
Proactive Process-Level Live Migration in 
HPC Environments

Chao Wang, Frank Mueller

North Carolina State University

Christian Engelmann, Stephen L. Scott

Oak Ridge National Laboratory

SC’08 Nov. 20 Austin, Texas



2

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR (Berkeley Lab Checkpoint/Restart)
Our Design and Implementation
Experimental Framework
Performance Evaluation
Conclusion and Future Work
Related Work



3

Problem Statement

MPI widely accepted in scientific computing
— But no fault recovery method in MPI standard

Trends in HPC: high end systems with > 100,000 processors
— MTBF/I becomes shorter

Frequently deployed C/R helps but…
— 60% overhead on C/R [I.Philp HPCRI’05]

—100 hrs job -> 251 hrs
— Must restart all job tasks

– Inefficient if only one (few) node(s) fails
– Staging overhead

— Requeuing penalty

Transparent C/R:

Non-transparent C/R: Explicit invocation of checkpoint routines
– LA-MPI [IPDPS 2004] / FT-MPI [EuroPVM-MPI 2000]

— Coordinated: LAM/MPI w/ BLCR [LACSI ’03]
— Uncoordinated, Log based: MPICH-V [SC 2002](Checkpoint/Restart)



4

Processes on live nodes remain active
Only processes on “unhealthy” nodes are lively migrated to spares

Hence, avoid:
— High overhead on C/R
— Restart of all job tasks

– Staging overhead
— Job requeue penalty
— Lam RTE reboot

New approach

failure

live 
migration

lamboot
n0 n2n1 n3

mpirun
failure 

predicted

High failure prediction accuracy with a prior warning window: 
— up to 70% reported [Gu et. Al, ICDCS’08] [R.Sahoo et.al KDD ’03]
— Active research field
— Premise for live migration

Our Solution – Proactive Live Migration



5

Proactive FT Complements Reactive FT

Tc: time interval between checkpoints
Ts: time to save checkpoint information (mean Ts for

BT/CG/FT/LU/SP Class C on 4/8/16 nodes is 23 seconds)
Tf: MTBF, 1.25hrs [I.Philp HPCRI’05]

Proactive FT cuts checkpoint frequency in half!

[J.W.Young Commun. ACM ’74]

Assume 70% faults [R.Sahoo et.al KDD ’03] can be predicted/handled proactively

Future work: use 1. better fault model 2. Ts/Tf on bigger cluster to 
measure its complementation effect



6

LAM-MPI Overview

Modular, component-based architecture
— 2 major layers
— Daemon-based RTE: lamd
— “Plug in” C/R to MPI SSI 

framework:
— Coordinated C/R & support BLCR

Example: A two-way  
MPI job on two nodesRTE: Run-time Environment

SSI: System Services Interface
RPI: Request Progression Interface
MPI: Message Passing Interface
LAM: Local Area Multi-computer



7

BLCR Overview

Kernel-based C/R: Can save/restore almost all resources

Implementation: Linux kernel module, allows upgrades & bug 
fixes w/o reboot

Process-level C/R facility: single MPI application process

Provides hooks used for distributed C/R: LAM-MPI jobs



8

Our Design & Implementation – LAM/MPI

Per-node health monitoring mechanism
— Baseboard management controller 

(BMC)
— Intelligent platform management 

interface (IPMI) 

NEW: Decentralized scheduler
— Integrated into lamd
— Notified by BMC/IPMI
— Migration destination determination
— Trigger migration



9

Live Migration Mechanism – LAM/MPI & BLCR

MPI RTE setup

MPI Job running

Live migration

Job exec. resume

nodes

n0 n2n1 n3
lamd

scheduler
lamd

scheduler
lamd

scheduler
lamd

scheduler

Step 3 is optional: live migration (w/ step 3) vs. frozen (w/o step 3)



10

Live Migration vs. Frozen Migration

Live migration
— w/ precopy

Frozen migration
— w/o precopy
— stop&copy-only

destination nodesource node

precopy

stop&copy

destination nodesource node

stop&copy



11

Live Migration - BLCR

(In kernel: dashed lines/boxes)

New process created on 
destination node

Stop&copy

Precopy: transfer dirty 
pages iteratively

create athread

transfer dirty pages, 
registers/signals

transfer 
registers/signals

stop&copy restore 
registers/signals

save dirty pages
restore 

registers/signals

normal executionstop

barrier

barrier barrier

Page-table dirty bit scheme:
1. dirty bit of PTE duplicated
2. kernel-level functions extended to set the duplicated bit w/o 
additional overhead



12

Frozen Migration - BLCR

Live vs. Frozen migration (also for precopy termination conditions):
1. Thresholds, e.g., temperature threshold
2. Available network bandwidth determined by dynamic monitoring
3. Size of write set
Future work: heuristic algorithm based on these conditions



13

Experimental Framework

Experiments conducted on
— Opt cluster: 17 nodes, 2 core, dual Opteron 265, 1 Gbps Ether
— Fedora Core 5 Linux x86_64
— Lam/MPI + BLCR w/ our extensions

Benchmarks
— NAS V3.2.1 (MPI version)

– BT, CG, FT, LU, and SP benchmarks
– EP, IS and MG run is too short



14

Job Execution Time for NPB

Migration overhead: difference of job run time w/ and w/o 
migration

NPB Class C on 16 Nodes

No-migration
Live

Frozen



15

Migration Overhead and Duration

Migration Overhead Migration Duration

Live: 0.08-2.98% overhead Frozen: 0.09-6% of benchmark runtime

Penalty of shorter downtime of live migration: prolonged precopy
— No significant impact to job run time, longer prior warning 

window required

Live
Frozen

(S&C = Frozen)



16

Migration Duration and Memory Transferred

Migration Duration Memory Transferred

Migration duration is consistent to memory transferred 



17

Problem Scaling

Problem Scaling: Overhead on 16 Nodes

BT/FT/SP: Overhead increases with problem size

CG/LU: small downtime subsumed by variance of job run time

(S&C = Frozen)



18

Task Scaling

Task Scaling: Overhead of NPB Class C

Most cases: Overhead decreases with task size
No trends: relatively minor downtime subsumed by job variance

(S&C = Frozen)



19

Speedup

FT 0.21 lost-in-speedup: relatively large overhead (8.5 sec) vs. short 
run time (150 sec)

Normalized speedup to 4 nodes for NPB Class C

Limit of migration overhead: proportionate to memory footprint, 
limited by system hardware

speedup 
w/ one

migration
speedup 
w/o
migration

lost-in-speedup



20

Page Access Pattern & Iterative Migration

Page access pattern of FT Iterative live migration of FT

Page write patterns are in accord with aggregate amount of 
transferred memory

FT: 138/384MB -> 1200/4600 pages/.1 second

1200

4600



21

Process-level vs. Xen Virtualization Migration

Xen virtualization live migration

NPB BT/CG/LU/SP: common benchmarks measured with both 
solutions on the same hardware

Xen virtualization solution: 14-24 seconds for live migration, 13-14  
seconds for frozen migration

- Including a 13 seconds minimum overhead to transfer the entire 
memory image of the inactive guest VM (rather than transferring a 
subset of the OS image)  for the transparency
- 13-24 seconds of prior warning to successfully trigger live process 
migration

[A. B. Nagarajan & F. Mueller ICS ’07]

Our solution: 2.6-6.5 seconds for live migration, 1-1.9 seconds for 
frozen migration

- 1-6.5 seconds of prior warning (reduce false alarm rate)



22

Conclusion and Future Work

Design generic for any MPI implementation / process C/R
Implemented over LAM-MPI w/ BLCR

Cut the number of chkpts in half when 70% faults 
handled proactively 
Low overhead: Live: 0.08-2.98% Frozen: 0.09-6%

— No job requeue overhead/ Less staging cost/ No LAM Reboot

Future work
— Heuristic algorithm for tradeoff between live & frozen 

migrations
— Back migration upon node recovery
— Measure how proactive FT complements reactive FT



23

Related Work

Fault model: Evaluation of FT policies [Tikotekar et. Al, Cluster07]
Process migration: MPI-Mitten [CCGrid06]

Failure prediction: Predictive management [Gujrati et. Al, ICPP07] 
[Gu et. Al, ICDCS08] [Sahoo et. Al, KDD03]

Transparent C/R
— LAM/MPI w/ BLCR [S.Sankaran et.al LACSI ’03]

–Process Migration: scan & update checkpoint files [Cao et. Al, ICPADS, 05]
still requires restart of entire job

— Log based (Log msg + temporal ordering): MPICH-V [SC 2002]
Non-transparent C/R: Explicit invocation of checkpoint routines

– LA-MPI [IPDPS 2004] / FT-MPI [EuroPVM-MPI 2000]

Proactive FT: Charm++ [Chakravorty et. Al, HiPC06], etc.



24

Questions?

Thank you!
This work was supported in part by:

NSF Grants: CCR-0237570, CNS-0410203, CCF-0429653
Office of Advanced Scientific Computing Research
DOE GRANT: DE-FG02-05ER25664
DOE GRANT: DE-FG02-08ER25837
DOE Contract: DE-AC05-00OR22725

Project websites:
MOLAR: http://forge-fre.ornl.gov/molar/
RAS: http://www.fastos.org/ras/

precopy

stop&copy


	Outline
	Problem Statement
	Our Solution – Proactive Live Migration
	Proactive FT Complements Reactive FT
	LAM-MPI Overview
	Our Design & Implementation – LAM/MPI
	Live Migration Mechanism – LAM/MPI & BLCR
	Live Migration vs. Frozen Migration
	Live Migration - BLCR
	Frozen Migration - BLCR
	Experimental Framework
	Job Execution Time for NPB
	Migration Overhead and Duration
	Migration Duration and Memory Transferred
	Problem Scaling
	Task Scaling
	Speedup
	Page Access Pattern & Iterative Migration
	Process-level vs. Xen Virtualization Migration
	Conclusion and Future Work
	Related Work
	Questions?

