/CG/FT/LU/SP Class C on 4/8/16 nodes is 23 seconds)

Tf: MTBF, 1.25hrs /zeaip HPCRI05]
T.=/2x23x (125 x 60 x 60) = 455

Assume 70% faults jrsaroo eral ko0 037 can be predicted/handled proactively

T.=+/2x23x(1.25/(1 - 0.7) x 60 x 60) = 831

e Proactive FT cuts checkpoint frequency in half!

e Future work: use 1. better fault model 2. Ts/Tf on bigger cluster to
measure its complementation effect

LAM-MPI Overview

e Modular, component-based architecture
— 2 major layers

— Daemon-based RTE: lamd j - @
0
I
0

— "Plug in" C/R to MPI SSI ‘
framework:

— Coordinated C/R & support BLCR

D) o Example: A two-way

MPT job on two nodes

RTE: Run-time Environment

SSI: System Services Interface
RPI: Request Progression Interface
MPI: Message Passing Interface
LAM: Local Area Multi-computer

BLCR Overview

e Kernel-based C/R: Can save/restore almost all resources

e Implementation: Linux kernel module, allows upgrades & bug
fixes w/o reboot

e Process-level C/R facility: single MPI application process

e Provides hooks used for distributed C/R: LAM-MPT jobs

Our Design & Implementation — LAM/MPI

e Per-node health monitoring mechanism

— Baseboard management controller | e
(BMC) ¢[}

— Intelligent platform management
interface (IPMI)

e NEW: Decentralized scheduler

— Integrated into lamd
— Notified by BMC/IPMI Q
— Migration destination determination |

— Trigger migration)

Live Migration Mechanism — LAM/MPI & BLCR

nodes

WPIRTEsetup (&), (Jm) ., (4o,
MPT Job running !

D

Live migration O

-

— -0

lamd

eﬂﬂilﬂb n3

.

D

Job exec. resume —~
@,
& o

!! \?

Step 3 is optional: live migration (w/ step 3) vs. frozen (w/o step 3)

n

9

Live Migration vs. Frozen Migration

e Live migration e Frozen migration

— w/ precopy — w/o precopy
— stopécopy-only

source node destination node source node destination node

é ‘!\ precopy é ; stop©

% ; stopécopy é *!\ &

10

Live Migration - BLCR

New process createdon L JL L, [—

LN S SRR t coee
destination node | K
v v l E v :
>
. . } oy
Precopy: transfer dirty | . Oy -
pages iteratively T el : l
E . . dirty pages
E t gf te?s/;){g?\a? vanster E top&sony > gist f;(/Jsrlz s)
STOP&CO py E regist(;s/signals : >reg ters/signalsy
E ‘ barrier ‘ E ‘ barrie ‘
* stop * * nnnnn | execu tion*

Page-table dirty bit scheme: (In kernel: dashed lines/boxes)

1. dirty bit of PTE duplicated
2. kernel-level functions extended to set the duplicated bit w/o

additional overhead

11

Frozen Migration - BLCR

P Souttes Zpvut A V...
R
5 T 5
I
+w oo ++

Live vs. Frozen migration (also for precopy termination conditions):

1. Thresholds, e.qg., femperature threshold

2. Available network bandwidth determined by dynamic monitoringSOUl
3. Size of write set

Future work: heuristic algorithm based on these conditionthread 1

Experimental Framework

e Experiments conducted on
— Opft cluster: 17 nodes, 2 core, dual Opteron 265, 1 Gbps Ether
— Fedora Core 5 Linux x86_64
— Lam/MPI + BLCR w/ our extensions

e Benchmarks
— NAS V3.2.1 (MPI version)
- BT, CG, FT, LU, and SP benchmarks
- EP, IS and MG run is too short

13

Job Execution Time for NPB

450))
No-migration —————
Live m———=
400 - Frozen o -
R L e -
-z 300 17 -
=
3
w2 2 I R o
200 - S i) &
150 - e &
100 .

BT CG

e NPB Class C on 16 Nodes

e Migration overhead: difference of job run time w/ and w/o
migration

14

Seconds

Migration Overhead and Duration

28.27

Live ——=

Frozen Live-downtime [

Live-precopytime T |
S&C-downtime NN

o —_ [§] W ESN L o2} ~1 %0 o
T T T T T

Seconds
O =~ B W kA o = 0
L L L L

A a0 s 1

FT LU Sp BT CG FT LU Sp

Migration Overhead Migration Duration
(S&C = Frozen)

e Live: 0.08-2.98% overhead Frozen: 0.09-6% of benchmark runtime

e Penalty of shorter downtime of live migration: prolonged precopy

— No significant impact to job run time, longer prior warning
window required

15

Seconds

Migration Duration and Memory Transferred

28.27 1.8GB
8 — - - 500 . .
Live-downtime Live-s&c 3
7 L Live-precopytime T | Live-precopy ——1
S&C-downtime N Stop&Copy IS
400
6 r /|
=
5 F
E 300 |
at 2
B
3 | . 200 F 7
[=]
5 5
i i =
100 b
| _ 1
0 0
BT CcG FT LU Sp BT CcG FT LU SP
Migration Duration Memory Transferred

e Migration duration is consistent to memory transferred

Problem Scaling

Seconds

M W B ot N =1 o0 \D
|
|

o

-

Problem Scaling: Overhead on 16 Nodes (S&C = Frozen)

e BT/FT/SP: Overhead increases with problem size

e CG/LVU: small downtime subsumed by variance of job run time

17

Task Scaling

30

d-nodes 1
8/9-nodes C—3
25 | 16-nodes I i

Seconds
7
1
1

Task Scaling: Overhead of NPB Class C (S&C = Frozen)

e Most cases: Overhead decreases with task size
e No trends: relatively minor downtime subsumed by job variance

Speedup

of nodes
4916 4916 4816 4316 4816 4816 4816 4816 4916 4916
4 ——mmm—r————
[oss-in-speedup @ | ||
35 i
_’ .
3 | - I:Ios’r-m-speedup
2.5 .
e speedup
= | | — —
3 2t O e S B S SR S w/ one speedup
=S . . w/o
e 15 F 1 migration i)
migration
1l o o = = e
e
0.5 .
' s, < o, T fo o Lo Ko . &
o da
\%Qf.&, %’c@ %, Twy R T %,;, %cg o, e
& O v o Ty O e, oy T O

e Normalized speedup to 4 nodes for NPB Class C

e FT0.21 lost-in-speedup: relatively large overhead (8.5 sec) vs. short
run time (150 sec)

e Limit of migration overhead: proportionate to memory footprint,
limited by system hardware

Page Access Pattern & Iterative Migration

— 25000 - 246.2) —

E i b £ Memory dirtied during

§ this iteration

2 20000 | ¢ 1 = = Memory transferred

= . @

5 ‘ &

z . =

o 15000 | J— =

p-

\éz I | N 4\- . g N ‘E-l 1§.; \

g 10000 - - . ST SN = \ ™~

@ . # . L 876 ~A ~a

E F o, + T+ % 64.4 :

= P . - 1 - 448.6M 4 84.4M 384.4MyJ 384.4MB

5 5000 s

= 4600

— + . + ‘ i N + , + 4 + . O +

°© _ : " 36.2MB— X138.3M 42 5MB-—>

N 0 1200) 6.96 15 23.16 29F12 35.09 37.03
30 60 120 : ' - : : . : c

Elapsed time (seconds)
Elapsed time (seconds)

Page access pattern of FT Iterative live migration of FT

e Page write patterns are in accord with aggregate amount of
transferred memory

e FT:138/384MB -> 1200/4600 pages/.1 second

Process-level vs. Xen Virtualization Migration

e Xen virtualization live migration [A. B. Nagarajan & F. Mueller ICS 07]

e NPB BT/CG/LU/SP: common benchmarks measured with both
solutions on the same hardware

e Xen virtualization solution: 14-24 seconds for live migration, 13-14
seconds for frozen migration

- Including a 13 seconds minimum overhead to transfer the entire
memory image of the inactive guest VM (rather than transferring a
subset of the OS image) for the ftransparency

- 13-24 seconds of prior warning to successfully trigger live process
migration

e Our solution: 2.6-6.5 seconds for live migration, 1-1.9 seconds for
frozen migration

- 1-6.5 seconds of prior warning (reduce false alarm rate)

Conclusion and Future Work

e Designh generic for any MPT implementation / process C/R
e Implemented over LAM-MPI w/ BLCR

e Cut the number of chkpts in half when 70% faults
handled proactively

e Low overhead: Live: 0.08-2.98% Frozen: 0.09-6%

— No job requeue overhead/ Less staging cost/ No LAM Reboot

e Future work

— Heuristic algorithm for tradeoff between live & frozen
migrations

— Back migration upon node recovery
— Measure how proactive FT complements reactive FT

22

Related Work

e Transparent C/R

— LAM/MPI w/ BLCR [S.Sankaran et.al LACSI 03]

-Process Migration: scan & update checkpoint files [Cao et. Al, ICPADS, 05]
- still requires restart of entire job

— Log based (Log msg + temporal ordering): MPICH-V [SC 2002]

e Non-transparent C/R: Explicit invocation of checkpoint routines
- LA-MPI [IPDPS 2004] /' FT-MPI [EuroPVM-MPI 2000]

e Failure prediction: Predictive management [Gujrati et. Al, ICPPO7]
[Gu et. Al, ICDCSO08] [Sahoo et. Al KDDO3]

e Fault model: Evaluation of FT policies [Tikotekar et. Al, Cluster0O7]
e Process migration: MPI-Mitten [CCGrid06]

e Proactive FT: Charm++ [Chakravorty et. Al, HIPCO6], efc.

23

Questions?

Thank youl
This work was supported in part by:
e NSF Grants: CCR-0237570, CNS-0410203, CCF-0429653
e Office of Advanced Scientific Computing Research
e DOE GRANT: DE-F602-05ER25664 A
e DOE GRANT: DE-FG02-08ER25837

e DOE Contract: DE-AC05-000R22725 é; precopy é;

Project websites:

MOLAR: http://forge-fre.ornl.gov/molar/ % ; stop© é ;
RAS: http://www.fastos.org/ras/

	Outline
	Problem Statement
	Our Solution – Proactive Live Migration
	Proactive FT Complements Reactive FT
	LAM-MPI Overview
	Our Design & Implementation – LAM/MPI
	Live Migration Mechanism – LAM/MPI & BLCR
	Live Migration vs. Frozen Migration
	Live Migration - BLCR
	Frozen Migration - BLCR
	Experimental Framework
	Job Execution Time for NPB
	Migration Overhead and Duration
	Migration Duration and Memory Transferred
	Problem Scaling
	Task Scaling
	Speedup
	Page Access Pattern & Iterative Migration
	Process-level vs. Xen Virtualization Migration
	Conclusion and Future Work
	Related Work
	Questions?

