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Problem Statement

Trends in HPC: high end systems with > 100,000 processors

— MTBF/I becomes shorter
MPT widely accepted in scientific computing

— But no fault recovery method in MPI standard
Transparent C/R: — Coordinated: LAM/MPI w/ BLCR [LACSI 03]
(Checkpoint/Restart) __ () -oordinated, Log based: MPICH-V [5C 2002]
Non-fransparent C/R: Explicit invocation of checkpoint routines

- LA-MPTI [IPDPS 2004] / FT-MPTI [EuroPVM-MPI 2000]
Frequently deployed C/R helps but...

— 60% overhead on C/R [LPhijp HPCRI05] ::[::F:‘:
—100 hrs job -> 251 hrs

— Must restart all job tasks Y ‘g, \L
- Inefficient if only one (few) node(s) fails
- Staging overhead "ﬂp"' '"Jf’

— Requeuing penalty T dd



Our Solution — Proactive Live Migration

e High failure prediction accuracy with a prior warning window:
— up to 70% reported [Gu et. Al, ICDCS'08] [R.Sahoo et.al KDD ‘03]
— Active research field

— Premise for live migration
e Processes on live nodes remain active

e Only processes on "unhealthy” nodes are lively migrated to spares

..... I New approach
ambootech---b--d---1.. ® Hence, avoid:

""" I i e — High overhead on C/R

| failypre — Restart of all job tasks

T predlc.md @ = '>@ igration - Staging overhead

j failure — Job requeue penalty

..... e — Lam RTE reboot
Yy v v




Proactive FT Complements Reactive FT

Tr_" = \/ 2 bt TS b T f [J.W.Young Commun. ACM 74]

Tc: time interval between checkpoints

Ts: time to save checkpoint information (mean Ts for
BT/CG/FT/LU/SP Class C on 4/8/16 nodes is 23 seconds)

Tf: MTBF, 1.25hrs /zeaip HPCRI05]
T.=/2x23x (125 x 60 x 60) = 455

Assume 70% faults jrsaroo eral ko0 037 can be predicted/handled proactively

T.=+/2x23x(1.25/(1 - 0.7) x 60 x 60) = 831

e Proactive FT cuts checkpoint frequency in half!

e Future work: use 1. better fault model 2. Ts/Tf on bigger cluster to
measure its complementation effect




LAM-MPI Overview

e Modular, component-based architecture
— 2 major layers

— Daemon-based RTE: lamd j - @
0
I
0

— "Plug in" C/R to MPI SSI ‘
framework:

— Coordinated C/R & support BLCR

D ) o Example: A two-way

MPT job on two nodes

RTE: Run-time Environment

SSI: System Services Interface
RPI: Request Progression Interface
MPI: Message Passing Interface
LAM: Local Area Multi-computer



BLCR Overview

e Kernel-based C/R: Can save/restore almost all resources

e Implementation: Linux kernel module, allows upgrades & bug
fixes w/o reboot

e Process-level C/R facility: single MPI application process

e Provides hooks used for distributed C/R: LAM-MPT jobs



Our Design & Implementation — LAM/MPI

e Per-node health monitoring mechanism

— Baseboard management controller | e
(BMC) ¢[ }

— Intelligent platform management
interface (IPMI)

e NEW: Decentralized scheduler

— Integrated into lamd
— Notified by BMC/IPMI Q
— Migration destination determination |

— Trigger migration )




Live Migration Mechanism — LAM/MPI & BLCR
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WPIRTEsetup (&),  (Jm) ., (4o,
MPT Job running !

D

Live migration O

-

— -0

lamd

eﬂﬂilﬂb n3

.

D

Job exec. resume —~
@,
& o

!! \?

Step 3 is optional: live migration (w/ step 3) vs. frozen (w/o step 3)

n
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Live Migration vs. Frozen Migration

e Live migration e Frozen migration

— w/ precopy — w/o precopy
— stopécopy-only

source node destination node source node destination node

é ‘!\ precopy é ; stop&copy

% ; stopécopy é *!\ &
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Live Migration - BLCR

New process createdon L JL L, [ —

LN S SRR t coee
destination node | K
v v l E v :
>
. . } oy
Precopy: transfer dirty | . Oy -
pages iteratively T el : l
E . . dirty pages
E t gf te?s/;){g?\a? vanster E top&sony > gist f;(/Jsrlz s )
STOP&CO py E regist(;s/signals : >reg ters/signalsy
E ‘ barrier ‘ E ‘ barrie ‘
* stop * * nnnnn | execu tion*

Page-table dirty bit scheme: (In kernel: dashed lines/boxes)

1. dirty bit of PTE duplicated
2. kernel-level functions extended to set the duplicated bit w/o

additional overhead

11



Frozen Migration - BLCR

P Souttes Zpvut A V...
R
5 T 5
I
+w oo ++

Live vs. Frozen migration (also for precopy termination conditions):

1. Thresholds, e.qg., femperature threshold

2. Available network bandwidth determined by dynamic monitoringSOUl
3. Size of write set

Future work: heuristic algorithm based on these conditionthread 1



Experimental Framework

e Experiments conducted on
— Opft cluster: 17 nodes, 2 core, dual Opteron 265, 1 Gbps Ether
— Fedora Core 5 Linux x86_64
— Lam/MPI + BLCR w/ our extensions

e Benchmarks
— NAS V3.2.1 (MPI version)
- BT, CG, FT, LU, and SP benchmarks
- EP, IS and MG run is too short
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Job Execution Time for NPB
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e NPB Class C on 16 Nodes

e Migration overhead: difference of job run time w/ and w/o
migration
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Seconds

Migration Overhead and Duration

28.27

Live ——=

Frozen Live-downtime [

Live-precopytime T |
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A a0 s 1

FT LU Sp BT CG FT LU Sp

Migration Overhead Migration Duration
(S&C = Frozen)

e Live: 0.08-2.98% overhead Frozen: 0.09-6% of benchmark runtime

e Penalty of shorter downtime of live migration: prolonged precopy

— No significant impact to job run time, longer prior warning
window required
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Seconds

Migration Duration and Memory Transferred
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e Migration duration is consistent to memory transferred



Problem Scaling

Seconds

M W B ot N =1 o0 \D
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-

Problem Scaling: Overhead on 16 Nodes (S&C = Frozen)

e BT/FT/SP: Overhead increases with problem size

e CG/LVU: small downtime subsumed by variance of job run time
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Task Scaling

30

d-nodes 1
8/9-nodes C—3
25 | 16-nodes I i

Seconds
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1

Task Scaling: Overhead of NPB Class C  (S&C = Frozen)

e Most cases: Overhead decreases with task size
e No trends: relatively minor downtime subsumed by job variance



Speedup

# of nodes
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e Normalized speedup to 4 nodes for NPB Class C

e FT0.21 lost-in-speedup: relatively large overhead (8.5 sec) vs. short
run time (150 sec)

e Limit of migration overhead: proportionate to memory footprint,
limited by system hardware



Page Access Pattern & Iterative Migration
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Page access pattern of FT Iterative live migration of FT

e Page write patterns are in accord with aggregate amount of
transferred memory

e FT:138/384MB -> 1200/4600 pages/.1 second



Process-level vs. Xen Virtualization Migration

e Xen virtualization live migration [A. B. Nagarajan & F. Mueller ICS 07]

e NPB BT/CG/LU/SP: common benchmarks measured with both
solutions on the same hardware

e Xen virtualization solution: 14-24 seconds for live migration, 13-14
seconds for frozen migration

- Including a 13 seconds minimum overhead to transfer the entire
memory image of the inactive guest VM (rather than transferring a
subset of the OS image) for the ftransparency

- 13-24 seconds of prior warning to successfully trigger live process
migration

e Our solution: 2.6-6.5 seconds for live migration, 1-1.9 seconds for
frozen migration

- 1-6.5 seconds of prior warning (reduce false alarm rate)




Conclusion and Future Work

e Designh generic for any MPT implementation / process C/R
e Implemented over LAM-MPI w/ BLCR

e Cut the number of chkpts in half when 70% faults
handled proactively

e Low overhead: Live: 0.08-2.98% Frozen: 0.09-6%

— No job requeue overhead/ Less staging cost/ No LAM Reboot

e Future work

— Heuristic algorithm for tradeoff between live & frozen
migrations

— Back migration upon node recovery
— Measure how proactive FT complements reactive FT
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Related Work

e Transparent C/R

— LAM/MPI w/ BLCR [S.Sankaran et.al LACSI 03]

-Process Migration: scan & update checkpoint files [Cao et. Al, ICPADS, 05]
- still requires restart of entire job

— Log based (Log msg + temporal ordering): MPICH-V [SC 2002]

e Non-transparent C/R: Explicit invocation of checkpoint routines
- LA-MPI [IPDPS 2004] /' FT-MPI [EuroPVM-MPI 2000]

e Failure prediction: Predictive management [Gujrati et. Al, ICPPO7]
[Gu et. Al, ICDCSO08] [Sahoo et. Al KDDO3]

e Fault model: Evaluation of FT policies [Tikotekar et. Al, Cluster0O7]
e Process migration: MPI-Mitten [CCGrid06]

e Proactive FT: Charm++ [Chakravorty et. Al, HIPCO6], efc.
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Questions?

Thank youl
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